Bochs/bochs/cpu/stack64.cc
Stanislav Shwartsman f06c8b6b95 EIP > CS.limit should not be a problem
Manual says that GP(0) shouldd be generated in this case ALWAYS
Fixed instructions PANIC messages to ERROR for this case
And ... do not leave PANIC messages w/o taking care that user could push CONTINUE button and program should know to continue after the PANIC code line. Mainly in rerurn instructions were several problems ...
2004-11-02 16:10:02 +00:00

313 lines
7.0 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: stack64.cc,v 1.16 2004-11-02 16:10:02 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64
#if BX_USE_CPU_SMF
#define this (BX_CPU(0))
#endif
void
BX_CPU_C::POP_Eq(bxInstruction_c *i)
{
Bit64u val64;
pop_64(&val64);
if (i->modC0()) {
BX_WRITE_64BIT_REG(i->rm(), val64);
}
else {
// Note: there is one little weirdism here. When 64bit addressing
// is used, it is possible to use RSP in the modrm addressing.
// If used, the value of RSP after the pop is used to calculate
// the address.
if (i->as64L() && (!i->modC0()) && (i->rm()==4) && (i->sibBase()==4)) {
// call method on BX_CPU_C object
BX_CPU_CALL_METHODR (i->ResolveModrm, (i));
}
write_virtual_qword(i->seg(), RMAddr(i), &val64);
}
}
void
BX_CPU_C::PUSH_RRX(bxInstruction_c *i)
{
push_64(BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].rrx);
}
void
BX_CPU_C::POP_RRX(bxInstruction_c *i)
{
Bit64u rrx;
pop_64(&rrx);
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].rrx = rrx;
}
void
BX_CPU_C::PUSH64_CS(bxInstruction_c *i)
{
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
}
void
BX_CPU_C::PUSH64_DS(bxInstruction_c *i)
{
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
}
void
BX_CPU_C::PUSH64_ES(bxInstruction_c *i)
{
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
}
void
BX_CPU_C::PUSH64_FS(bxInstruction_c *i)
{
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
}
void
BX_CPU_C::PUSH64_GS(bxInstruction_c *i)
{
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
}
void
BX_CPU_C::PUSH64_SS(bxInstruction_c *i)
{
push_64(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
}
void
BX_CPU_C::POP64_DS(bxInstruction_c *i)
{
Bit64u ds;
pop_64(&ds);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], (Bit16u) ds);
}
void
BX_CPU_C::POP64_ES(bxInstruction_c *i)
{
Bit64u es;
pop_64(&es);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], (Bit16u) es);
}
void
BX_CPU_C::POP64_FS(bxInstruction_c *i)
{
Bit64u fs;
pop_64(&fs);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], (Bit16u) fs);
}
void
BX_CPU_C::POP64_GS(bxInstruction_c *i)
{
Bit64u gs;
pop_64(&gs);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], (Bit16u) gs);
}
void
BX_CPU_C::POP64_SS(bxInstruction_c *i)
{
Bit64u ss;
pop_64(&ss);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], (Bit16u) ss);
// POP SS inhibits interrupts, debug exceptions and single-step
// trap exceptions until the execution boundary following the
// next instruction is reached.
// Same code as MOV_SwEw()
BX_CPU_THIS_PTR inhibit_mask |=
BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG;
BX_CPU_THIS_PTR async_event = 1;
}
void
BX_CPU_C::PUSHAD64(bxInstruction_c *i)
{
Bit64u temp_RSP;
Bit64u rsp;
temp_RSP = RSP;
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_RSP, 64) ) {
BX_ERROR(("PUSHAD(): stack doesn't have enough room!"));
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
rsp = RSP;
/* ??? optimize this by using virtual write, all checks passed */
push_64(RAX);
push_64(RCX);
push_64(RDX);
push_64(RBX);
push_64(rsp);
push_64(RBP);
push_64(RSI);
push_64(RDI);
}
void
BX_CPU_C::POPAD64(bxInstruction_c *i)
{
Bit64u rdi, rsi, rbp, rtmp, rbx, rdx, rcx, rax;
if ( !can_pop(64) ) {
BX_ERROR(("POPAD: not enough bytes on stack"));
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
/* ??? optimize this */
pop_64(&rdi);
pop_64(&rsi);
pop_64(&rbp);
pop_64(&rtmp); /* value for ESP discarded */
pop_64(&rbx);
pop_64(&rdx);
pop_64(&rcx);
pop_64(&rax);
RDI = rdi;
RSI = rsi;
RBP = rbp;
RBX = rbx;
RDX = rdx;
RCX = rcx;
RAX = rax;
}
void
BX_CPU_C::PUSH64_Id(bxInstruction_c *i)
{
Bit64u imm64 = (Bit32s) i->Id();
push_64(imm64);
}
void
BX_CPU_C::PUSH_Eq(bxInstruction_c *i)
{
Bit64u op1_64;
/* op1_64 is a register or memory reference */
if (i->modC0()) {
op1_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &op1_64);
}
push_64(op1_64);
}
void
BX_CPU_C::ENTER64_IwIb(bxInstruction_c *i)
{
Bit64u frame_ptr64;
Bit16u frame_ptr16;
Bit8u level;
static Bit8u first_time = 1;
level = i->Ib2();
//invalidate_prefetch_q();
level %= 32;
/* ??? */
if (first_time && level>0) {
BX_ERROR(("enter() with level > 0. The emulation of this instruction may not be complete. This warning will be printed only once per bochs run."));
first_time = 0;
}
//if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b && i->os64L()==0) {
// BX_INFO(("enter(): stacksize!=opsize: I'm unsure of the code for this"));
// BX_PANIC((" The Intel manuals are a mess on this one!"));
// }
Bit64u bytes_to_push, temp_RSP;
if (level == 0) {
bytes_to_push = 8 + i->Iw();
}
else { /* level > 0 */
bytes_to_push = 8 + level*8 + i->Iw();
}
temp_RSP = RSP;
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_RSP, bytes_to_push))
{
BX_ERROR(("ENTER: not enough room on stack!"));
exception(BX_SS_EXCEPTION, 0, 0);
}
push_64(RBP);
frame_ptr64 = RSP;
if (level > 0) {
/* do level-1 times */
while (--level) {
Bit64u temp64;
RBP -= 8;
read_virtual_qword(BX_SEG_REG_SS, RBP, &temp64);
ESP -= 8;
write_virtual_qword(BX_SEG_REG_SS, RSP, &temp64);
} /* while (--level) */
/* push(frame pointer) */
RSP -= 8;
write_virtual_qword(BX_SEG_REG_SS, RSP, &frame_ptr64);
} /* if (level > 0) ... */
RBP = frame_ptr64;
RSP -= i->Iw();
}
void
BX_CPU_C::LEAVE64(bxInstruction_c *i)
{
// delete frame
RSP = RBP;
// restore frame pointer
Bit64u temp64;
pop_64(&temp64);
RBP = temp64;
}
#endif /* if BX_SUPPORT_X86_64 */