Bochs/bochs/cpu/call_far.cc
Stanislav Shwartsman 002c86660a reword all the CPU code in preparation for future CPU speedup implementation.
Bochs emulation can be another 10-15% faster using technique described in paper
"Fast Microcode Interpretation with Transactional Commit/Abort"
http://amas-bt.cs.virginia.edu/2011proceedings/amasbt2011-p3.pdf
2011-07-06 20:01:18 +00:00

566 lines
21 KiB
C++

////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2005-2009 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::call_protected(bxInstruction_c *i, Bit16u cs_raw, bx_address disp)
{
bx_selector_t cs_selector;
Bit32u dword1, dword2;
bx_descriptor_t cs_descriptor;
/* new cs selector must not be null, else #GP(0) */
if ((cs_raw & 0xfffc) == 0) {
BX_ERROR(("call_protected: CS selector null"));
exception(BX_GP_EXCEPTION, 0);
}
parse_selector(cs_raw, &cs_selector);
// check new CS selector index within its descriptor limits,
// else #GP(new CS selector)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
// examine AR byte of selected descriptor for various legal values
if (cs_descriptor.valid==0) {
BX_ERROR(("call_protected: invalid CS descriptor"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc);
}
if (cs_descriptor.segment) // normal segment
{
check_cs(&cs_descriptor, cs_raw, BX_SELECTOR_RPL(cs_raw), CPL);
#if BX_SUPPORT_X86_64
if (long_mode() && cs_descriptor.u.segment.l) {
Bit64u temp_rsp = RSP;
// moving to long mode, push return address onto 64-bit stack
if (i->os64L()) {
write_new_stack_qword_64(temp_rsp - 8, cs_descriptor.dpl,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
write_new_stack_qword_64(temp_rsp - 16, cs_descriptor.dpl, RIP);
temp_rsp -= 16;
}
else if (i->os32L()) {
write_new_stack_dword_64(temp_rsp - 4, cs_descriptor.dpl,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
write_new_stack_dword_64(temp_rsp - 8, cs_descriptor.dpl, EIP);
temp_rsp -= 8;
}
else {
write_new_stack_word_64(temp_rsp - 2, cs_descriptor.dpl,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
write_new_stack_word_64(temp_rsp - 4, cs_descriptor.dpl, IP);
temp_rsp -= 4;
}
// load code segment descriptor into CS cache
// load CS with new code segment selector
// set RPL of CS to CPL
branch_far64(&cs_selector, &cs_descriptor, disp, CPL);
RSP = temp_rsp;
}
else
#endif
{
Bit32u temp_RSP;
// moving to legacy mode, push return address onto 32-bit stack
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_RSP = ESP;
else
temp_RSP = SP;
#if BX_SUPPORT_X86_64
if (i->os64L()) {
write_new_stack_qword_32(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS],
temp_RSP - 8, cs_descriptor.dpl,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
write_new_stack_qword_32(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS],
temp_RSP - 16, cs_descriptor.dpl, RIP);
temp_RSP -= 16;
}
else
#endif
if (i->os32L()) {
write_new_stack_dword_32(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS],
temp_RSP - 4, cs_descriptor.dpl,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
write_new_stack_dword_32(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS],
temp_RSP - 8, cs_descriptor.dpl, EIP);
temp_RSP -= 8;
}
else {
write_new_stack_word_32(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS],
temp_RSP - 2, cs_descriptor.dpl,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
write_new_stack_word_32(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS],
temp_RSP - 4, cs_descriptor.dpl, IP);
temp_RSP -= 4;
}
// load code segment descriptor into CS cache
// load CS with new code segment selector
// set RPL of CS to CPL
branch_far64(&cs_selector, &cs_descriptor, disp, CPL);
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP = (Bit32u) temp_RSP;
else
SP = (Bit16u) temp_RSP;
}
return;
}
else { // gate & special segment
bx_descriptor_t gate_descriptor = cs_descriptor;
bx_selector_t gate_selector = cs_selector;
// descriptor DPL must be >= CPL else #GP(gate selector)
if (gate_descriptor.dpl < CPL) {
BX_ERROR(("call_protected: descriptor.dpl < CPL"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc);
}
// descriptor DPL must be >= gate selector RPL else #GP(gate selector)
if (gate_descriptor.dpl < gate_selector.rpl) {
BX_ERROR(("call_protected: descriptor.dpl < selector.rpl"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc);
}
#if BX_SUPPORT_X86_64
if (long_mode()) {
// call gate type is higher priority than non-present bit check
if (gate_descriptor.type != BX_386_CALL_GATE) {
BX_ERROR(("call_protected: gate type %u unsupported in long mode", (unsigned) gate_descriptor.type));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc);
}
// gate descriptor must be present else #NP(gate selector)
if (! IS_PRESENT(gate_descriptor)) {
BX_ERROR(("call_protected: call gate not present"));
exception(BX_NP_EXCEPTION, cs_raw & 0xfffc);
}
call_gate64(&gate_selector);
return;
}
#endif
switch (gate_descriptor.type) {
case BX_SYS_SEGMENT_AVAIL_286_TSS:
case BX_SYS_SEGMENT_AVAIL_386_TSS:
if (gate_descriptor.type==BX_SYS_SEGMENT_AVAIL_286_TSS)
BX_DEBUG(("call_protected: 16bit available TSS"));
else
BX_DEBUG(("call_protected: 32bit available TSS"));
if (gate_descriptor.valid==0 || gate_selector.ti) {
BX_ERROR(("call_protected: call bad TSS selector !"));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc);
}
// TSS must be present, else #NP(TSS selector)
if (! IS_PRESENT(gate_descriptor)) {
BX_ERROR(("call_protected: call not present TSS !"));
exception(BX_NP_EXCEPTION, cs_raw & 0xfffc);
}
// SWITCH_TASKS _without_ nesting to TSS
task_switch(i, &gate_selector, &gate_descriptor,
BX_TASK_FROM_CALL, dword1, dword2);
// EIP must be in code seg limit, else #GP(0)
if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
BX_ERROR(("call_protected: EIP not within CS limits"));
exception(BX_GP_EXCEPTION, 0);
}
return;
case BX_TASK_GATE:
task_gate(i, &gate_selector, &gate_descriptor, BX_TASK_FROM_CALL);
return;
case BX_286_CALL_GATE:
case BX_386_CALL_GATE:
// gate descriptor must be present else #NP(gate selector)
if (! IS_PRESENT(gate_descriptor)) {
BX_ERROR(("call_protected: gate not present"));
exception(BX_NP_EXCEPTION, cs_raw & 0xfffc);
}
call_gate(&gate_descriptor);
return;
default: // can't get here
BX_ERROR(("call_protected(): gate.type(%u) unsupported", (unsigned) gate_descriptor.type));
exception(BX_GP_EXCEPTION, cs_raw & 0xfffc);
}
}
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::call_gate(bx_descriptor_t *gate_descriptor)
{
bx_selector_t cs_selector;
Bit32u dword1, dword2;
bx_descriptor_t cs_descriptor;
// examine code segment selector in call gate descriptor
BX_DEBUG(("call_protected: call gate"));
Bit16u dest_selector = gate_descriptor->u.gate.dest_selector;
Bit32u new_EIP = gate_descriptor->u.gate.dest_offset;
// selector must not be null else #GP(0)
if ((dest_selector & 0xfffc) == 0) {
BX_ERROR(("call_protected: selector in gate null"));
exception(BX_GP_EXCEPTION, 0);
}
parse_selector(dest_selector, &cs_selector);
// selector must be within its descriptor table limits,
// else #GP(code segment selector)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
// AR byte of selected descriptor must indicate code segment,
// else #GP(code segment selector)
// DPL of selected descriptor must be <= CPL,
// else #GP(code segment selector)
if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
IS_DATA_SEGMENT(cs_descriptor.type) || cs_descriptor.dpl > CPL)
{
BX_ERROR(("call_protected: selected descriptor is not code"));
exception(BX_GP_EXCEPTION, dest_selector & 0xfffc);
}
// code segment must be present else #NP(selector)
if (! IS_PRESENT(cs_descriptor)) {
BX_ERROR(("call_protected: code segment not present !"));
exception(BX_NP_EXCEPTION, dest_selector & 0xfffc);
}
// CALL GATE TO MORE PRIVILEGE
// if non-conforming code segment and DPL < CPL then
if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL))
{
Bit16u SS_for_cpl_x;
Bit32u ESP_for_cpl_x;
bx_selector_t ss_selector;
bx_descriptor_t ss_descriptor;
Bit16u return_SS, return_CS;
Bit32u return_ESP, return_EIP;
BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL"));
// get new SS selector for new privilege level from TSS
get_SS_ESP_from_TSS(cs_descriptor.dpl, &SS_for_cpl_x, &ESP_for_cpl_x);
// check selector & descriptor for new SS:
// selector must not be null, else #TS(0)
if ((SS_for_cpl_x & 0xfffc) == 0) {
BX_ERROR(("call_protected: new SS null"));
exception(BX_TS_EXCEPTION, 0);
}
// selector index must be within its descriptor table limits,
// else #TS(SS selector)
parse_selector(SS_for_cpl_x, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_TS_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
// selector's RPL must equal DPL of code segment,
// else #TS(SS selector)
if (ss_selector.rpl != cs_descriptor.dpl) {
BX_ERROR(("call_protected: SS selector.rpl != CS descr.dpl"));
exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
}
// stack segment DPL must equal DPL of code segment,
// else #TS(SS selector)
if (ss_descriptor.dpl != cs_descriptor.dpl) {
BX_ERROR(("call_protected: SS descr.rpl != CS descr.dpl"));
exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
}
// descriptor must indicate writable data segment,
// else #TS(SS selector)
if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
IS_CODE_SEGMENT(ss_descriptor.type) || !IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
{
BX_ERROR(("call_protected: ss descriptor is not writable data seg"));
exception(BX_TS_EXCEPTION, SS_for_cpl_x & 0xfffc);
}
// segment must be present, else #SS(SS selector)
if (! IS_PRESENT(ss_descriptor)) {
BX_ERROR(("call_protected: ss descriptor not present"));
exception(BX_SS_EXCEPTION, SS_for_cpl_x & 0xfffc);
}
// get word count from call gate, mask to 5 bits
unsigned param_count = gate_descriptor->u.gate.param_count & 0x1f;
// save return SS:eSP to be pushed on new stack
return_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
return_ESP = ESP;
else
return_ESP = SP;
// save return CS:eIP to be pushed on new stack
return_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
if (cs_descriptor.u.segment.d_b)
return_EIP = EIP;
else
return_EIP = IP;
// Prepare new stack segment
bx_segment_reg_t new_stack;
new_stack.selector = ss_selector;
new_stack.cache = ss_descriptor;
new_stack.selector.rpl = cs_descriptor.dpl;
// add cpl to the selector value
new_stack.selector.value = (0xfffc & new_stack.selector.value) |
new_stack.selector.rpl;
/* load new SS:SP value from TSS */
if (ss_descriptor.u.segment.d_b) {
Bit32u temp_ESP = ESP_for_cpl_x;
// push pointer of old stack onto new stack
if (gate_descriptor->type==BX_386_CALL_GATE) {
write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_SS);
write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_ESP);
temp_ESP -= 8;
for (unsigned n=param_count; n>0; n--) {
temp_ESP -= 4;
Bit32u param = read_virtual_dword_32(BX_SEG_REG_SS, return_ESP + (n-1)*4);
write_new_stack_dword_32(&new_stack, temp_ESP, cs_descriptor.dpl, param);
}
// push return address onto new stack
write_new_stack_dword_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, return_CS);
write_new_stack_dword_32(&new_stack, temp_ESP-8, cs_descriptor.dpl, return_EIP);
temp_ESP -= 8;
}
else {
write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_SS);
write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_ESP);
temp_ESP -= 4;
for (unsigned n=param_count; n>0; n--) {
temp_ESP -= 2;
Bit16u param = read_virtual_word_32(BX_SEG_REG_SS, return_ESP + (n-1)*2);
write_new_stack_word_32(&new_stack, temp_ESP, cs_descriptor.dpl, param);
}
// push return address onto new stack
write_new_stack_word_32(&new_stack, temp_ESP-2, cs_descriptor.dpl, return_CS);
write_new_stack_word_32(&new_stack, temp_ESP-4, cs_descriptor.dpl, (Bit16u) return_EIP);
temp_ESP -= 4;
}
ESP = temp_ESP;
}
else {
Bit16u temp_SP = (Bit16u) ESP_for_cpl_x;
// push pointer of old stack onto new stack
if (gate_descriptor->type==BX_386_CALL_GATE) {
write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_SS);
write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_ESP);
temp_SP -= 8;
for (unsigned n=param_count; n>0; n--) {
temp_SP -= 4;
Bit32u param = read_virtual_dword_32(BX_SEG_REG_SS, return_ESP + (n-1)*4);
write_new_stack_dword_32(&new_stack, temp_SP, cs_descriptor.dpl, param);
}
// push return address onto new stack
write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, return_CS);
write_new_stack_dword_32(&new_stack, (Bit16u)(temp_SP-8), cs_descriptor.dpl, return_EIP);
temp_SP -= 8;
}
else {
write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_SS);
write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_ESP);
temp_SP -= 4;
for (unsigned n=param_count; n>0; n--) {
temp_SP -= 2;
Bit16u param = read_virtual_word_32(BX_SEG_REG_SS, return_ESP + (n-1)*2);
write_new_stack_word_32(&new_stack, temp_SP, cs_descriptor.dpl, param);
}
// push return address onto new stack
write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-2), cs_descriptor.dpl, return_CS);
write_new_stack_word_32(&new_stack, (Bit16u)(temp_SP-4), cs_descriptor.dpl, (Bit16u) return_EIP);
temp_SP -= 4;
}
SP = temp_SP;
}
// new eIP must be in code segment limit else #GP(0)
if (new_EIP > cs_descriptor.u.segment.limit_scaled) {
BX_ERROR(("call_protected: EIP not within CS limits"));
exception(BX_GP_EXCEPTION, 0);
}
/* load SS descriptor */
load_ss(&ss_selector, &ss_descriptor, cs_descriptor.dpl);
/* load new CS:IP value from gate */
/* load CS descriptor */
/* set CPL to stack segment DPL */
/* set RPL of CS to CPL */
load_cs(&cs_selector, &cs_descriptor, cs_descriptor.dpl);
EIP = new_EIP;
}
else // CALL GATE TO SAME PRIVILEGE
{
BX_DEBUG(("CALL GATE TO SAME PRIVILEGE"));
if (gate_descriptor->type == BX_386_CALL_GATE) {
// call gate 32bit, push return address onto stack
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_32(EIP);
}
else {
// call gate 16bit, push return address onto stack
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
push_16(IP);
}
// load CS:EIP from gate
// load code segment descriptor into CS register
// set RPL of CS to CPL
branch_far32(&cs_selector, &cs_descriptor, new_EIP, CPL);
}
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::call_gate64(bx_selector_t *gate_selector)
{
bx_selector_t cs_selector;
Bit32u dword1, dword2, dword3;
bx_descriptor_t cs_descriptor;
bx_descriptor_t gate_descriptor;
// examine code segment selector in call gate descriptor
BX_DEBUG(("call_gate64: CALL 64bit call gate"));
fetch_raw_descriptor_64(gate_selector, &dword1, &dword2, &dword3, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &gate_descriptor);
Bit16u dest_selector = gate_descriptor.u.gate.dest_selector;
// selector must not be null else #GP(0)
if ((dest_selector & 0xfffc) == 0) {
BX_ERROR(("call_gate64: selector in gate null"));
exception(BX_GP_EXCEPTION, 0);
}
parse_selector(dest_selector, &cs_selector);
// selector must be within its descriptor table limits,
// else #GP(code segment selector)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
// find the RIP in the gate_descriptor
Bit64u new_RIP = gate_descriptor.u.gate.dest_offset;
new_RIP |= ((Bit64u)dword3 << 32);
// AR byte of selected descriptor must indicate code segment,
// else #GP(code segment selector)
// DPL of selected descriptor must be <= CPL,
// else #GP(code segment selector)
if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
IS_DATA_SEGMENT(cs_descriptor.type) ||
cs_descriptor.dpl > CPL)
{
BX_ERROR(("call_gate64: selected descriptor is not code"));
exception(BX_GP_EXCEPTION, dest_selector & 0xfffc);
}
// In long mode, only 64-bit call gates are allowed, and they must point
// to 64-bit code segments, else #GP(selector)
if (! IS_LONG64_SEGMENT(cs_descriptor) || cs_descriptor.u.segment.d_b)
{
BX_ERROR(("call_gate64: not 64-bit code segment in call gate 64"));
exception(BX_GP_EXCEPTION, dest_selector & 0xfffc);
}
// code segment must be present else #NP(selector)
if (! IS_PRESENT(cs_descriptor)) {
BX_ERROR(("call_gate64: code segment not present !"));
exception(BX_NP_EXCEPTION, dest_selector & 0xfffc);
}
Bit64u old_CS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
Bit64u old_RIP = RIP;
// CALL GATE TO MORE PRIVILEGE
// if non-conforming code segment and DPL < CPL then
if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) && (cs_descriptor.dpl < CPL))
{
BX_DEBUG(("CALL GATE TO MORE PRIVILEGE LEVEL"));
// get new RSP for new privilege level from TSS
Bit64u RSP_for_cpl_x = get_RSP_from_TSS(cs_descriptor.dpl);
Bit64u old_SS = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
Bit64u old_RSP = RSP;
// push old stack long pointer onto new stack
write_new_stack_qword_64(RSP_for_cpl_x - 8, cs_descriptor.dpl, old_SS);
write_new_stack_qword_64(RSP_for_cpl_x - 16, cs_descriptor.dpl, old_RSP);
// push long pointer to return address onto new stack
write_new_stack_qword_64(RSP_for_cpl_x - 24, cs_descriptor.dpl, old_CS);
write_new_stack_qword_64(RSP_for_cpl_x - 32, cs_descriptor.dpl, old_RIP);
RSP_for_cpl_x -= 32;
// load CS:RIP (guaranteed to be in 64 bit mode)
branch_far64(&cs_selector, &cs_descriptor, new_RIP, cs_descriptor.dpl);
// set up null SS descriptor
load_null_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], cs_descriptor.dpl);
RSP = RSP_for_cpl_x;
}
else
{
BX_DEBUG(("CALL GATE TO SAME PRIVILEGE"));
// push to 64-bit stack, switch to long64 guaranteed
write_new_stack_qword_64(RSP - 8, CPL, old_CS);
write_new_stack_qword_64(RSP - 16, CPL, old_RIP);
// load CS:RIP (guaranteed to be in 64 bit mode)
branch_far64(&cs_selector, &cs_descriptor, new_RIP, CPL);
RSP -= 16;
}
}
#endif