Bochs/bochs/cpu/arith32.cc
2011-04-23 20:39:27 +00:00

563 lines
15 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2009 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64==0
// Make life easier for merging cpu64 and cpu code.
#define RAX EAX
#define RDX EDX
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INC_ERX(bxInstruction_c *i)
{
Bit32u erx = ++BX_READ_32BIT_REG(i->rm());
SET_FLAGS_OSZAPC_INC_32(erx);
BX_CLEAR_64BIT_HIGH(i->rm());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::DEC_ERX(bxInstruction_c *i)
{
Bit32u erx = --BX_READ_32BIT_REG(i->rm());
SET_FLAGS_OSZAPC_DEC_32(erx);
BX_CLEAR_64BIT_HIGH(i->rm());
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EdGdM(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, sum_32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
op2_32 = BX_READ_32BIT_REG(i->nnn());
sum_32 = op1_32 + op2_32;
write_RMW_virtual_dword(sum_32);
SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_GdEdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, sum_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 = BX_READ_32BIT_REG(i->rm());
sum_32 = op1_32 + op2_32;
BX_WRITE_32BIT_REGZ(i->nnn(), sum_32);
SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32 = i->Id(), sum_32;
op1_32 = EAX;
sum_32 = op1_32 + op2_32;
RAX = sum_32;
SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EdGdM(bxInstruction_c *i)
{
bx_bool temp_CF = getB_CF();
Bit32u op1_32, op2_32, sum_32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
op2_32 = BX_READ_32BIT_REG(i->nnn());
sum_32 = op1_32 + op2_32 + temp_CF;
write_RMW_virtual_dword(sum_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_LF_INSTR_ADD_ADC32(temp_CF));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_GdEdR(bxInstruction_c *i)
{
bx_bool temp_CF = getB_CF();
Bit32u op1_32, op2_32, sum_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 = BX_READ_32BIT_REG(i->rm());
sum_32 = op1_32 + op2_32 + temp_CF;
BX_WRITE_32BIT_REGZ(i->nnn(), sum_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_LF_INSTR_ADD_ADC32(temp_CF));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EAXId(bxInstruction_c *i)
{
bx_bool temp_CF = getB_CF();
Bit32u op1_32, op2_32 = i->Id(), sum_32;
op1_32 = EAX;
sum_32 = op1_32 + op2_32 + temp_CF;
RAX = sum_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_LF_INSTR_ADD_ADC32(temp_CF));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EdGdM(bxInstruction_c *i)
{
bx_bool temp_CF = getB_CF();
Bit32u op1_32, op2_32, diff_32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
op2_32 = BX_READ_32BIT_REG(i->nnn());
diff_32 = op1_32 - (op2_32 + temp_CF);
write_RMW_virtual_dword(diff_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_LF_INSTR_SUB_SBB32(temp_CF));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_GdEdR(bxInstruction_c *i)
{
bx_bool temp_CF = getB_CF();
Bit32u op1_32, op2_32, diff_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 = BX_READ_32BIT_REG(i->rm());
diff_32 = op1_32 - (op2_32 + temp_CF);
BX_WRITE_32BIT_REGZ(i->nnn(), diff_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_LF_INSTR_SUB_SBB32(temp_CF));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EAXId(bxInstruction_c *i)
{
bx_bool temp_CF = getB_CF();
Bit32u op1_32, op2_32, diff_32;
op1_32 = EAX;
op2_32 = i->Id();
diff_32 = op1_32 - (op2_32 + temp_CF);
RAX = diff_32;
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_LF_INSTR_SUB_SBB32(temp_CF));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EdIdM(bxInstruction_c *i)
{
bx_bool temp_CF = getB_CF();
Bit32u op1_32, op2_32 = i->Id(), diff_32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
diff_32 = op1_32 - (op2_32 + temp_CF);
write_RMW_virtual_dword(diff_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_LF_INSTR_SUB_SBB32(temp_CF));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SBB_EdIdR(bxInstruction_c *i)
{
bx_bool temp_CF = getB_CF();
Bit32u op1_32, op2_32 = i->Id(), diff_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
diff_32 = op1_32 - (op2_32 + temp_CF);
BX_WRITE_32BIT_REGZ(i->rm(), diff_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, diff_32, BX_LF_INSTR_SUB_SBB32(temp_CF));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EdGdM(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
op2_32 = BX_READ_32BIT_REG(i->nnn());
diff_32 = op1_32 - op2_32;
write_RMW_virtual_dword(diff_32);
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_GdEdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 = BX_READ_32BIT_REG(i->rm());
diff_32 = op1_32 - op2_32;
BX_WRITE_32BIT_REGZ(i->nnn(), diff_32);
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
op1_32 = EAX;
op2_32 = i->Id();
diff_32 = op1_32 - op2_32;
RAX = diff_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EdGdM(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_virtual_dword(i->seg(), eaddr);
op2_32 = BX_READ_32BIT_REG(i->nnn());
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_GdEdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
op1_32 = BX_READ_32BIT_REG(i->nnn());
op2_32 = BX_READ_32BIT_REG(i->rm());
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EAXId(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
op1_32 = EAX;
op2_32 = i->Id();
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CWDE(bxInstruction_c *i)
{
/* CWDE: no flags are effected */
Bit32u tmp = (Bit16s) AX;
RAX = tmp;
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CDQ(bxInstruction_c *i)
{
/* CDQ: no flags are affected */
if (EAX & 0x80000000) {
RDX = 0xFFFFFFFF;
}
else {
RDX = 0x00000000;
}
}
// Some info on the opcodes at {0F,A6} and {0F,A7}
// On 386 steps A0-B0:
// {OF,A6} = XBTS
// {OF,A7} = IBTS
// On 486 steps A0-B0:
// {OF,A6} = CMPXCHG 8
// {OF,A7} = CMPXCHG 16|32
//
// On 486 >= B steps, and further processors, the
// CMPXCHG instructions were moved to opcodes:
// {OF,B0} = CMPXCHG 8
// {OF,B1} = CMPXCHG 16|32
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG_XBTS(bxInstruction_c *i)
{
BX_INFO(("CMPXCHG_XBTS: Generate #UD exception"));
exception(BX_UD_EXCEPTION, 0);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG_IBTS(bxInstruction_c *i)
{
BX_INFO(("CMPXCHG_IBTS: Generate #UD exception"));
exception(BX_UD_EXCEPTION, 0);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::XADD_EdGdM(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, sum_32;
/* XADD dst(r/m), src(r)
* temp <-- src + dst | sum = op2 + op1
* src <-- dst | op2 = op1
* dst <-- tmp | op1 = sum
*/
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
op2_32 = BX_READ_32BIT_REG(i->nnn());
sum_32 = op1_32 + op2_32;
write_RMW_virtual_dword(sum_32);
/* and write destination into source */
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::XADD_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, sum_32;
/* XADD dst(r/m), src(r)
* temp <-- src + dst | sum = op2 + op1
* src <-- dst | op2 = op1
* dst <-- tmp | op1 = sum
*/
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = BX_READ_32BIT_REG(i->nnn());
sum_32 = op1_32 + op2_32;
// and write destination into source
// Note: if both op1 & op2 are registers, the last one written
// should be the sum, as op1 & op2 may be the same register.
// For example: XADD AL, AL
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
BX_WRITE_32BIT_REGZ(i->rm(), sum_32);
SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EdIdM(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, sum_32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
op2_32 = i->Id();
sum_32 = op1_32 + op2_32;
write_RMW_virtual_dword(sum_32);
SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADD_EdIdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, sum_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = i->Id();
sum_32 = op1_32 + op2_32;
BX_WRITE_32BIT_REGZ(i->rm(), sum_32);
SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EdIdM(bxInstruction_c *i)
{
bx_bool temp_CF = getB_CF();
Bit32u op1_32, op2_32 = i->Id(), sum_32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
sum_32 = op1_32 + op2_32 + temp_CF;
write_RMW_virtual_dword(sum_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_LF_INSTR_ADD_ADC32(temp_CF));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADC_EdIdR(bxInstruction_c *i)
{
bx_bool temp_CF = getB_CF();
Bit32u op1_32, op2_32 = i->Id(), sum_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
sum_32 = op1_32 + op2_32 + temp_CF;
BX_WRITE_32BIT_REGZ(i->rm(), sum_32);
SET_FLAGS_OSZAPC_32(op1_32, op2_32, sum_32, BX_LF_INSTR_ADD_ADC32(temp_CF));
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EdIdM(bxInstruction_c *i)
{
Bit32u op1_32, op2_32 = i->Id(), diff_32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
diff_32 = op1_32 - op2_32;
write_RMW_virtual_dword(diff_32);
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUB_EdIdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32 = i->Id(), diff_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
diff_32 = op1_32 - op2_32;
BX_WRITE_32BIT_REGZ(i->rm(), diff_32);
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EdIdM(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
op1_32 = read_virtual_dword(i->seg(), eaddr);
op2_32 = i->Id();
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMP_EdIdR(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
op1_32 = BX_READ_32BIT_REG(i->rm());
op2_32 = i->Id();
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::NEG_EdM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
op1_32 = - (Bit32s)(op1_32);
write_RMW_virtual_dword(op1_32);
SET_FLAGS_OSZAPC_RESULT_32(op1_32, BX_LF_INSTR_NEG32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::NEG_EdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
op1_32 = - (Bit32s)(op1_32);
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
SET_FLAGS_OSZAPC_RESULT_32(op1_32, BX_LF_INSTR_NEG32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INC_EdM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
op1_32++;
write_RMW_virtual_dword(op1_32);
SET_FLAGS_OSZAPC_INC_32(op1_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::DEC_EdM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
op1_32--;
write_RMW_virtual_dword(op1_32);
SET_FLAGS_OSZAPC_DEC_32(op1_32);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG_EdGdM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr);
Bit32u diff_32 = EAX - op1_32;
SET_FLAGS_OSZAPC_SUB_32(EAX, op1_32, diff_32);
if (diff_32 == 0) { // if accumulator == dest
// dest <-- src
write_RMW_virtual_dword(BX_READ_32BIT_REG(i->nnn()));
}
else {
// accumulator <-- dest
RAX = op1_32;
}
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
Bit32u diff_32 = EAX - op1_32;
SET_FLAGS_OSZAPC_SUB_32(EAX, op1_32, diff_32);
if (diff_32 == 0) { // if accumulator == dest
// dest <-- src
BX_WRITE_32BIT_REGZ(i->rm(), BX_READ_32BIT_REG(i->nnn()));
}
else {
// accumulator <-- dest
RAX = op1_32;
}
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPXCHG8B(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
// check write permission for following write
Bit64u op1_64 = read_RMW_virtual_qword(i->seg(), eaddr);
Bit64u op2_64 = ((Bit64u) EDX << 32) | EAX;
if (op1_64 == op2_64) { // if accumulator == dest
// dest <-- src (ECX:EBX)
op2_64 = ((Bit64u) ECX << 32) | EBX;
write_RMW_virtual_qword(op2_64);
assert_ZF();
}
else {
// accumulator <-- dest
RAX = GET32L(op1_64);
RDX = GET32H(op1_64);
clear_ZF();
}
}