Bochs/bochs/cpu/event.cc

399 lines
12 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2011-2012 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#include "iodev/iodev.h"
bx_bool BX_CPU_C::handleWaitForEvent(void)
{
// For one processor, pass the time as quickly as possible until
// an interrupt wakes up the CPU.
while (1)
{
if ((is_pending(BX_EVENT_PENDING_INTR | BX_EVENT_PENDING_LAPIC_INTR) && (BX_CPU_THIS_PTR get_IF() || BX_CPU_THIS_PTR activity_state == BX_ACTIVITY_STATE_MWAIT_IF)) ||
is_pending(BX_EVENT_NMI | BX_EVENT_SMI | BX_EVENT_INIT | BX_EVENT_VMX_PREEMPTION_TIMER_EXPIRED | BX_EVENT_VMX_NMI_WINDOW_EXITING))
{
// interrupt ends the HALT condition
#if BX_SUPPORT_MONITOR_MWAIT
if (BX_CPU_THIS_PTR activity_state >= BX_ACTIVITY_STATE_MWAIT)
BX_CPU_THIS_PTR monitor.reset_monitor();
#endif
BX_CPU_THIS_PTR activity_state = BX_ACTIVITY_STATE_ACTIVE;
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
break;
}
if (BX_CPU_THIS_PTR activity_state == BX_ACTIVITY_STATE_ACTIVE) {
// happens also when MWAIT monitor was hit
// BX_INFO(("handleWaitForEvent: reset detected in HLT state"));
break;
}
if (BX_HRQ && BX_DBG_ASYNC_DMA) {
// handle DMA also when CPU is halted
DEV_dma_raise_hlda();
}
// for multiprocessor simulation, even if this CPU is halted we still
// must give the others a chance to simulate. If an interrupt has
// arrived, then clear the HALT condition; otherwise just return from
// the CPU loop with stop_reason STOP_CPU_HALTED.
#if BX_SUPPORT_SMP
if (BX_SMP_PROCESSORS > 1) {
// HALT condition remains, return so other CPUs have a chance
#if BX_DEBUGGER
BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED;
#endif
return 1; // Return to caller of cpu_loop.
}
#endif
#if BX_DEBUGGER
if (bx_guard.interrupt_requested)
return 1; // Return to caller of cpu_loop.
#endif
if (bx_pc_system.kill_bochs_request) {
// setting kill_bochs_request causes the cpu loop to return ASAP.
return 1; // Return to caller of cpu_loop.
}
BX_TICKN(10); // when in HLT run time faster for single CPU
}
return 0;
}
void BX_CPU_C::InterruptAcknowledge(void)
{
Bit8u vector;
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_INTR)) Svm_Vmexit(SVM_VMEXIT_INTR);
}
#endif
#if BX_SUPPORT_VMX
VMexit_ExtInterrupt();
#endif
// NOTE: similar code in ::take_irq()
#if BX_SUPPORT_APIC
if (is_pending(BX_EVENT_PENDING_LAPIC_INTR))
vector = BX_CPU_THIS_PTR lapic.acknowledge_int();
else
#endif
// if no local APIC, always acknowledge the PIC.
vector = DEV_pic_iac(); // may set INTR with next interrupt
BX_CPU_THIS_PTR EXT = 1; /* external event */
#if BX_SUPPORT_VMX
VMexit_Event(BX_EXTERNAL_INTERRUPT, vector, 0, 0);
#endif
BX_INSTR_HWINTERRUPT(BX_CPU_ID, vector,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP);
interrupt(vector, BX_EXTERNAL_INTERRUPT, 0, 0);
BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
}
#if BX_SUPPORT_SVM
void BX_CPU_C::VirtualInterruptAcknowledge(void)
{
Bit8u vector = SVM_V_INTR_VECTOR;
if (SVM_INTERCEPT(SVM_INTERCEPT0_VINTR)) Svm_Vmexit(SVM_VMEXIT_VINTR);
clear_event(BX_EVENT_SVM_VIRQ_PENDING);
BX_CPU_THIS_PTR EXT = 1; /* external event */
BX_INSTR_HWINTERRUPT(BX_CPU_ID, vector,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP);
interrupt(vector, BX_EXTERNAL_INTERRUPT, 0, 0);
BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
}
#endif
bx_bool BX_CPU_C::handleAsyncEvent(void)
{
//
// This area is where we process special conditions and events.
//
if (BX_CPU_THIS_PTR activity_state != BX_ACTIVITY_STATE_ACTIVE) {
// For one processor, pass the time as quickly as possible until
// an interrupt wakes up the CPU.
if (handleWaitForEvent()) return 1;
}
if (bx_pc_system.kill_bochs_request) {
// setting kill_bochs_request causes the cpu loop to return ASAP.
return 1; // Return to caller of cpu_loop.
}
// Priority 1: Hardware Reset and Machine Checks
// RESET
// Machine Check
// (bochs doesn't support these)
#if BX_SUPPORT_SVM
// debug exceptions or trap due to breakpoint register match
// ignored and discarded if GIF == 0
// debug traps due to EFLAGS.TF remain untouched
if (! BX_CPU_THIS_PTR svm_gif)
BX_CPU_THIS_PTR debug_trap &= BX_DEBUG_SINGLE_STEP_BIT;
#endif
// Priority 2: Trap on Task Switch
// T flag in TSS is set
if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_TASK_SWITCH_BIT) {
exception(BX_DB_EXCEPTION, 0); // no error, not interrupt
}
// Priority 3: External Hardware Interventions
// FLUSH
// STOPCLK
// SMI
// INIT
if (is_unmasked_event_pending(BX_EVENT_SMI) && SVM_GIF)
{
clear_event(BX_EVENT_SMI); // clear SMI pending flag
enter_system_management_mode(); // would disable NMI when SMM was accepted
}
if (is_unmasked_event_pending(BX_EVENT_INIT) && SVM_GIF) {
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_INIT)) Svm_Vmexit(SVM_VMEXIT_INIT);
}
#endif
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest) {
VMexit(VMX_VMEXIT_INIT, 0);
}
#endif
// reset will clear pending INIT
reset(BX_RESET_SOFTWARE);
#if BX_SUPPORT_SMP
if (BX_SMP_PROCESSORS > 1) {
// if HALT condition remains, return so other CPUs have a chance
if (BX_CPU_THIS_PTR activity_state != BX_ACTIVITY_STATE_ACTIVE) {
#if BX_DEBUGGER
BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED;
#endif
return 1; // Return to caller of cpu_loop.
}
}
#endif
}
// Priority 4: Traps on Previous Instruction
// Breakpoints
// Debug Trap Exceptions (TF flag set or data/IO breakpoint)
if (! interrupts_inhibited(BX_INHIBIT_DEBUG)) {
// A trap may be inhibited on this boundary due to an instruction which loaded SS
#if BX_X86_DEBUGGER
// Pages with code breakpoints always have async_event=1 and therefore come here
BX_CPU_THIS_PTR debug_trap |= code_breakpoint_match(get_laddr(BX_SEG_REG_CS, BX_CPU_THIS_PTR prev_rip));
#endif
if (BX_CPU_THIS_PTR debug_trap & 0xf000) {
exception(BX_DB_EXCEPTION, 0); // no error, not interrupt
}
else {
BX_CPU_THIS_PTR debug_trap = 0;
}
}
// Priority 5: External Interrupts
// VMX Preemption Timer Expired.
// NMI Interrupts
// Maskable Hardware Interrupts
if (interrupts_inhibited(BX_INHIBIT_INTERRUPTS) || ! SVM_GIF) {
// Processing external interrupts is inhibited on this
// boundary because of certain instructions like STI.
}
#if BX_SUPPORT_VMX >= 2
else if (is_unmasked_event_pending(BX_EVENT_VMX_PREEMPTION_TIMER_EXPIRED)) {
clear_event(BX_EVENT_VMX_PREEMPTION_TIMER_EXPIRED);
VMexit(VMX_VMEXIT_VMX_PREEMPTION_TIMER_EXPIRED, 0);
}
#endif
#if BX_SUPPORT_VMX
else if (is_unmasked_event_pending(BX_EVENT_VMX_NMI_WINDOW_EXITING)) {
VMexit(VMX_VMEXIT_NMI_WINDOW, 0);
}
#endif
else if (is_unmasked_event_pending(BX_EVENT_NMI)) {
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_INTERCEPT(SVM_INTERCEPT0_NMI)) Svm_Vmexit(SVM_VMEXIT_NMI);
}
#endif
clear_event(BX_EVENT_NMI);
mask_event(BX_EVENT_NMI | BX_EVENT_VMX_NMI_WINDOW_EXITING);
BX_CPU_THIS_PTR EXT = 1; /* external event */
#if BX_SUPPORT_VMX
VMexit_Event(BX_NMI, 2, 0, 0);
#endif
BX_INSTR_HWINTERRUPT(BX_CPU_ID, 2, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP);
interrupt(2, BX_NMI, 0, 0);
}
#if BX_SUPPORT_VMX
else if (is_pending(BX_EVENT_VMX_INTERRUPT_WINDOW_EXITING) && BX_CPU_THIS_PTR get_IF()) {
// interrupt-window exiting
VMexit(VMX_VMEXIT_INTERRUPT_WINDOW, 0);
}
#endif
else if (is_unmasked_event_pending(BX_EVENT_PENDING_INTR | BX_EVENT_PENDING_LAPIC_INTR))
{
InterruptAcknowledge();
}
#if BX_SUPPORT_SVM
else if (is_unmasked_event_pending(BX_EVENT_SVM_VIRQ_PENDING))
{
// virtual interrupt acknowledge
VirtualInterruptAcknowledge();
}
#endif
else if (BX_HRQ && BX_DBG_ASYNC_DMA) {
// NOTE: similar code in ::take_dma()
// assert Hold Acknowledge (HLDA) and go into a bus hold state
DEV_dma_raise_hlda();
}
if (BX_CPU_THIS_PTR get_TF())
{
// TF is set before execution of next instruction. Schedule
// a debug trap (#DB) after execution. After completion of
// next instruction, the code above will invoke the trap.
BX_CPU_THIS_PTR debug_trap |= BX_DEBUG_SINGLE_STEP_BIT;
}
// Priority 6: Faults from fetching next instruction
// Code breakpoint fault
// Code segment limit violation (priority 7 on 486/Pentium)
// Code page fault (priority 7 on 486/Pentium)
// (handled in main decode loop)
// Priority 7: Faults from decoding next instruction
// Instruction length > 15 bytes
// Illegal opcode
// Coprocessor not available
// (handled in main decode loop etc)
// Priority 8: Faults on executing an instruction
// Floating point execution
// Overflow
// Bound error
// Invalid TSS
// Segment not present
// Stack fault
// General protection
// Data page fault
// Alignment check
// (handled by rest of the code)
if (!((SVM_GIF && unmasked_events_pending()) || BX_CPU_THIS_PTR debug_trap ||
// BX_CPU_THIS_PTR get_TF() || // implies debug_trap is set
BX_HRQ))
{
BX_CPU_THIS_PTR async_event = 0;
}
return 0; // Continue executing cpu_loop.
}
// Certain instructions inhibit interrupts, some debug exceptions and single-step traps.
void BX_CPU_C::inhibit_interrupts(unsigned mask)
{
BX_DEBUG(("inhibit interrupts mask = %d", mask));
BX_CPU_THIS_PTR inhibit_mask = mask;
BX_CPU_THIS_PTR inhibit_icount = get_icount() + 1; // inhibit for next instruction
}
bx_bool BX_CPU_C::interrupts_inhibited(unsigned mask)
{
return (get_icount() <= BX_CPU_THIS_PTR inhibit_icount) && (BX_CPU_THIS_PTR inhibit_mask & mask) == mask;
}
void BX_CPU_C::deliver_SIPI(unsigned vector)
{
if (BX_CPU_THIS_PTR activity_state == BX_ACTIVITY_STATE_WAIT_FOR_SIPI) {
BX_CPU_THIS_PTR activity_state = BX_ACTIVITY_STATE_ACTIVE;
RIP = 0;
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], vector*0x100);
unmask_event(BX_EVENT_INIT); // enable INIT pin back
BX_INFO(("CPU %d started up at %04X:%08X by APIC",
BX_CPU_THIS_PTR bx_cpuid, vector*0x100, EIP));
} else {
BX_INFO(("CPU %d started up by APIC, but was not halted at the time", BX_CPU_THIS_PTR bx_cpuid));
}
}
void BX_CPU_C::deliver_INIT(void)
{
if (! is_masked_event(BX_EVENT_INIT)) {
signal_event(BX_EVENT_INIT);
}
}
void BX_CPU_C::deliver_NMI(void)
{
signal_event(BX_EVENT_NMI);
}
void BX_CPU_C::deliver_SMI(void)
{
signal_event(BX_EVENT_SMI);
}
void BX_CPU_C::raise_INTR(void)
{
signal_event(BX_EVENT_PENDING_INTR);
}
void BX_CPU_C::clear_INTR(void)
{
clear_event(BX_EVENT_PENDING_INTR);
}
#if BX_DEBUGGER
void BX_CPU_C::dbg_take_dma(void)
{
// NOTE: similar code in ::cpu_loop()
if (BX_HRQ) {
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
DEV_dma_raise_hlda();
}
}
#endif // #if BX_DEBUGGER