Bochs/bochs/cpu/segment_ctrl_pro.cc
Stanislav Shwartsman f8c3968d42 Changes list made after CVS service crash:
- Fixed critical bug in CPU code added with one of the prev commits
  - Disasm support for SSE4
  - Rename PNI->SSE3 everywhere in the code
  - Correctly decode, disassemble and execute 'XCHG R8, rAX' x86-64 instruction
  - Correctly decode, disassemble and execute multi-byte NOP 0F F1 opcode
  - Fixed ENTER and LEAVE instructions in x86-64 mode
  - Added ability to turn ON instruction trace, only GUI support is missed.
    Instruction trace could be enabled if Bochs was compiled with disasm
  - More changes Bit32u -> bx_phy_address
  - Complete preliminary implementation of SMM in Bochs, SMI is still PANICs but if you press 'continue' everything should work OK
  - Small code cleanup
  - Update CHANGES and user docs
2006-04-05 17:31:35 +00:00

704 lines
24 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: segment_ctrl_pro.cc,v 1.58 2006-04-05 17:31:32 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::load_seg_reg(bx_segment_reg_t *seg, Bit16u new_value)
{
if (protected_mode())
{
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS])
{
if ((new_value & 0xfffc) == 0) { /* null selector */
#if BX_SUPPORT_X86_64
// allow SS = 0 in 64 bit mode with cpl != 3
if (BX_CPU_THIS_PTR msr.lma && CPL != 3) {
seg->selector.index = 0;
seg->selector.ti = 0;
seg->selector.rpl = 0;
seg->selector.value = 0;
seg->cache.valid = 0; /* invalidate null selector */
return;
}
#endif
BX_ERROR(("load_seg_reg(SS): new_value == 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
bx_descriptor_t descriptor;
Bit32u dword1, dword2;
bx_selector_t ss_selector;
parse_selector(new_value, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
/* selector's RPL must = CPL, else #GP(selector) */
if (ss_selector.rpl != CPL) {
BX_ERROR(("load_seg_reg(SS): rpl != CPL"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
}
parse_descriptor(dword1, dword2, &descriptor);
if (descriptor.valid==0) {
BX_ERROR(("load_seg_reg(SS): valid bit cleared"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
}
/* AR byte must indicate a writable data segment else #GP(selector) */
if ((descriptor.segment==0) ||
descriptor.u.segment.executable ||
descriptor.u.segment.r_w==0 )
{
BX_ERROR(("load_seg_reg(SS): not writable data segment"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
}
/* DPL in the AR byte must equal CPL else #GP(selector) */
if (descriptor.dpl != CPL) {
BX_ERROR(("load_seg_reg(SS): dpl != CPL"));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
}
/* segment must be marked PRESENT else #SS(selector) */
if (! IS_PRESENT(descriptor)) {
BX_ERROR(("load_seg_reg(SS): not present"));
exception(BX_SS_EXCEPTION, new_value & 0xfffc, 0);
}
/* load SS with selector, load SS cache with descriptor */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = ss_selector;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = descriptor;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 1;
/* now set accessed bit in descriptor */
dword2 |= 0x0100;
if (ss_selector.ti == 0) { /* GDT */
access_linear(BX_CPU_THIS_PTR gdtr.base + ss_selector.index*8 + 4, 4, 0,
BX_WRITE, &dword2);
}
else { /* LDT */
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + ss_selector.index*8 + 4, 4, 0,
BX_WRITE, &dword2);
}
return;
}
else if ( (seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]) ||
(seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES])
#if BX_CPU_LEVEL >= 3
|| (seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]) ||
(seg==&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS])
#endif
)
{
bx_descriptor_t descriptor;
bx_selector_t selector;
Bit32u dword1, dword2;
if ((new_value & 0xfffc) == 0) { /* null selector */
seg->selector.index = 0;
seg->selector.ti = 0;
seg->selector.rpl = 0;
seg->selector.value = 0;
seg->cache.valid = 0; /* invalidate null selector */
return;
}
parse_selector(new_value, &selector);
fetch_raw_descriptor(&selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &descriptor);
if (descriptor.valid==0) {
BX_ERROR(("load_seg_reg(%s): valid bit cleared", strseg(seg)));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
}
/* AR byte must indicate data or readable code segment else #GP(selector) */
if ( descriptor.segment==0 ||
(descriptor.u.segment.executable==1 &&
descriptor.u.segment.r_w==0) )
{
BX_ERROR(("load_seg_reg(%s): not data or readable code", strseg(seg)));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
}
/* If data or non-conforming code, then both the RPL and the CPL
* must be less than or equal to DPL in AR byte else #GP(selector) */
if ( descriptor.u.segment.executable==0 ||
descriptor.u.segment.c_ed==0 )
{
if ((selector.rpl > descriptor.dpl) || (CPL > descriptor.dpl)) {
BX_ERROR(("load_seg_reg(%s): RPL & CPL must be <= DPL", strseg(seg)));
exception(BX_GP_EXCEPTION, new_value & 0xfffc, 0);
}
}
/* segment must be marked PRESENT else #NP(selector) */
if (! IS_PRESENT(descriptor)) {
BX_ERROR(("load_seg_reg(%s): segment not present", strseg(seg)));
exception(BX_NP_EXCEPTION, new_value & 0xfffc, 0);
}
/* load segment register with selector */
/* load segment register-cache with descriptor */
seg->selector = selector;
seg->cache = descriptor;
seg->cache.valid = 1;
/* now set accessed bit in descriptor */
/* wmr: don't bother if it's already set (thus allowing */
/* GDT to be in read-only pages like real hdwe does) */
if (!(dword2 & 0x0100)) {
dword2 |= 0x0100;
if (selector.ti == 0) { /* GDT */
access_linear(BX_CPU_THIS_PTR gdtr.base + selector.index*8 + 4, 4, 0,
BX_WRITE, &dword2);
}
else { /* LDT */
access_linear(BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector.index*8 + 4, 4, 0,
BX_WRITE, &dword2);
}
}
return;
}
else {
BX_PANIC(("load_seg_reg(): invalid segment register passed!"));
return;
}
}
/* real or v8086 mode */
/* www.x86.org:
According to Intel, each time any segment register is loaded in real
mode, the base address is calculated as 16 times the segment value,
while the access rights and size limit attributes are given fixed,
"real-mode compatible" values. This is not true. In fact, only the CS
descriptor caches for the 286, 386, and 486 get loaded with fixed
values each time the segment register is loaded. Loading CS, or any
other segment register in real mode, on later Intel processors doesn't
change the access rights or the segment size limit attributes stored
in the descriptor cache registers. For these segments, the access
rights and segment size limit attributes from any previous setting are
honored. */
seg->selector.value = new_value;
seg->selector.rpl = real_mode() ? 0 : 3;
seg->cache.valid = 1;
seg->cache.u.segment.base = new_value << 4;
seg->cache.segment = 1; /* regular segment */
seg->cache.p = 1; /* present */
if (seg == &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]) {
seg->cache.u.segment.executable = 1; /* code segment */
#if BX_SUPPORT_ICACHE
BX_CPU_THIS_PTR updateFetchModeMask();
#endif
invalidate_prefetch_q();
}
else {
seg->cache.u.segment.executable = 0; /* data segment */
}
/* Do not modify segment limit and AR bytes when in real mode */
if (real_mode()) return;
seg->cache.dpl = 3; /* we are in v8086 mode */
seg->cache.u.segment.c_ed = 0; /* expand up */
seg->cache.u.segment.r_w = 1; /* writeable */
seg->cache.u.segment.a = 1; /* accessed */
seg->cache.u.segment.limit = 0xffff;
seg->cache.u.segment.limit_scaled = 0xffff;
#if BX_CPU_LEVEL >= 3
seg->cache.u.segment.g = 0; /* byte granular */
seg->cache.u.segment.d_b = 0; /* default 16bit size */
#if BX_SUPPORT_X86_64
seg->cache.u.segment.l = 0; /* default 16bit size */
#endif
seg->cache.u.segment.avl = 0;
#endif
}
#if BX_SUPPORT_X86_64
void BX_CPU_C::loadSRegLMNominal(unsigned segI, unsigned selector, bx_address base,
unsigned dpl)
{
bx_segment_reg_t *seg = & BX_CPU_THIS_PTR sregs[segI];
// Load a segment register in long-mode with nominal values,
// so descriptor cache values are compatible with existing checks.
seg->cache.u.segment.base = base;
// I doubt we need limit_scaled. If we do, it should be
// of type bx_addr and be maxed to 64bits, not 32.
seg->cache.u.segment.limit_scaled = 0xffffffff;
seg->cache.valid = 1;
seg->cache.dpl = dpl; // (KPL) Not sure if we need this.
seg->selector.value = selector;
}
#endif
void BX_CPU_C::validate_seg_reg(unsigned seg)
{
/*
FOR (seg = ES, DS, FS, GS)
DO
IF ((seg.attr.dpl < CPL) && ((seg.attr.type = 'data')
|| (seg.attr.type = 'non-conforming-code')))
{
seg = NULL // can't use lower dpl data segment at higher cpl
}
END
*/
bx_segment_reg_t *segment = &BX_CPU_THIS_PTR sregs[seg];
if (segment->cache.dpl < CPL)
{
// invalidate if data or non-conforming code segment
if ((segment->cache.valid==0) || (segment->cache.segment==0) ||
(segment->cache.u.segment.executable==0) || (segment->cache.u.segment.c_ed==0))
{
segment->selector.value = 0;
segment->cache.valid = 0;
}
}
}
void BX_CPU_C::validate_seg_regs(void)
{
validate_seg_reg(BX_SEG_REG_ES);
validate_seg_reg(BX_SEG_REG_DS);
validate_seg_reg(BX_SEG_REG_FS);
validate_seg_reg(BX_SEG_REG_GS);
}
#if BX_CPU_LEVEL >= 2
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::parse_selector(Bit16u raw_selector, bx_selector_t *selector)
{
selector->value = raw_selector;
selector->index = raw_selector >> 3;
selector->ti = (raw_selector >> 2) & 0x01;
selector->rpl = raw_selector & 0x03;
}
#endif
#if BX_CPU_LEVEL >= 3
Bit16u BX_CPP_AttrRegparmN(1)
BX_CPU_C::get_segment_ar_data(bx_descriptor_t *d) // used for SMM
{
Bit16u val = 0;
if (d->segment) { /* data/code segment descriptors */
val = (d->u.segment.executable << 3) |
(d->u.segment.c_ed << 2) |
(d->u.segment.r_w << 1) |
(d->u.segment.a << 0) |
(d->segment << 4) |
(d->dpl << 5) |
(d->p << 7) |
(d->u.segment.avl << 12) |
#if BX_SUPPORT_X86_64
(d->u.segment.l << 13) |
#endif
(d->u.segment.d_b << 14) |
(d->u.segment.g << 15);
return(val);
}
switch (d->type) {
case BX_SYS_SEGMENT_LDT:
case BX_SYS_SEGMENT_AVAIL_286_TSS:
case BX_SYS_SEGMENT_BUSY_286_TSS:
val = (d->type << 0) |
(d->dpl << 5) |
(d->p << 7);
return(val);
case BX_SYS_SEGMENT_AVAIL_386_TSS:
case BX_SYS_SEGMENT_BUSY_386_TSS:
val = (d->type << 0) |
(d->dpl << 5) |
(d->p << 7) |
(d->u.tss386.avl << 12) |
(d->u.tss386.g << 15);
return(val);
default:
BX_PANIC(("get_segment_ar_data(): case %u unsupported", (unsigned) d->type));
}
return val;
}
bx_bool BX_CPU_C::set_segment_ar_data(bx_segment_reg_t *seg,
Bit16u raw_selector, bx_address base, Bit32u limit, Bit16u ar_data)
{
parse_selector(raw_selector, &seg->selector);
bx_descriptor_t *d = &seg->cache;
d->p = (ar_data >> 7) & 0x01;
d->dpl = (ar_data >> 5) & 0x03;
d->segment = (ar_data >> 4) & 0x01;
d->type = (ar_data & 0x0f);
if (d->segment) { /* data/code segment descriptors */
d->u.segment.executable = (ar_data >> 3) & 0x01;
d->u.segment.c_ed = (ar_data >> 2) & 0x01;
d->u.segment.r_w = (ar_data >> 1) & 0x01;
d->u.segment.a = (ar_data >> 0) & 0x01;
d->u.segment.g = (ar_data >> 15) & 0x01;
d->u.segment.d_b = (ar_data >> 14) & 0x01;
#if BX_SUPPORT_X86_64
d->u.segment.l = (ar_data >> 13) & 0x01;
#endif
d->u.segment.avl = (ar_data >> 12) & 0x01;
d->u.segment.base = base;
d->u.segment.limit = limit;
if (d->u.segment.g) {
if ((d->u.segment.executable==0) && (d->u.segment.c_ed))
d->u.segment.limit_scaled = (d->u.segment.limit << 12);
else
d->u.segment.limit_scaled = (d->u.segment.limit << 12) | 0x0fff;
}
else
d->u.segment.limit_scaled = d->u.segment.limit;
d->valid = 1;
}
else {
switch(d->type) {
case BX_SYS_SEGMENT_LDT:
d->valid = 1;
d->u.ldt.base = base;
d->u.ldt.limit = limit;
break;
case BX_SYS_SEGMENT_AVAIL_286_TSS:
case BX_SYS_SEGMENT_BUSY_286_TSS:
d->valid = 1;
d->u.tss286.base = base;
d->u.tss286.limit = limit;
break;
case BX_SYS_SEGMENT_AVAIL_386_TSS:
case BX_SYS_SEGMENT_BUSY_386_TSS:
d->valid = 1;
d->u.tss386.avl = (ar_data >> 12) & 0x01;
d->u.tss386.g = (ar_data >> 15) & 0x01;
d->u.tss386.base = base;
d->u.tss386.limit = limit;
if (d->u.tss386.g)
d->u.tss386.limit_scaled = (d->u.tss386.limit << 12) | 0x0fff;
else
d->u.tss386.limit_scaled = (d->u.tss386.limit);
break;
default:
BX_PANIC(("set_segment_ar_data(): case %u unsupported", (unsigned) d->type));
}
}
/* invalidate if null selector */
if ((raw_selector & 0xfffc) == 0) {
seg->cache.valid = 0;
}
return seg->cache.valid;
}
#endif
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::parse_descriptor(Bit32u dword1, Bit32u dword2, bx_descriptor_t *temp)
{
Bit8u AR_byte;
AR_byte = dword2 >> 8;
temp->p = (AR_byte >> 7) & 0x01;
temp->dpl = (AR_byte >> 5) & 0x03;
temp->segment = (AR_byte >> 4) & 0x01;
temp->type = (AR_byte & 0x0f);
temp->valid = 0; /* start out invalid */
if (temp->segment) { /* data/code segment descriptors */
temp->u.segment.executable = (AR_byte >> 3) & 0x01;
temp->u.segment.c_ed = (AR_byte >> 2) & 0x01;
temp->u.segment.r_w = (AR_byte >> 1) & 0x01;
temp->u.segment.a = (AR_byte >> 0) & 0x01;
temp->u.segment.limit = (dword1 & 0xffff);
temp->u.segment.base = (dword1 >> 16) | ((dword2 & 0xFF) << 16);
#if BX_CPU_LEVEL >= 3
temp->u.segment.limit |= (dword2 & 0x000F0000);
temp->u.segment.g = (dword2 & 0x00800000) > 0;
temp->u.segment.d_b = (dword2 & 0x00400000) > 0;
#if BX_SUPPORT_X86_64
temp->u.segment.l = (dword2 & 0x00200000) > 0;
#endif
temp->u.segment.avl = (dword2 & 0x00100000) > 0;
temp->u.segment.base |= (dword2 & 0xFF000000);
if (temp->u.segment.g) {
if ((temp->u.segment.executable==0) && (temp->u.segment.c_ed))
temp->u.segment.limit_scaled = (temp->u.segment.limit << 12);
else
temp->u.segment.limit_scaled = (temp->u.segment.limit << 12) | 0x0fff;
}
else
#endif
temp->u.segment.limit_scaled = temp->u.segment.limit;
temp->valid = 1;
}
else { // system & gate segment descriptors
switch (temp->type) {
case 0: // reserved
case 8: // reserved
case 10: // reserved
case 13: // reserved
temp->valid = 0;
break;
case BX_SYS_SEGMENT_AVAIL_286_TSS:
case BX_SYS_SEGMENT_BUSY_286_TSS:
temp->u.tss286.base = (dword1 >> 16) | ((dword2 & 0xff) << 16);
temp->u.tss286.limit = (dword1 & 0xffff);
temp->valid = 1;
break;
case BX_SYS_SEGMENT_LDT:
temp->u.ldt.base = (dword1 >> 16) | ((dword2 & 0xFF) << 16);
#if BX_CPU_LEVEL >= 3
temp->u.ldt.base |= (dword2 & 0xff000000);
#endif
temp->u.ldt.limit = (dword1 & 0xffff);
temp->valid = 1;
break;
case BX_286_CALL_GATE:
case BX_286_INTERRUPT_GATE:
case BX_286_TRAP_GATE:
/* word count only used for call gate */
temp->u.gate286.word_count = dword2 & 0x1f;
temp->u.gate286.dest_selector = dword1 >> 16;
temp->u.gate286.dest_offset = dword1 & 0xffff;
temp->valid = 1;
break;
case BX_TASK_GATE:
temp->u.taskgate.tss_selector = dword1 >> 16;
temp->valid = 1;
break;
#if BX_CPU_LEVEL >= 3
case BX_SYS_SEGMENT_AVAIL_386_TSS:
case BX_SYS_SEGMENT_BUSY_386_TSS:
temp->u.tss386.base = (dword1 >> 16) |
((dword2 & 0xff) << 16) |
(dword2 & 0xff000000);
temp->u.tss386.limit = (dword1 & 0x0000ffff) |
(dword2 & 0x000f0000);
temp->u.tss386.g = (dword2 & 0x00800000) > 0;
temp->u.tss386.avl = (dword2 & 0x00100000) > 0;
if (temp->u.tss386.g)
temp->u.tss386.limit_scaled = (temp->u.tss386.limit << 12) | 0x0fff;
else
temp->u.tss386.limit_scaled = temp->u.tss386.limit;
temp->valid = 1;
break;
case BX_386_CALL_GATE:
case BX_386_INTERRUPT_GATE:
case BX_386_TRAP_GATE:
// word count only used for call gate
temp->u.gate386.dword_count = dword2 & 0x1f;
temp->u.gate386.dest_selector = dword1 >> 16;
temp->u.gate386.dest_offset = (dword2 & 0xffff0000) |
(dword1 & 0x0000ffff);
temp->valid = 1;
break;
#endif
default:
BX_PANIC(("parse_descriptor(): case %u unfinished", (unsigned) temp->type));
temp->valid = 0;
}
}
}
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::load_ldtr(bx_selector_t *selector, bx_descriptor_t *descriptor)
{
/* check for null selector, if so invalidate LDTR */
if ( (selector->value & 0xfffc)==0 ) {
BX_CPU_THIS_PTR ldtr.selector = *selector;
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
return;
}
if (!descriptor)
BX_PANIC(("load_ldtr(): descriptor == NULL !"));
BX_CPU_THIS_PTR ldtr.cache = *descriptor; /* whole structure copy */
BX_CPU_THIS_PTR ldtr.selector = *selector;
if (BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit < 7) {
BX_PANIC(("load_ldtr(): ldtr.limit < 7"));
}
BX_CPU_THIS_PTR ldtr.cache.valid = 1;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::load_ss(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl)
{
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = *selector;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = *descriptor;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = cpl;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
loadSRegLMNominal(BX_SEG_REG_SS, selector->value, 0, cpl);
return;
}
#endif
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc) == 0 )
BX_PANIC(("load_ss(): null selector passed"));
if ( !BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid ) {
BX_PANIC(("load_ss(): invalid selector/descriptor passed."));
}
}
#if BX_CPU_LEVEL >= 2
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::fetch_raw_descriptor(const bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2, unsigned exception_no)
{
if (selector->ti == 0) { /* GDT */
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit) {
BX_ERROR(("fetch_raw_descriptor: GDT: index (%x)%x > limit (%x)",
(selector->index*8 + 7), selector->index,
BX_CPU_THIS_PTR gdtr.limit));
exception(exception_no, selector->value & 0xfffc, 0);
}
bx_address offset = BX_CPU_THIS_PTR gdtr.base + selector->index*8;
access_linear(offset, 4, 0, BX_READ, dword1);
access_linear(offset + 4, 4, 0, BX_READ, dword2);
}
else { /* LDT */
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) {
BX_PANIC(("fetch_raw_descriptor: LDTR.valid=0"));
debug(BX_CPU_THIS_PTR prev_eip);
}
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) {
BX_ERROR(("fetch_raw_descriptor: LDT: index (%x)%x > limit (%x)",
(selector->index*8 + 7), selector->index,
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit));
exception(exception_no, selector->value & 0xfffc, 0);
}
bx_address offset = BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8;
access_linear(offset, 4, 0, BX_READ, dword1);
access_linear(offset + 4, 4, 0, BX_READ, dword2);
}
}
bx_bool BX_CPP_AttrRegparmN(3)
BX_CPU_C::fetch_raw_descriptor2(const bx_selector_t *selector, Bit32u *dword1, Bit32u *dword2)
{
if (selector->ti == 0) { /* GDT */
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR gdtr.limit)
return(0);
bx_address offset = BX_CPU_THIS_PTR gdtr.base + selector->index*8;
access_linear(offset, 4, 0, BX_READ, dword1);
access_linear(offset + 4, 4, 0, BX_READ, dword2);
return(1);
}
else { /* LDT */
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) {
BX_PANIC(("fetch_raw_descriptor2: LDTR.valid=0"));
return(0);
}
if ((selector->index*8 + 7) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit)
return(0);
bx_address offset = BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8;
access_linear(offset, 4, 0, BX_READ, dword1);
access_linear(offset + 4, 4, 0, BX_READ, dword2);
return(1);
}
}
#if BX_SUPPORT_X86_64
void BX_CPU_C::fetch_raw_descriptor64(const bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2, Bit32u *dword3, unsigned exception_no)
{
Bit32u dword4;
if (selector->ti == 0) { /* GDT */
if ((selector->index*8 + 15) > BX_CPU_THIS_PTR gdtr.limit) {
BX_ERROR(("fetch_raw_descriptor64: GDT: index (%x)%x > limit (%x)",
(selector->index*8 + 15), selector->index,
BX_CPU_THIS_PTR gdtr.limit));
exception(exception_no, selector->value & 0xfffc, 0);
}
bx_address offset = BX_CPU_THIS_PTR gdtr.base + selector->index*8;
access_linear(offset, 4, 0, BX_READ, dword1);
access_linear(offset + 4, 4, 0, BX_READ, dword2);
access_linear(offset + 8, 4, 0, BX_READ, dword3);
access_linear(offset + 12, 4, 0, BX_READ, &dword4);
}
else { /* LDT */
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) {
BX_PANIC(("fetch_raw_descriptor: LDTR.valid=0"));
debug(BX_CPU_THIS_PTR prev_eip);
}
if ((selector->index*8 + 15) > BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit) {
BX_ERROR(("fetch_raw_descriptor64: LDT: index (%x)%x > limit (%x)",
(selector->index*8 + 15), selector->index,
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit));
exception(exception_no, selector->value & 0xfffc, 0);
}
bx_address offset = BX_CPU_THIS_PTR ldtr.cache.u.ldt.base + selector->index*8;
access_linear(offset, 4, 0, BX_READ, dword1);
access_linear(offset + 4, 4, 0, BX_READ, dword2);
access_linear(offset + 8, 4, 0, BX_READ, dword3);
access_linear(offset + 12, 4, 0, BX_READ, &dword4);
}
if (dword4 != 0) {
BX_ERROR(("fetch_raw_descriptor64: extended attributes DWORD4 != 0"));
exception(BX_GP_EXCEPTION, selector->value & 0xfffc, 0);
}
}
#endif
#endif