Bochs/bochs/pc_system.cc
2001-04-10 01:04:59 +00:00

545 lines
12 KiB
C++

// Copyright (C) 2000 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#ifdef WIN32
#ifndef __MINGW32__
// #include <winsock2.h> // +++
#include <winsock.h>
#endif
#endif
#if BX_SHOW_IPS
unsigned long ips_count=0;
#endif
#if defined(PROVIDE_M_IPS)
double m_ips; // Millions of Instructions Per Second
#endif
const Bit64u bx_pc_system_c::COUNTER_INTERVAL = 100000;
// constructor
bx_pc_system_c::bx_pc_system_c(void)
{
num_timers = 0;
// set ticks period and remaining to max Bit32u value
num_cpu_ticks_in_period = num_cpu_ticks_left = (Bit32u) -1;
m_ips = 0.0L;
for (unsigned int i=0; i < 8; i++) {
DRQ[i] = 0;
DACK[i] = 0;
}
TC = 0;
HRQ = 0;
HLDA = 0;
enable_a20 = 1;
#if BX_CPU_LEVEL < 2
a20_mask = 0xfffff;
#elif BX_CPU_LEVEL == 2
a20_mask = 0xffffff;
#else /* 386+ */
a20_mask = 0xffffffff;
#endif
counter = 0;
counter_timer_index = register_timer_ticks(this, bx_pc_system_c::counter_timer_handler, COUNTER_INTERVAL, 1, 1);
}
void
bx_pc_system_c::init_ips(Bit32u ips)
{
// parameter 'ips' is the processor speed in Instructions-Per-Second
m_ips = double(ips) / 1000000.0L;
bx_printf("ips = %u\n", (unsigned) ips);
}
void
bx_pc_system_c::raise_HLDA(void)
{
HLDA = 1;
bx_devices.raise_hlda();
HLDA = 0;
}
void
bx_pc_system_c::set_DRQ(unsigned channel, Boolean val)
{
if (channel > 7)
bx_panic("set_DRQ() channel > 7\n");
DRQ[channel] = val;
bx_devices.drq(channel, val);
}
void
bx_pc_system_c::set_HRQ(Boolean val)
{
HRQ = val;
if (val)
BX_CPU.async_event = 1;
else
HLDA = 0; // ??? needed?
}
void
bx_pc_system_c::set_TC(Boolean val)
{
TC = val;
}
void
bx_pc_system_c::set_DACK(unsigned channel, Boolean val)
{
DACK[channel] = val;
}
void
bx_pc_system_c::dma_write8(Bit32u phy_addr, unsigned channel)
{
// DMA controlled xfer of byte from I/O to Memory
Bit8u data_byte;
UNUSED(channel);
bx_devices.dma_write8(channel, &data_byte);
BX_MEM.write_physical(phy_addr, 1, &data_byte);
BX_DBG_DMA_REPORT(phy_addr, 1, BX_WRITE, data_byte);
}
void
bx_pc_system_c::dma_read8(Bit32u phy_addr, unsigned channel)
{
// DMA controlled xfer of byte from Memory to I/O
Bit8u data_byte;
UNUSED(channel);
BX_MEM.read_physical(phy_addr, 1, &data_byte);
bx_devices.dma_read8(channel, &data_byte);
BX_DBG_DMA_REPORT(phy_addr, 1, BX_READ, data_byte);
}
#if (BX_NUM_SIMULATORS < 2)
void
bx_pc_system_c::set_INTR(Boolean value)
{
INTR = value;
BX_CPU.set_INTR(value);
}
#endif
//
// Read from the IO memory address space
//
Bit32u
bx_pc_system_c::inp(Bit16u addr, unsigned io_len)
{
Bit32u ret;
ret = bx_devices.inp(addr, io_len);
return( ret );
}
//
// Write to the IO memory address space.
//
void
bx_pc_system_c::outp(Bit16u addr, Bit32u value, unsigned io_len)
{
bx_devices.outp(addr, value, io_len);
}
void
bx_pc_system_c::set_enable_a20(Bit8u value)
{
#if BX_CPU_LEVEL < 2
bx_panic("set_enable_a20() called: 8086 emulation\n");
#else
#if BX_SUPPORT_A20
if (value) {
enable_a20 = 1;
#if BX_CPU_LEVEL == 2
a20_mask = 0xffffff; /* 286: enable all 24 address lines */
#else /* 386+ */
a20_mask = 0xffffffff; /* 386: enable all 32 address lines */
#endif
}
else {
enable_a20 = 0;
a20_mask = 0xffefffff; /* mask off A20 address line */
}
BX_DBG_A20_REPORT(value);
if (bx_dbg.a20)
bx_printf("A20: set() = %u\n", (unsigned) enable_a20);
#else
bx_printf("set_enable_a20: ignoring: SUPPORT_A20 = 0\n");
#endif // #if BX_SUPPORT_A20
#endif
}
Boolean
bx_pc_system_c::get_enable_a20(void)
{
#if BX_SUPPORT_A20
if (bx_dbg.a20)
bx_printf("A20: get() = %u\n", (unsigned) enable_a20);
if (enable_a20) return(1);
else return(0);
#else
bx_printf("get_enable_a20: ignoring: SUPPORT_A20 = 0\n");
return(1);
#endif // #if BX_SUPPORT_A20
}
int
bx_pc_system_c::ResetSignal( PCS_OP operation )
{
UNUSED( operation );
// Reset the processor.
fprintf(stderr, "# bx_pc_system_c::ResetSignal() called\n");
bx_panic("pc_system.resetsignal() called\n");
return(0);
}
Bit8u
bx_pc_system_c::IAC(void)
{
return( bx_devices.pic->IAC() );
}
void
bx_pc_system_c::exit(void)
{
if (bx_devices.hard_drive)
bx_devices.hard_drive->close_harddrive();
bx_printf("Last time is %d\n", BX_CMOS_THIS s.timeval);
bx_gui.exit();
}
//
// bochs timer support
//
void
bx_pc_system_c::timer_handler(void)
{
Bit64u min;
unsigned i;
Bit64u delta;
// fprintf(stderr, "Time handler ptime = %d\n", bx_pc_system.time_ticks());
delta = num_cpu_ticks_in_period - num_cpu_ticks_left;
#if BX_TIMER_DEBUG
if (num_cpu_ticks_left != 0)
bx_panic("timer_handler: ticks_left!=0\n");
#endif
for (i=0; i < num_timers; i++) {
timer[i].triggered = 0;
if (timer[i].active) {
#if BX_TIMER_DEBUG
if (timer[i].remaining < delta) {
bx_panic("timer_handler: remain < delta\n");
}
#endif
timer[i].remaining -= delta;
if (timer[i].remaining == 0) {
timer[i].triggered = 1;
// reset remaining period for triggered timer
timer[i].remaining = timer[i].period;
// if triggered timer is one-shot, deactive
if (timer[i].continuous==0)
timer[i].active = 0;
}
}
}
min = (Bit64u) -1; // max number in Bit64u range
for (i=0; i < num_timers; i++) {
if (timer[i].active && (timer[i].remaining < min))
min = timer[i].remaining;
}
num_cpu_ticks_in_period = num_cpu_ticks_left = min;
for (i=0; i < num_timers; i++) {
// call requested timer function. It may request a different
// timer period or deactivate, all cases handled below
if (timer[i].triggered) {
timer[i].funct(timer[i].this_ptr);
}
}
}
void
bx_pc_system_c::expire_ticks(void)
{
unsigned i;
Bit64u ticks_delta;
ticks_delta = num_cpu_ticks_in_period - num_cpu_ticks_left;
if (ticks_delta == 0) return; // no ticks occurred since
for (i=0; i<num_timers; i++) {
if (timer[i].active) {
#if BX_TIMER_DEBUG
if (timer[i].remaining <= ticks_delta) {
for (unsigned j=0; j<num_timers; j++) {
bx_printf("^^^timer[%u]\n", j);
bx_printf("^^^remaining = %u, period = %u\n",
timer[j].remaining, timer[j].period);
}
bx_panic("expire_ticks: i=%u, remain(%u) <= delta(%u)\n",
i, timer[i].remaining, (unsigned) ticks_delta);
}
#endif
timer[i].remaining -= ticks_delta; // must be >= 1 here
}
}
// set new period to number of ticks left
num_cpu_ticks_in_period = num_cpu_ticks_left;
}
int
bx_pc_system_c::register_timer( void *this_ptr, void (*funct)(void *),
Bit32u useconds, Boolean continuous, Boolean active)
{
Bit64u instructions;
if (num_timers >= BX_MAX_TIMERS) {
bx_panic("register_timer: too many registered timers.");
}
if (this_ptr == NULL)
bx_panic("register_timer: this_ptr is NULL\n");
if (funct == NULL)
bx_panic("register_timer: funct is NULL\n");
// account for ticks up to now
expire_ticks();
// convert useconds to number of instructions
instructions = (Bit64u) (double(useconds) * m_ips);
return register_timer_ticks(this_ptr, funct, instructions, continuous, active);
}
int
bx_pc_system_c::register_timer_ticks(void* this_ptr, bx_timer_handler_t funct, Bit64u instructions, Boolean continuous, Boolean active)
{
unsigned i;
if (num_timers >= BX_MAX_TIMERS) {
bx_panic("register_timer: too many registered timers.");
}
if (this_ptr == NULL)
bx_panic("register_timer: this_ptr is NULL\n");
if (funct == NULL)
bx_panic("register_timer: funct is NULL\n");
i = num_timers;
num_timers++;
timer[i].period = instructions;
timer[i].remaining = instructions;
timer[i].active = active;
timer[i].funct = funct;
timer[i].continuous = continuous;
timer[i].this_ptr = this_ptr;
if (active) {
if (num_cpu_ticks_in_period == 0) {
// no active timers
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
else {
if (instructions < num_cpu_ticks_left) {
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
}
}
// return timer id
return(i);
}
void
bx_pc_system_c::counter_timer_handler(void* this_ptr)
{
UNUSED(this_ptr);
bx_pc_system.counter++;
}
#if BX_DEBUGGER
void
bx_pc_system_c::timebp_handler(void* this_ptr)
{
BX_CPU_THIS_PTR break_point = BREAK_POINT_TIME;
fprintf(stderr, "Time breakpoint triggered\n");
if (timebp_queue_size > 1) {
long long new_diff = timebp_queue[1] - bx_pc_system.time_ticks();
bx_pc_system.activate_timer_ticks(timebp_timer, new_diff, 1);
}
timebp_queue_size--;
for (int i = 0; i < timebp_queue_size; i++)
timebp_queue[i] = timebp_queue[i+1];
}
#endif // BX_DEBUGGER
// (mch) Wait for an event. This routine is broken, but the idea is nice...
void
bx_pc_system_c::wait_for_event()
{
Bit64u ticks_left = bx_pc_system.num_cpu_ticks_left;
// sec = instr / instr_per_sec
#ifdef PROVIDE_M_IPS
int usecs = (int)(double((Bit64s)ticks_left) / double(m_ips));
#else
int usecs = (int)(double((Bit64s)ticks_left) /
double(bx_pc_system.m_ips));
#endif
struct timeval tv;
tv.tv_sec = 0;
tv.tv_usec = usecs;
select(0, NULL, NULL, NULL, &tv);
bx_pc_system.num_cpu_ticks_left = 1;
BX_TICK1();
}
Bit64u
bx_pc_system_c::time_ticks()
{
return (counter + 1) * COUNTER_INTERVAL
- ticks_remaining(counter_timer_index)
+ ((Bit64u)num_cpu_ticks_in_period - (Bit64u)num_cpu_ticks_left);
}
void
bx_pc_system_c::start_timers(void)
{
}
void
bx_pc_system_c::activate_timer_ticks (unsigned timer_index, Bit64u instructions, Boolean continuous)
{
if (timer_index >= num_timers)
bx_panic("activate_timer(): bad timer index given\n");
// set timer continuity to new value (1=continuous, 0=one-shot)
timer[timer_index].continuous = continuous;
timer[timer_index].active = 1;
timer[timer_index].remaining = instructions;
if (num_cpu_ticks_in_period == 0) {
// no active timers
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
else {
if (instructions < num_cpu_ticks_left) {
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
}
}
void
bx_pc_system_c::activate_timer( unsigned timer_index,
Bit32u useconds, Boolean continuous )
{
Bit64u instructions;
if (timer_index >= num_timers)
bx_panic("activate_timer(): bad timer index given\n");
// account for ticks up to now
expire_ticks();
// set timer continuity to new value (1=continuous, 0=one-shot)
timer[timer_index].continuous = continuous;
// if useconds = 0, use default stored in period field
// else set new period from useconds
if (useconds==0)
instructions = timer[timer_index].period;
else {
// convert useconds to number of instructions
instructions = (Bit64u) (double(useconds) * m_ips);
timer[timer_index].period = instructions;
}
timer[timer_index].active = 1;
timer[timer_index].remaining = instructions;
if (num_cpu_ticks_in_period == 0) {
// no active timers
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
else {
if (instructions < num_cpu_ticks_left) {
num_cpu_ticks_in_period = instructions;
num_cpu_ticks_left = instructions;
}
}
}
void
bx_pc_system_c::deactivate_timer( unsigned timer_index )
{
if (timer_index >= num_timers)
bx_panic("deactivate_timer(): bad timer index given\n");
timer[timer_index].active = 0;
}