Bochs/bochs/cpu/bit64.cc
Stanislav Shwartsman 002c86660a reword all the CPU code in preparation for future CPU speedup implementation.
Bochs emulation can be another 10-15% faster using technique described in paper
"Fast Microcode Interpretation with Transactional Commit/Abort"
http://amas-bt.cs.virginia.edu/2011proceedings/amasbt2011-p3.pdf
2011-07-06 20:01:18 +00:00

374 lines
9.3 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2011 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BSF_GqEqR(bxInstruction_c *i)
{
Bit64u op2_64 = BX_READ_64BIT_REG(i->rm());
if (op2_64 == 0) {
assert_ZF(); /* op1_64 undefined */
}
else {
Bit64u op1_64 = 0;
while ((op2_64 & 0x01) == 0) {
op1_64++;
op2_64 >>= 1;
}
SET_FLAGS_OSZAPC_LOGIC_64(op1_64);
clear_ZF();
/* now write result back to destination */
BX_WRITE_64BIT_REG(i->nnn(), op1_64);
}
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BSR_GqEqR(bxInstruction_c *i)
{
Bit64u op2_64 = BX_READ_64BIT_REG(i->rm());
if (op2_64 == 0) {
assert_ZF(); /* op1_64 undefined */
}
else {
Bit64u op1_64 = 63;
while ((op2_64 & BX_CONST64(0x8000000000000000)) == 0) {
op1_64--;
op2_64 <<= 1;
}
SET_FLAGS_OSZAPC_LOGIC_64(op1_64);
clear_ZF();
/* now write result back to destination */
BX_WRITE_64BIT_REG(i->nnn(), op1_64);
}
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EqGqM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit64u op1_64, op2_64;
Bit64s displacement64;
Bit64u index;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_64 = BX_READ_64BIT_REG(i->nnn());
index = op2_64 & 0x3f;
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
op1_addr = eaddr + 8 * displacement64;
if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
/* pointer, segment address pair */
op1_64 = read_virtual_qword_64(i->seg(), op1_addr);
set_CF((op1_64 >> index) & 0x01);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EqGqR(bxInstruction_c *i)
{
Bit64u op1_64, op2_64;
op1_64 = BX_READ_64BIT_REG(i->rm());
op2_64 = BX_READ_64BIT_REG(i->nnn());
op2_64 &= 0x3f;
set_CF((op1_64 >> op2_64) & 0x01);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EqGqM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit64u op1_64, op2_64, index;
Bit64s displacement64;
bx_bool bit_i;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_64 = BX_READ_64BIT_REG(i->nnn());
index = op2_64 & 0x3f;
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
op1_addr = eaddr + 8 * displacement64;
if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword_64(i->seg(), op1_addr);
bit_i = (op1_64 >> index) & 0x01;
op1_64 |= (((Bit64u) 1) << index);
write_RMW_virtual_qword(op1_64);
set_CF(bit_i);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EqGqR(bxInstruction_c *i)
{
Bit64u op1_64, op2_64;
op1_64 = BX_READ_64BIT_REG(i->rm());
op2_64 = BX_READ_64BIT_REG(i->nnn());
op2_64 &= 0x3f;
set_CF((op1_64 >> op2_64) & 0x01);
op1_64 |= (((Bit64u) 1) << op2_64);
/* now write result back to the destination */
BX_WRITE_64BIT_REG(i->rm(), op1_64);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EqGqM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit64u op1_64, op2_64, index;
Bit64s displacement64;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_64 = BX_READ_64BIT_REG(i->nnn());
index = op2_64 & 0x3f;
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
op1_addr = eaddr + 8 * displacement64;
if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
/* pointer, segment address pair */
op1_64 = read_RMW_virtual_qword_64(i->seg(), op1_addr);
bx_bool temp_cf = (op1_64 >> index) & 0x01;
op1_64 &= ~(((Bit64u) 1) << index);
/* now write back to destination */
write_RMW_virtual_qword(op1_64);
set_CF(temp_cf);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EqGqR(bxInstruction_c *i)
{
Bit64u op1_64, op2_64;
op1_64 = BX_READ_64BIT_REG(i->rm());
op2_64 = BX_READ_64BIT_REG(i->nnn());
op2_64 &= 0x3f;
set_CF((op1_64 >> op2_64) & 0x01);
op1_64 &= ~(((Bit64u) 1) << op2_64);
/* now write result back to the destination */
BX_WRITE_64BIT_REG(i->rm(), op1_64);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EqGqM(bxInstruction_c *i)
{
bx_address op1_addr;
Bit64u op1_64, op2_64;
Bit64s displacement64;
Bit64u index;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op2_64 = BX_READ_64BIT_REG(i->nnn());
index = op2_64 & 0x3f;
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
op1_addr = eaddr + 8 * displacement64;
if (! i->as64L())
op1_addr = (Bit32u) op1_addr;
op1_64 = read_RMW_virtual_qword_64(i->seg(), op1_addr);
bx_bool temp_CF = (op1_64 >> index) & 0x01;
op1_64 ^= (((Bit64u) 1) << index); /* toggle bit */
set_CF(temp_CF);
write_RMW_virtual_qword(op1_64);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EqGqR(bxInstruction_c *i)
{
Bit64u op1_64, op2_64;
op1_64 = BX_READ_64BIT_REG(i->rm());
op2_64 = BX_READ_64BIT_REG(i->nnn());
op2_64 &= 0x3f;
bx_bool temp_CF = (op1_64 >> op2_64) & 0x01;
op1_64 ^= (((Bit64u) 1) << op2_64); /* toggle bit */
set_CF(temp_CF);
BX_WRITE_64BIT_REG(i->rm(), op1_64);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EqIbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit64u op1_64 = read_virtual_qword_64(i->seg(), eaddr);
Bit8u op2_8 = i->Ib() & 0x3f;
set_CF((op1_64 >> op2_8) & 0x01);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BT_EqIbR(bxInstruction_c *i)
{
Bit64u op1_64 = BX_READ_64BIT_REG(i->rm());
Bit8u op2_8 = i->Ib() & 0x3f;
set_CF((op1_64 >> op2_8) & 0x01);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EqIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x3f;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit64u op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr);
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
op1_64 |= (((Bit64u) 1) << op2_8);
write_RMW_virtual_qword(op1_64);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTS_EqIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x3f;
Bit64u op1_64 = BX_READ_64BIT_REG(i->rm());
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
op1_64 |= (((Bit64u) 1) << op2_8);
BX_WRITE_64BIT_REG(i->rm(), op1_64);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EqIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x3f;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit64u op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr);
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
op1_64 ^= (((Bit64u) 1) << op2_8); /* toggle bit */
write_RMW_virtual_qword(op1_64);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTC_EqIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x3f;
Bit64u op1_64 = BX_READ_64BIT_REG(i->rm());
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
op1_64 ^= (((Bit64u) 1) << op2_8); /* toggle bit */
BX_WRITE_64BIT_REG(i->rm(), op1_64);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EqIbM(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x3f;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit64u op1_64 = read_RMW_virtual_qword_64(i->seg(), eaddr);
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
op1_64 &= ~(((Bit64u) 1) << op2_8);
write_RMW_virtual_qword(op1_64);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::BTR_EqIbR(bxInstruction_c *i)
{
Bit8u op2_8 = i->Ib() & 0x3f;
Bit64u op1_64 = BX_READ_64BIT_REG(i->rm());
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
op1_64 &= ~(((Bit64u) 1) << op2_8);
BX_WRITE_64BIT_REG(i->rm(), op1_64);
set_CF(temp_CF);
BX_NEXT_INSTR(i);
}
/* F3 0F B8 */
BX_INSF_TYPE BX_CPP_AttrRegparmN(1) BX_CPU_C::POPCNT_GqEqR(bxInstruction_c *i)
{
Bit64u op2_64 = BX_READ_64BIT_REG(i->rm());
Bit64u op1_64 = 0;
while (op2_64 != 0) {
if (op2_64 & 1) op1_64++;
op2_64 >>= 1;
}
Bit32u flags = op1_64 ? 0 : EFlagsZFMask;
setEFlagsOSZAPC(flags);
BX_WRITE_64BIT_REG(i->nnn(), op1_64);
BX_NEXT_INSTR(i);
}
#endif // BX_SUPPORT_X86_64