f0c9896964
mode uses the notion of the guest-to-host TLB. This has the benefit of allowing more uniform and streamlined acceleration code in access.cc which does not have to check if CR0.PG is set, eliminating a few instructions per guest access. Shaved just a little off execution time, as expected. Also, access_linear now breaks accesses which span two pages, into two calls the the physical memory routines, when paging is off, just like it always has for paging on. Besides being more uniform, this allows the physical memory access routines to known the complete data item is contained within a single physical page, and stop reapplying the A20ADDR() macro to pointers as it increments them. Perhaps things can be optimized a little more now there too... I renamed the routines to {read,write}PhysicalPage() as a reminder that these routines now operate on data solely within one page. I also added a little code so that the paging module is notified when the A20 line is tweaked, so it can dump whatever mappings it wants to.
547 lines
15 KiB
C++
547 lines
15 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: memory.cc,v 1.20 2002-09-05 02:31:24 kevinlawton Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_MEM_THIS
|
|
|
|
|
|
#if BX_PROVIDE_CPU_MEMORY
|
|
|
|
void
|
|
BX_MEM_C::writePhysicalPage(BX_CPU_C *cpu, Bit32u addr, unsigned len, void *data)
|
|
{
|
|
Bit8u *data_ptr;
|
|
Bit32u a20addr;
|
|
|
|
#if BX_IODEBUG_SUPPORT
|
|
bx_iodebug_c::mem_write( cpu, addr, len, data);
|
|
#endif
|
|
|
|
a20addr = A20ADDR(addr);
|
|
BX_INSTR_PHY_WRITE(a20addr, len);
|
|
|
|
#if BX_DEBUGGER
|
|
// (mch) Check for physical write break points, TODO
|
|
// (bbd) Each breakpoint should have an associated CPU#, TODO
|
|
for (int i = 0; i < num_write_watchpoints; i++)
|
|
if (write_watchpoint[i] == a20addr) {
|
|
BX_CPU(0)->watchpoint = a20addr;
|
|
BX_CPU(0)->break_point = BREAK_POINT_WRITE;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
|
|
if ( (a20addr + len) <= BX_MEM_THIS len ) {
|
|
// all of data is within limits of physical memory
|
|
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
|
|
if (len == 4) {
|
|
if ((a20addr & 0x00000003) == 0) {
|
|
// write 4byte data to aligned memory location
|
|
Bit32u data32;
|
|
|
|
data32 = * (Bit32u *) data;
|
|
#ifdef BX_BIG_ENDIAN
|
|
data32 = (data32 << 24) | (data32 >> 24) |
|
|
((data32&0x00ff0000)>>8) | ((data32&0x0000ff00)<<8);
|
|
#endif
|
|
* ((Bit32u *) (&vector[a20addr])) = data32;
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
return;
|
|
}
|
|
else {
|
|
Bit32u data32;
|
|
|
|
data32 = * (Bit32u *) data;
|
|
* ((Bit8u *) (&vector[a20addr])) = data32; data32 >>= 8;
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
* ((Bit8u *) (&vector[addr+1])) = data32; data32 >>= 8;
|
|
* ((Bit8u *) (&vector[addr+2])) = data32; data32 >>= 8;
|
|
* ((Bit8u *) (&vector[addr+3])) = data32;
|
|
// worst case, last byte is in different page; possible extra dirty page
|
|
BX_DBG_DIRTY_PAGE((addr+3) >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
return;
|
|
}
|
|
}
|
|
if (len == 2) {
|
|
if ((a20addr & 0x00000001) == 0) {
|
|
// write 2-byte data to aligned memory location
|
|
Bit16u data16;
|
|
|
|
data16 = * (Bit16u *) data;
|
|
#ifdef BX_BIG_ENDIAN
|
|
data16 = (data16 >> 8) | (data16 << 8);
|
|
#endif
|
|
* ((Bit16u *) (&vector[a20addr])) = data16;
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
return;
|
|
}
|
|
else {
|
|
Bit16u data16;
|
|
|
|
data16 = * (Bit16u *) data;
|
|
* ((Bit8u *) (&vector[a20addr])) = (Bit8u) data16;
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
* ((Bit8u *) (&vector[a20addr+1])) = (data16 >> 8);
|
|
BX_DBG_DIRTY_PAGE((a20addr+1) >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
return;
|
|
}
|
|
}
|
|
if (len == 1) {
|
|
Bit8u data8;
|
|
|
|
data8 = * (Bit8u *) data;
|
|
* ((Bit8u *) (&vector[a20addr])) = data8;
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
return;
|
|
}
|
|
// len == 3 case can just fall thru to special cases handling
|
|
}
|
|
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
data_ptr = (Bit8u *) data;
|
|
#else // BX_BIG_ENDIAN
|
|
data_ptr = (Bit8u *) data + (len - 1);
|
|
#endif
|
|
|
|
write_one:
|
|
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
|
|
// addr *not* in range 00080000 .. 000FFFFF
|
|
vector[a20addr] = *data_ptr;
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
inc_one:
|
|
if (len == 1) return;
|
|
len--;
|
|
addr++;
|
|
a20addr = (addr);
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
data_ptr++;
|
|
#else // BX_BIG_ENDIAN
|
|
data_ptr--;
|
|
#endif
|
|
goto write_one;
|
|
}
|
|
|
|
// addr in range 00080000 .. 000FFFFF
|
|
|
|
if (a20addr <= 0x0009ffff) {
|
|
// regular memory 80000 .. 9FFFF
|
|
vector[a20addr] = *data_ptr;
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
goto inc_one;
|
|
}
|
|
if (a20addr <= 0x000bffff) {
|
|
// VGA memory A0000 .. BFFFF
|
|
BX_VGA_MEM_WRITE(a20addr, *data_ptr);
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DBG_UCMEM_REPORT(a20addr, 1, BX_WRITE, *data_ptr); // obsolete
|
|
goto inc_one;
|
|
}
|
|
// adapter ROM C0000 .. DFFFF
|
|
// ROM BIOS memory E0000 .. FFFFF
|
|
// (ignore write)
|
|
//BX_INFO(("ROM lock %08x: len=%u",
|
|
// (unsigned) a20addr, (unsigned) len));
|
|
#if BX_PCI_SUPPORT == 0
|
|
#if BX_SHADOW_RAM
|
|
// Write it since its in shadow RAM
|
|
vector[a20addr] = *data_ptr;
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
#else
|
|
// ignore write to ROM
|
|
#endif
|
|
#else
|
|
// Write Based on 440fx Programming
|
|
if (bx_options.Oi440FXSupport->get () &&
|
|
((a20addr >= 0xC0000) && (a20addr <= 0xFFFFF))) {
|
|
switch (bx_devices.pci->wr_memType(a20addr & 0xFC000)) {
|
|
case 0x1: // Writes to ShadowRAM
|
|
// BX_INFO(("Writing to ShadowRAM %08x, len %u ! ", (unsigned) a20addr, (unsigned) len));
|
|
shadow[a20addr - 0xc0000] = *data_ptr;
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
goto inc_one;
|
|
|
|
case 0x0: // Writes to ROM, Inhibit
|
|
BX_DEBUG(("Write to ROM ignored: address %08x, data %02x", (unsigned) a20addr, *data_ptr));
|
|
goto inc_one;
|
|
default:
|
|
BX_PANIC(("writePhysicalPage: default case"));
|
|
goto inc_one;
|
|
}
|
|
}
|
|
#endif
|
|
goto inc_one;
|
|
}
|
|
|
|
else {
|
|
// some or all of data is outside limits of physical memory
|
|
unsigned i;
|
|
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
data_ptr = (Bit8u *) data;
|
|
#else // BX_BIG_ENDIAN
|
|
data_ptr = (Bit8u *) data + (len - 1);
|
|
#endif
|
|
|
|
|
|
#if BX_SUPPORT_VBE
|
|
// Check VBE LFB support
|
|
|
|
if (a20addr >= VBE_DISPI_LFB_PHYSICAL_ADDRESS)
|
|
{
|
|
for (i = 0; i < len; i++) {
|
|
// FIXME: check for max VBE video memory size
|
|
|
|
//if (a20addr < BX_MEM_THIS len) {
|
|
//vector[a20addr] = *data_ptr;
|
|
//BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
//BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
BX_VGA_MEM_WRITE(a20addr, *data_ptr);
|
|
// }
|
|
|
|
// otherwise ignore byte, since it overruns memory
|
|
addr++;
|
|
a20addr = (addr);
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
data_ptr++;
|
|
#else // BX_BIG_ENDIAN
|
|
data_ptr--;
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#if BX_SUPPORT_APIC
|
|
bx_generic_apic_c *local_apic = &cpu->local_apic;
|
|
bx_generic_apic_c *ioapic = bx_devices.ioapic;
|
|
if (local_apic->is_selected (a20addr, len)) {
|
|
local_apic->write (a20addr, (Bit32u *)data, len);
|
|
return;
|
|
} else if (ioapic->is_selected (a20addr, len)) {
|
|
ioapic->write (a20addr, (Bit32u *)data, len);
|
|
return;
|
|
}
|
|
else
|
|
#endif
|
|
for (i = 0; i < len; i++) {
|
|
if (a20addr < BX_MEM_THIS len) {
|
|
vector[a20addr] = *data_ptr;
|
|
BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
}
|
|
// otherwise ignore byte, since it overruns memory
|
|
addr++;
|
|
a20addr = (addr);
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
data_ptr++;
|
|
#else // BX_BIG_ENDIAN
|
|
data_ptr--;
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
BX_MEM_C::readPhysicalPage(BX_CPU_C *cpu, Bit32u addr, unsigned len, void *data)
|
|
{
|
|
Bit8u *data_ptr;
|
|
Bit32u a20addr;
|
|
|
|
#if BX_IODEBUG_SUPPORT
|
|
bx_iodebug_c::mem_read( cpu, addr, len, data);
|
|
#endif
|
|
|
|
|
|
a20addr = A20ADDR(addr);
|
|
BX_INSTR_PHY_READ(a20addr, len);
|
|
|
|
#if BX_DEBUGGER
|
|
// (mch) Check for physical read break points, TODO
|
|
// (bbd) Each breakpoint should have an associated CPU#, TODO
|
|
for (int i = 0; i < num_read_watchpoints; i++)
|
|
if (read_watchpoint[i] == a20addr) {
|
|
BX_CPU(0)->watchpoint = a20addr;
|
|
BX_CPU(0)->break_point = BREAK_POINT_READ;
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
if ( (a20addr + len) <= BX_MEM_THIS len ) {
|
|
// all of data is within limits of physical memory
|
|
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
|
|
if (len == 4) {
|
|
if ((a20addr & 0x00000003) == 0) {
|
|
// read 4-byte data from aligned memory location
|
|
Bit32u data32;
|
|
|
|
data32 = * ((Bit32u *) (&vector[a20addr]));
|
|
#ifdef BX_BIG_ENDIAN
|
|
data32 = (data32 << 24) | (data32 >> 24) |
|
|
((data32&0x00ff0000)>>8) | ((data32&0x0000ff00)<<8);
|
|
#endif
|
|
* (Bit32u *) data = data32;
|
|
return;
|
|
}
|
|
else {
|
|
Bit32u data32;
|
|
|
|
data32 = * ((Bit8u *) (&vector[addr+3])); data32 <<= 8;
|
|
data32 |= * ((Bit8u *) (&vector[addr+2])); data32 <<= 8;
|
|
data32 |= * ((Bit8u *) (&vector[addr+1])); data32 <<= 8;
|
|
data32 |= * ((Bit8u *) (&vector[a20addr]));
|
|
|
|
* (Bit32u *) data = data32;
|
|
return;
|
|
}
|
|
}
|
|
if (len == 2) {
|
|
if ((a20addr & 0x00000001) == 0) {
|
|
// read 2-byte data from aligned memory location
|
|
Bit16u data16;
|
|
|
|
data16 = * ((Bit16u *) (&vector[a20addr]));
|
|
#ifdef BX_BIG_ENDIAN
|
|
data16 = (data16 >> 8) | (data16 << 8);
|
|
#endif
|
|
|
|
* (Bit16u *) data = data16;
|
|
return;
|
|
}
|
|
else {
|
|
Bit16u data16;
|
|
|
|
data16 = * ((Bit8u *) (&vector[addr+1])); data16 <<= 8;
|
|
data16 |= * ((Bit8u *) (&vector[a20addr]));
|
|
|
|
* (Bit16u *) data = data16;
|
|
return;
|
|
}
|
|
}
|
|
if (len == 1) {
|
|
Bit8u data8;
|
|
|
|
data8 = * ((Bit8u *) (&vector[a20addr]));
|
|
* (Bit8u *) data = data8;
|
|
return;
|
|
}
|
|
// len == 3 case can just fall thru to special cases handling
|
|
}
|
|
|
|
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
data_ptr = (Bit8u *) data;
|
|
#else // BX_BIG_ENDIAN
|
|
data_ptr = (Bit8u *) data + (len - 1);
|
|
#endif
|
|
|
|
|
|
|
|
read_one:
|
|
if ( (a20addr & 0xfff80000) != 0x00080000 ) {
|
|
// addr *not* in range 00080000 .. 000FFFFF
|
|
*data_ptr = vector[a20addr];
|
|
inc_one:
|
|
if (len == 1) return;
|
|
len--;
|
|
addr++;
|
|
a20addr = (addr);
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
data_ptr++;
|
|
#else // BX_BIG_ENDIAN
|
|
data_ptr--;
|
|
#endif
|
|
goto read_one;
|
|
}
|
|
|
|
// addr in range 00080000 .. 000FFFFF
|
|
#if BX_PCI_SUPPORT == 0
|
|
if ((a20addr <= 0x0009ffff) || (a20addr >= 0x000c0000) ) {
|
|
// regular memory 80000 .. 9FFFF, C0000 .. F0000
|
|
*data_ptr = vector[a20addr];
|
|
goto inc_one;
|
|
}
|
|
// VGA memory A0000 .. BFFFF
|
|
*data_ptr = BX_VGA_MEM_READ(a20addr);
|
|
BX_DBG_UCMEM_REPORT(a20addr, 1, BX_READ, *data_ptr); // obsolete
|
|
goto inc_one;
|
|
#else // #if BX_PCI_SUPPORT == 0
|
|
if (a20addr <= 0x0009ffff) {
|
|
*data_ptr = vector[a20addr];
|
|
goto inc_one;
|
|
}
|
|
if (a20addr <= 0x000BFFFF) {
|
|
// VGA memory A0000 .. BFFFF
|
|
*data_ptr = BX_VGA_MEM_READ(a20addr);
|
|
BX_DBG_UCMEM_REPORT(a20addr, 1, BX_READ, *data_ptr);
|
|
goto inc_one;
|
|
}
|
|
|
|
// a20addr in C0000 .. FFFFF
|
|
if (!bx_options.Oi440FXSupport->get ()) {
|
|
*data_ptr = vector[a20addr];
|
|
goto inc_one;
|
|
}
|
|
else {
|
|
switch (bx_devices.pci->rd_memType(a20addr & 0xFC000)) {
|
|
case 0x1: // Read from ShadowRAM
|
|
*data_ptr = shadow[a20addr - 0xc0000];
|
|
BX_INFO(("Reading from ShadowRAM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
|
|
goto inc_one;
|
|
|
|
case 0x0: // Read from ROM
|
|
*data_ptr = vector[a20addr];
|
|
//BX_INFO(("Reading from ROM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
|
|
goto inc_one;
|
|
default:
|
|
BX_PANIC(("::readPhysicalPage: default case"));
|
|
}
|
|
}
|
|
goto inc_one;
|
|
#endif // #if BX_PCI_SUPPORT == 0
|
|
}
|
|
else {
|
|
// some or all of data is outside limits of physical memory
|
|
unsigned i;
|
|
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
data_ptr = (Bit8u *) data;
|
|
#else // BX_BIG_ENDIAN
|
|
data_ptr = (Bit8u *) data + (len - 1);
|
|
#endif
|
|
|
|
#if BX_SUPPORT_VBE
|
|
// Check VBE LFB support
|
|
|
|
if (a20addr >= VBE_DISPI_LFB_PHYSICAL_ADDRESS)
|
|
{
|
|
for (i = 0; i < len; i++) {
|
|
// FIXME: check for max VBE video memory size
|
|
|
|
//if (a20addr < BX_MEM_THIS len) {
|
|
//vector[a20addr] = *data_ptr;
|
|
//BX_DBG_DIRTY_PAGE(a20addr >> 12);
|
|
//BX_DYN_DIRTY_PAGE(a20addr >> 12);
|
|
*data_ptr = BX_VGA_MEM_READ(a20addr);
|
|
// }
|
|
|
|
// otherwise ignore byte, since it overruns memory
|
|
addr++;
|
|
a20addr = (addr);
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
data_ptr++;
|
|
#else // BX_BIG_ENDIAN
|
|
data_ptr--;
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
#if BX_SUPPORT_APIC
|
|
bx_generic_apic_c *local_apic = &cpu->local_apic;
|
|
bx_generic_apic_c *ioapic = bx_devices.ioapic;
|
|
if (local_apic->is_selected (addr, len)) {
|
|
local_apic->read (addr, data, len);
|
|
return;
|
|
} else if (ioapic->is_selected (addr, len)) {
|
|
ioapic->read (addr, data, len);
|
|
return;
|
|
}
|
|
#endif
|
|
for (i = 0; i < len; i++) {
|
|
#if BX_PCI_SUPPORT == 0
|
|
if (a20addr < BX_MEM_THIS len)
|
|
*data_ptr = vector[a20addr];
|
|
else
|
|
*data_ptr = 0xff;
|
|
#else // BX_PCI_SUPPORT == 0
|
|
if (a20addr < BX_MEM_THIS len) {
|
|
if ((a20addr >= 0x000C0000) && (a20addr <= 0x000FFFFF)) {
|
|
if (!bx_options.Oi440FXSupport->get ())
|
|
*data_ptr = vector[a20addr];
|
|
else {
|
|
switch (bx_devices.pci->rd_memType(a20addr & 0xFC000)) {
|
|
case 0x0: // Read from ROM
|
|
*data_ptr = vector[a20addr];
|
|
//BX_INFO(("Reading from ROM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
|
|
break;
|
|
|
|
case 0x1: // Read from Shadow RAM
|
|
*data_ptr = shadow[a20addr - 0xc0000];
|
|
BX_INFO(("Reading from ShadowRAM %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
|
|
break;
|
|
default:
|
|
BX_PANIC(("readPhysicalPage: default case"));
|
|
} // Switch
|
|
}
|
|
}
|
|
else {
|
|
*data_ptr = vector[a20addr];
|
|
BX_INFO(("Reading from Norm %08x, Data %02x ", (unsigned) a20addr, *data_ptr));
|
|
}
|
|
}
|
|
else
|
|
*data_ptr = 0xff;
|
|
#endif // BX_PCI_SUPPORT == 0
|
|
addr++;
|
|
a20addr = (addr);
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
data_ptr++;
|
|
#else // BX_BIG_ENDIAN
|
|
data_ptr--;
|
|
#endif
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
#endif // #if BX_PROVIDE_CPU_MEMORY
|