Bochs/bochs/cpu/apic.cc
Stanislav Shwartsman ef197b2a56 Fixed compilation error in paging.cc
Some fixed for APIC in P4 processor
APIC patch by mrieker cleaned even more
2005-02-23 21:18:24 +00:00

934 lines
28 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: apic.cc,v 1.41 2005-02-23 21:18:23 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#if BX_SUPPORT_APIC
#define LOG_THIS this->
bx_generic_apic_c *apic_index[APIC_MAX_ID];
bx_local_apic_c *local_apic_index[BX_LOCAL_APIC_NUM];
bx_generic_apic_c::bx_generic_apic_c ()
{
id = APIC_UNKNOWN_ID;
put("APIC?");
settype(APICLOG);
hwreset ();
}
void bx_generic_apic_c::set_arb_id (int new_arb_id)
{
// politely ignore it. This gets sent to every APIC, regardless of its type.
}
// init is called during RESET and when an INIT message is delivered.
void bx_generic_apic_c::init ()
{
}
void bx_generic_apic_c::set_base (bx_address newbase)
{
newbase &= (~0xfff);
BX_INFO(("relocate APIC id=%d to " FMT_ADDRX, id, newbase));
base_addr = newbase;
}
void bx_generic_apic_c::set_id (Bit8u newid)
{
// update apic_index
if (id != APIC_UNKNOWN_ID) {
BX_ASSERT (id < APIC_MAX_ID);
if (apic_index[id] != this)
BX_PANIC(("inconsistent APIC id table"));
apic_index[id] = NULL;
}
id = newid;
if (id != APIC_UNKNOWN_ID) {
if (apic_index[id] != NULL)
BX_PANIC(("duplicate APIC id assigned"));
apic_index[id] = this;
}
}
void bx_generic_apic_c::reset_all_ids ()
{
for (int i=0; i<APIC_MAX_ID; i++) {
if (apic_index[i])
apic_index[i]->set_id (APIC_UNKNOWN_ID);
}
}
char *bx_generic_apic_c::get_name ()
{
BX_PANIC(("get_name called on bx_generic_apic_c base class"));
return NULL;
}
bx_bool bx_generic_apic_c::is_selected (bx_address addr, Bit32u len)
{
if ((addr & ~0xfff) == get_base ()) {
if ((addr & 0xf != 0) || (len != 4))
BX_INFO(("warning: misaligned or wrong-size APIC write. addr=" FMT_ADDRX " len=%d", addr, len));
return true;
}
return false;
}
void bx_generic_apic_c::read (Bit32u addr, void *data, unsigned len)
{
if ((addr & ~0xf) != ((addr+len-1) & ~0xf))
BX_PANIC(("APIC read spans 32-bit boundary"));
Bit32u value;
read_aligned (addr, &value, 4);
if ((addr&3) == 0) {
*((Bit32u *)data) = value;
return;
}
// handle partial word read, independent of endian-ness.
Bit8u bytes[4];
bytes[0] = value & 0xff;
bytes[1] = (value >> 8) & 0xff;
bytes[2] = (value >> 16) & 0xff;
bytes[3] = (value >> 24) & 0xff;
Bit8u *p1 = bytes+(addr&3);
Bit8u *p2 = (Bit8u *)data;
for (unsigned i=0; i<len; i++) {
if (bx_dbg.apic)
BX_INFO(("apic: Copying byte %02x", (unsigned int) *p1));
*p2++ = *p1++;
}
}
/* apic_mask is the bitmask of apics allowed to arbitrate here */
int bx_generic_apic_c::apic_bus_arbitrate(Bit32u apic_mask)
{
int winning_apr = 0, winning_id = 0, __apr, i;
for (i = 0; i < BX_LOCAL_APIC_NUM; i++) {
if (apic_mask & (1<<i)) {
__apr = local_apic_index[i]->get_apr();
if (__apr > winning_apr) {
winning_apr = __apr;
winning_id = i;
}
}
}
return winning_id;
}
/* get the CPU with the lowest arbitration ID */
int bx_generic_apic_c::apic_bus_arbitrate_lowpri(Bit32u apic_mask)
{
// XXX initial winning_apr value, the datasheets say 15
int winning_apr = APIC_MAX_ID, winning_id = 0 , __apr, i;
for (i = 0; i < BX_LOCAL_APIC_NUM; i++) {
if (apic_mask & (1<<i)) {
__apr = local_apic_index[i]->get_apr_lowpri();
if (__apr < winning_apr) {
winning_apr = __apr;
winning_id = i;
}
}
}
return winning_id;
}
void bx_generic_apic_c::arbitrate_and_trigger(Bit32u deliver_bitmask, Bit32u vector, Bit8u trigger_mode)
{
int trigger_order[BX_LOCAL_APIC_NUM], winner, i, j;
#define TERMINATE_MAGIK 0x5a
/* bus arbitrate ... */
for (i = 0, j = 0; i < BX_LOCAL_APIC_NUM; i++) {
if (deliver_bitmask & (1<<i)) {
winner = apic_bus_arbitrate(deliver_bitmask);
local_apic_index[winner]->adjust_arb_id(winner);
trigger_order[j++] = winner;
}
}
if (j < BX_LOCAL_APIC_NUM)
trigger_order[j] = TERMINATE_MAGIK;
i = 0;
do {
local_apic_index[trigger_order[i]]->trigger_irq(vector, trigger_order[i], trigger_mode);
i++;
} while (trigger_order[i] != TERMINATE_MAGIK);
}
void bx_generic_apic_c::arbitrate_and_trigger_one(Bit32u deliver_bitmask, Bit32u vector, Bit8u trigger_mode)
{
int winner = apic_bus_arbitrate(deliver_bitmask);
local_apic_index[winner]->adjust_arb_id(winner);
local_apic_index[winner]->trigger_irq(vector, winner, trigger_mode);
}
Bit32u bx_generic_apic_c::get_delivery_bitmask (Bit8u dest, Bit8u dest_mode)
{
int mask = 0;
if (dest_mode == 0) {
// physical
if (dest < APIC_MAX_ID)
mask = 1<<dest;
else if (dest == 0xff) {
// physical destination 0xff means everybody. only local APICs can
// send this.
BX_ASSERT (get_type () == APIC_TYPE_LOCAL_APIC);
mask = 0xff;
} else BX_PANIC(("bx_generic_apic_c::deliver: illegal physical destination %02x", dest));
} else {
// logical destination. call match_logical_addr for each local APIC.
if (dest == 0) return 0;
for (int i=0; i<BX_LOCAL_APIC_NUM; i++) {
if (local_apic_index[i]->match_logical_addr(dest))
mask |= (1<<i);
}
}
if (bx_dbg.apic)
BX_INFO(("generic::get_delivery_bitmask returning 0x%04x", mask));
return mask;
}
bx_bool bx_generic_apic_c::deliver (Bit8u dest, Bit8u dest_mode, Bit8u delivery_mode, Bit8u vector,
Bit8u level, Bit8u trig_mode)
{
// return false if we can't deliver for any reason, so that the caller
// knows not to clear its IRR.
Bit32u deliver_bitmask = get_delivery_bitmask (dest, dest_mode);
// arbitrate by default
int arbitrate = 1;
int broadcast = (deliver_bitmask == BX_CPU_C::cpu_online_map);
bx_bool once = false;
int i;
// mask must include ONLY local APICs, or we will have problems.
if (!deliver_bitmask) {
BX_PANIC(("deliver failed for vector %02x: no APICs in destination bitmask", vector));
return false;
}
switch (delivery_mode) {
case APIC_DM_LOWPRI:
/* fall through, we've already done low priority arbitration */
arbitrate = 0;
case APIC_DM_FIXED:
/* once = false */
break;
case APIC_DM_INIT:
// normal INIT IPI sent to processors
for (i = 0; i < BX_LOCAL_APIC_NUM; i++) {
if (deliver_bitmask & (1<<i)) local_apic_index[i]->init();
}
// HACK! We need to do some IOAPIC init after the CPUs
// are fired up
apic_index[i]->init();
return true;
case APIC_DM_EXTINT:
for (int i = 0; i < BX_LOCAL_APIC_NUM; i++)
if (deliver_bitmask & (1<<i))
local_apic_index[i]->bypass_irr_isr = true;
break;
case APIC_DM_SMI:
BX_INFO(("APIC delivery mode SMI is not implemented"));
break;
case APIC_DM_NMI:
BX_INFO(("APIC delivery mode NMI is not implemented"));
break;
case 3: // reserved
break;
default:
BX_PANIC(("APIC delivery mode %d not implemented", delivery_mode));
return false;
}
// Fixed delivery mode
if (bx_dbg.apic)
BX_INFO(("delivered vector=0x%02x to bitmask=%04x", (int)vector, deliver_bitmask));
// delivery only to one APIC
if (once) {
if (arbitrate)
arbitrate_and_trigger_one(deliver_bitmask, vector, trig_mode);
else {
for (int i = 0; i < BX_LOCAL_APIC_NUM; i++) {
if (deliver_bitmask & (1<<i)) {
local_apic_index[i]->trigger_irq(vector, i, trig_mode);
}
break;
}
}
} else {
if (arbitrate && !broadcast)
arbitrate_and_trigger(deliver_bitmask, vector, trig_mode);
else {
for (int i = 0; i < BX_LOCAL_APIC_NUM; i++) {
if (deliver_bitmask & (1<<i))
local_apic_index[i]->trigger_irq(vector, i, trig_mode);
}
}
}
return true;
}
bx_bool bx_local_apic_c::deliver (Bit8u dest, Bit8u dest_mode, Bit8u delivery_mode,
Bit8u vector, Bit8u level, Bit8u trig_mode)
{
// In this function, implement only the behavior that is specific to
// the local apic. For general behavior of all apics, just send it to
// the base class.
Bit32u deliver_bitmask = get_delivery_bitmask (dest, dest_mode);
int found_focus = 0;
int broadcast = (deliver_bitmask == BX_CPU_C::cpu_online_map);
int bit;
if (broadcast)
BX_INFO(("Broadcast IPI for vector %#x delivery_mode %#x", vector, delivery_mode));
switch (delivery_mode) {
case APIC_DM_LOWPRI: // lowest priority of destinations
// if we're focus processor, handle it, otherwise
// look for the focus processor.
dest = is_focus(vector) ? get_id() : 0;
if (dest) break;
for (int i = 0; i < BX_LOCAL_APIC_NUM; i++) {
if (local_apic_index[i]->is_focus(vector) == true) {
found_focus = 1;
dest = i;
break; // stop scanning
}
}
if (!found_focus) dest = apic_bus_arbitrate_lowpri(0xff);
else return false;
break;
case APIC_DM_INIT:
if (level == 0 && trig_mode == 1)
{
// special mode in local apic. See "INIT Level Deassert" in the
// Intel Soft. Devel. Guide Vol 3, page 7-34. This magic code
// causes all APICs (regardless of dest address) to set their
// arbitration ID to their APIC ID. Not supported by Pentium 4
// and Intel Xeon processors.
BX_INFO (("INIT with Level&Deassert: synchronize arbitration IDs"));
for (bit=0; bit<BX_LOCAL_APIC_NUM; bit++)
local_apic_index[bit]->set_arb_id(local_apic_index[bit]->get_id());
apic_index[bit]->set_arb_id(apic_index[bit]->get_id()); // HACK !!!
return true;
}
break; // we'll fall through to generic_deliver:case INIT
case APIC_DM_SIPI: // Start Up (SIPI, local apic only)
for (bit=0; bit<BX_LOCAL_APIC_NUM; bit++) {
if (deliver_bitmask & (1<<bit))
local_apic_index[bit]->startup_msg(vector);
}
return true;
default:
break;
}
// not any special case behavior, just use generic apic code.
return bx_generic_apic_c::deliver (dest, dest_mode, delivery_mode, vector, level, trig_mode);
}
bx_local_apic_c::bx_local_apic_c(BX_CPU_C *mycpu)
: bx_generic_apic_c (), cpu(mycpu)
{
hwreset ();
INTR = 0;
}
void bx_local_apic_c::set_arb_id (int new_arb_id)
{
BX_DEBUG (("set arbitration ID to %d", new_arb_id));
arb_id = new_arb_id;
}
void bx_local_apic_c::hwreset ()
{
/* same as INIT but also sets arbitration ID and APIC ID */
init ();
/* since id is set explicitly by the function that creates the CPU
object, do not mess around with it */
// id = APIC_UNKNOWN_ID;
arb_id = id;
BX_CPU_C::cpu_online_map |= (1 << id);
}
void bx_local_apic_c::init ()
{
bx_generic_apic_c::init ();
BX_INFO(("local apic in %s initializing",
(cpu && cpu->name) ? cpu->name : "?"));
local_apic_index[id] = this;
// default address for a local APIC, can be moved
base_addr = APIC_BASE_ADDR;
bypass_irr_isr = false;
err_status = 0;
log_dest = 0;
dest_format = 0xf;
for (int bit=0; bit<BX_LOCAL_APIC_MAX_INTS; bit++) {
irr[bit] = isr[bit] = tmr[bit] = 0;
}
icr_high = icr_low = log_dest = task_priority = 0;
spurious_vec = 0xff; // software disabled (bit 8)
// KPL
// Register a non-active timer for use when the timer is started.
timer_handle = bx_pc_system.register_timer_ticks(this,
BX_CPU(0)->local_apic.periodic_smf, 0, 0, 0, "lapic");
}
void bx_local_apic_c::set_id (Bit8u newid)
{
bx_generic_apic_c::set_id (newid);
local_apic_index[id] = this;
sprintf (cpu->name, "CPU apicid=%02x", (Bit32u)id);
if (id < APIC_MAX_ID) {
char buffer[16];
sprintf (buffer, "APIC%x", id);
put(buffer);
settype(CPU0LOG + id);
sprintf (buffer, "CPU%x", id);
cpu->put (buffer);
} else {
BX_INFO (("naming convention for apics requires id=0-%d only", APIC_MAX_ID));
}
if(BX_CPU_LEVEL<2)
BX_INFO(( "8086" ));
else
BX_INFO(( "80%d86", BX_CPU_LEVEL ));
}
char *bx_local_apic_c::get_name()
{
return cpu->name;
}
void bx_local_apic_c::set_divide_configuration (Bit32u value)
{
BX_ASSERT (value == (value & 0x0b));
// move bit 3 down to bit 0.
value = ((value & 8) >> 1) | (value & 3);
BX_ASSERT (value >= 0 && value <= 7);
timer_divide_factor = (value==7)? 1 : (2 << value);
BX_DEBUG(("%s: set timer divide factor to %d", cpu->name, timer_divide_factor));
}
void bx_local_apic_c::write (Bit32u addr, Bit32u *data, unsigned len)
{
if (len != 4) {
BX_PANIC (("local apic write with len=%d (should be 4)", len));
}
BX_DEBUG(("%s: write %08x to APIC address %08x", cpu->name, *data, addr));
addr &= 0xff0;
switch (addr) {
case 0x20: // local APIC id
id = ((*data)>>24) & APIC_ID_MASK;
break;
case 0x80: // task priority
task_priority = *data & 0xff;
break;
case 0xb0: // EOI
{
BX_DEBUG(("%s: Wrote 0x%04x to EOI", cpu->name, *data));
int vec = highest_priority_int (isr);
if (vec < 0) {
BX_INFO(("EOI written without any bit in ISR"));
} else {
BX_DEBUG(("%s: local apic received EOI, hopefully for vector 0x%02x", cpu->name, vec));
isr[vec] = 0;
service_local_apic ();
}
if (bx_dbg.apic)
print_status ();
}
break;
case 0xd0: // logical destination
log_dest = (*data >> 24) & APIC_ID_MASK;
BX_DEBUG (("set logical destiation to %02x", log_dest));
break;
case 0xe0: // destination format
dest_format = (*data >> 28) & 0xf;
BX_DEBUG (("set destination format to %02x", dest_format));
break;
case 0xf0: // spurious interrupt vector
spurious_vec = (spurious_vec & 0x0f) | (*data & 0x3f0);
break;
case 0x280: // error status reg
// Here's what the IA-devguide-3 says on p.7-45:
// The ESR is a read/write register and is reset after being written to
// by the processor. A write to the ESR must be done just prior to
// reading the ESR to allow the register to be updated.
// This doesn't seem clear. If the write clears the register, then
// wouldn't you always read zero? Otherwise, what does the write do?
err_status = 0;
break;
case 0x300: // interrupt command reg 0-31
{
icr_low = *data & ~(1<<12); // force delivery status bit = 0 (idle)
int dest = (icr_high >> 24) & 0xff;
int trig_mode = (icr_low >> 15) & 1;
int level = (icr_low >> 14) & 1;
int dest_mode = (icr_low >> 11) & 1;
int delivery_mode = (icr_low >> 8) & 7;
int vector = (icr_low & 0xff);
#if BX_CPU_LEVEL >= 6 && BX_SUPPORT_SSE >= 2
trig_mode = 0; // these flags have no meaning for P4 processor
level = 1;
#endif
// deliver will call get_delivery_bitmask to decide who to send to.
// This local_apic class redefines get_delivery_bitmask to
// implement the destination shorthand field, which doesn't exist
// for all APICs.
bx_bool accepted =
deliver (dest, dest_mode, delivery_mode, vector, level, trig_mode);
if (!accepted)
err_status |= APIC_ERR_TX_ACCEPT_ERR;
}
break;
case 0x310: // interrupt command reg 31-63
icr_high = *data & 0xff000000;
break;
case 0x320: // LVT Timer Reg
lvt[APIC_LVT_TIMER] = *data & 0x310ff;
break;
case 0x330: // LVT Thermal Monitor
lvt[APIC_LVT_THERMAL] = *data & 0x117ff;
break;
case 0x340: // LVT Performance Counter
lvt[APIC_LVT_PERFORM] = *data & 0x117ff;
break;
case 0x350: // LVT LINT0 Reg
lvt[APIC_LVT_LINT0] = *data & 0x1f7ff;
break;
case 0x360: // LVT Lint1 Reg
lvt[APIC_LVT_LINT1] = *data & 0x1f7ff;
break;
case 0x370: // LVT Error Reg
lvt[APIC_LVT_ERROR] = *data & 0x117ff;
break;
case 0x380: // initial count for timer
{
// If active before, deactive the current timer before changing it.
if (timer_active)
bx_pc_system.deactivate_timer(timer_handle);
timer_initial = *data;
if (timer_initial == 0)
BX_PANIC(("APIC: W(init timer count): count=0"));
// This should trigger the counter to start. If already started,
// restart from the new start value.
// fprintf(stderr, "APIC: W(Initial Count Register) = %u\n", *data);
timer_current = timer_initial;
timer_active = true;
Bit32u timervec = lvt[APIC_LVT_TIMER];
bx_bool continuous = (timervec & 0x20000) > 0;
ticksInitial = bx_pc_system.getTicksTotal(); // Take a reading.
bx_pc_system.activate_timer_ticks(timer_handle,
Bit64u(timer_initial) * Bit64u(timer_divide_factor), continuous);
}
break;
case 0x3e0: // timer divide configuration
// only bits 3, 1, and 0 are writable
timer_divconf = *data & 0xb;
set_divide_configuration (timer_divconf);
break;
/* all read-only registers go here */
case 0x30: // local APIC version
case 0x90: // arbitration priority
case 0xa0: // processor priority
// ISRs not writable
case 0x100: case 0x110: case 0x120: case 0x130:
case 0x140: case 0x150: case 0x160: case 0x170:
// TMRs not writable
case 0x180: case 0x190: case 0x1a0: case 0x1b0:
case 0x1c0: case 0x1d0: case 0x1e0: case 0x1f0:
// IRRs not writable
case 0x200: case 0x210: case 0x220: case 0x230:
case 0x240: case 0x250: case 0x260: case 0x270:
// current count for timer
case 0x390:
// all read-only registers should fall into this line
BX_INFO(("warning: write to read-only APIC register 0x%02x", addr));
break;
default:
err_status |= APIC_ERR_ILLEGAL_ADDR;
// but for now I want to know about it in case I missed some.
BX_PANIC(("APIC register %08x not implemented", addr));
}
}
void bx_local_apic_c::startup_msg (Bit32u vector)
{
if (cpu->debug_trap & 0x80000000) {
cpu->debug_trap &= ~0x80000000;
cpu->dword.eip = 0;
cpu->load_seg_reg (&cpu->sregs[BX_SEG_REG_CS], vector*0x100);
BX_INFO(("%s started up at %04X:%08X by APIC", cpu->name, vector*0x100, cpu->dword.eip));
} else {
BX_INFO(("%s started up by APIC, but was not halted at the time", cpu->name));
}
}
void bx_local_apic_c::read_aligned (Bit32u addr, Bit32u *data, unsigned len)
{
if (len != 4) {
BX_PANIC (("local apic write with len=%d (should be 4)", len));
}
*data = 0; // default value for unimplemented registers
Bit32u addr2 = addr & 0xff0;
switch (addr2) {
case 0x20: // local APIC id
*data = (id) << 24; break;
case 0x30: // local APIC version
*data = APIC_VERSION_ID; break;
case 0x80: // task priority
*data = task_priority & 0xff; break;
case 0x90: // arbitration priority
*data = get_apr (); break;
case 0xa0: // processor priority
*data = get_ppr (); break;
case 0xb0: // EOI
/*
* Read-modify-write operations should operate without generating
* exceptions, and are used by some operating systems to EOI.
* The results of reads should be ignored by the OS.
*/
break;
case 0xd0: // logical destination
*data = (log_dest & APIC_ID_MASK) << 24; break;
case 0xe0: // destination format
*data = ((dest_format & 0xf) << 24) | 0x0fffffff; break;
case 0xf0: // spurious interrupt vector
*data = spurious_vec; break;
case 0x100: case 0x110:
case 0x120: case 0x130:
case 0x140: case 0x150:
case 0x160: case 0x170:
*data = isr[addr2-0x100];
break;
case 0x180: case 0x190:
case 0x1a0: case 0x1b0:
case 0x1c0: case 0x1d0:
case 0x1e0: case 0x1f0:
*data = tmr[addr2-0x180];
break;
case 0x200: case 0x210:
case 0x220: case 0x230:
case 0x240: case 0x250:
case 0x260: case 0x270:
*data = irr[addr2-0x200];
break;
case 0x280: // error status reg
*data = err_status; break;
case 0x300: // interrupt command reg 0-31
*data = icr_low; break;
case 0x310: // interrupt command reg 31-63
*data = icr_high; break;
case 0x320: // LVT Timer Reg
case 0x330: // LVT Thermal Monitor
case 0x340: // LVT Performance Counter
case 0x350: // LVT LINT0 Reg
case 0x360: // LVT Lint1 Reg
case 0x370: // LVT Error Reg
{
int index = (addr2 - 0x320) >> 4;
*data = lvt[index];
break;
}
case 0x380: // initial count for timer
*data = timer_initial;
//fprintf(stderr, "APIC: R(Initial Count Register) = %u\n", *data);
break;
case 0x390: // current count for timer
{
if (timer_active==0)
*data = timer_current;
else {
Bit64u delta64;
Bit32u delta32;
delta64 = (bx_pc_system.time_ticks() - ticksInitial) / timer_divide_factor;
delta32 = (Bit32u) delta64;
if (delta32 > timer_initial)
BX_PANIC(("APIC: R(curr timer count): delta < initial"));
timer_current = timer_initial - delta32;
*data = timer_current;
}
//fprintf(stderr, "APIC: R(Current Count Register) = %u\n", *data);
}
break;
case 0x3e0: // timer divide configuration
*data = timer_divconf; break;
default:
BX_INFO(("APIC register %08x not implemented", addr));
}
if (bx_dbg.apic)
BX_INFO(("%s: read from APIC address %08x = %08x", cpu->name, addr, *data));
}
int bx_local_apic_c::highest_priority_int (Bit8u *array)
{
int i; // scan bits from highest to lowest
for (i = BX_LOCAL_APIC_MAX_INTS; -- i >= 0;) if (array[i]) break;
return i;
}
void bx_local_apic_c::service_local_apic ()
{
if (bx_dbg.apic) {
BX_INFO(("service_local_apic()"));
print_status ();
}
if (INTR) return; // INTR already up; do nothing
// find first interrupt in irr.
int first_irr = highest_priority_int (irr);
int first_isr = highest_priority_int (isr);
if (first_irr < 0) return; // no interrupts, leave INTR=0
if (first_isr >= 0 && first_irr >= first_isr) {
if (bx_dbg.apic)
BX_INFO(("local apic (%s): not delivering int%02x because int%02x is in service", cpu->name, first_irr, first_isr));
err_status |= APIC_ERR_TX_ACCEPT_ERR;
return;
}
// interrupt has appeared in irr. raise INTR. When the CPU
// acknowledges, we will run highest_priority_int again and
// return it.
BX_DEBUG(("service_local_apic(): setting INTR=1 for vector 0x%02x", first_irr));
INTR = 1;
cpu->async_event = 1;
}
void bx_local_apic_c::trigger_irq (unsigned vector, unsigned from, unsigned trigger_mode)
{
BX_DEBUG(("Local apic on %s: trigger interrupt vector=0x%x", cpu->name, vector));
/* check for local/apic_index usage */
BX_ASSERT(from == id);
if (vector > BX_APIC_LAST_VECTOR) {
err_status |= APIC_ERR_RX_ILLEGAL_VEC;
BX_INFO(("bogus vector %#x, ignoring", vector));
return;
}
if (bx_dbg.apic)
BX_INFO(("triggered vector %#02x", vector));
if (bypass_irr_isr) {
bypass_irr_isr = false;
goto service_vector;
}
if (irr[vector] != 0) {
err_status |= APIC_ERR_TX_ACCEPT_ERR;
return;
}
service_vector:
irr[vector] = 1;
tmr[vector] = trigger_mode; // set for level triggered
service_local_apic ();
}
void bx_local_apic_c::untrigger_irq (unsigned vector, unsigned from, unsigned trigger_mode)
{
BX_DEBUG(("Local apic on %s: untrigger interrupt vector=0x%x", cpu->name, vector));
// hardware says "no more". clear the bit. If the CPU hasn't yet
// acknowledged the interrupt, it will never be serviced.
BX_ASSERT (irr[vector] == 1);
irr[vector] = 0;
if (bx_dbg.apic) print_status ();
}
Bit8u bx_local_apic_c::acknowledge_int ()
{
// CPU calls this when it is ready to service one interrupt
if (!INTR)
BX_PANIC(("%s: acknowledged an interrupt, but INTR=0", cpu->name));
BX_ASSERT (INTR);
int vector = highest_priority_int (irr);
if (irr[vector] != 1) {
BX_ERROR(("IRR was not 1! irr[%d]=%#x", vector, irr[vector]));
irr[vector]=1;
}
BX_ASSERT (irr[vector] == 1);
BX_DEBUG(("%s: acknowledge_int returning vector 0x%x", cpu->name, vector));
// currently isr never gets cleared, so no point
//BX_ASSERT (isr[vector] == 0);
irr[vector] = 0;
isr[vector] = 1;
if (bx_dbg.apic) {
BX_INFO(("Status after setting isr:"));
print_status ();
}
INTR = 0;
cpu->async_event = 1;
service_local_apic (); // will set INTR again if another is ready
return vector;
}
void bx_local_apic_c::print_status ()
{
BX_INFO(("%s local apic: status is {:", cpu->name));
for (int vec=0; vec<BX_LOCAL_APIC_MAX_INTS; vec++) {
if (irr[vec] || isr[vec]) {
BX_INFO(("vec 0x%x: irr=%d, isr=%d", vec, (int)irr[vec], (int)isr[vec]));
}
}
BX_INFO(("}"));
}
bx_bool bx_local_apic_c::match_logical_addr (Bit8u address)
{
if (dest_format != 0xf) {
BX_PANIC(("bx_local_apic_c::match_logical_addr: cluster model addressing not implemented"));
}
bx_bool match = ((address & log_dest) != 0);
BX_DEBUG (("%s: comparing MDA %02x to my LDR %02x -> %s", cpu->name,
address, log_dest, match? "Match" : "Not a match"));
return match;
}
Bit32u bx_local_apic_c::get_delivery_bitmask (Bit8u dest, Bit8u dest_mode)
{
int dest_shorthand = (icr_low >> 18) & 3;
Bit32u mask = 0; /* stop compiler warnings */
switch (dest_shorthand) {
case 0: // no shorthand, use real destination value
mask = bx_generic_apic_c::get_delivery_bitmask (dest, dest_mode);
break;
case 1: // self
mask = (1<<id);
break;
case 2: // all including self
mask = BX_CPU_C::cpu_online_map;
break;
case 3: // all but self
mask = BX_CPU_C::cpu_online_map & ~(1<<id);
break;
default:
BX_PANIC(("Invalid desination shorthand %#x\n", dest_shorthand));
}
BX_DEBUG (("local::get_delivery_bitmask returning 0x%04x shorthand=%#x", mask, dest_shorthand));
if (mask == 0)
BX_INFO((">>WARNING<< returning a mask of 0x0, dest=%#x dest_mode=%#x", dest, dest_mode));
return mask;
}
Bit8u bx_local_apic_c::get_ppr ()
{
Bit32u tpr = (task_priority >> 4) & 0xf; /* we want 7:4 */
Bit32u isrv = (highest_priority_int(isr) >> 4) & 0xf; /* ditto */
if (tpr >= isrv)
proc_priority = task_priority & 0xff;
else
proc_priority = isrv << 4; /* low 4 bits of PPR have to be cleared */
if (bx_dbg.apic)
BX_DEBUG(("%s: get_ppr returning %#x", cpu->name, proc_priority));
return (Bit8u) proc_priority;
}
Bit8u bx_local_apic_c::get_tpr ()
{
return task_priority;
}
void bx_local_apic_c::set_tpr (Bit8u priority)
{
task_priority = priority;
}
Bit8u bx_local_apic_c::get_apr ()
{
return arb_id;
}
Bit8u bx_local_apic_c::get_apr_lowpri()
{
Bit32u tpr = (task_priority >> 4) & 0xf;
Bit32u isrv = (highest_priority_int(isr) >> 4) & 0xf;
Bit32u irrv = (highest_priority_int(irr) >> 4) & 0xf;
if ((tpr >= irrv) && (tpr > isrv))
arb_id = task_priority & 0xff;
else
arb_id = ((tpr && isrv) > irrv) ? (tpr && isrv) : irrv;
BX_INFO(("apr = %d\n", arb_id));
return (Bit8u)arb_id;
}
bx_bool bx_local_apic_c::is_focus(Bit32u vector)
{
return (irr[vector] || isr[vector]) ? true : false;
}
void bx_local_apic_c::adjust_arb_id(int winning_id)
{
int __apr, __win_apr;
// adjust arbitration priorities
for (int i = 0; i < BX_LOCAL_APIC_NUM; i++) {
if (i != winning_id) {
__apr = local_apic_index[i]->get_apr();
if (__apr == 15) {
__win_apr = local_apic_index[winning_id]->get_apr();
local_apic_index[i]->set_arb_id(__win_apr+1);
}
else
local_apic_index[i]->set_arb_id(__apr+1);
} else // the winner drops to lowest
local_apic_index[winning_id]->set_arb_id(0);
}
}
void bx_local_apic_c::periodic_smf(void *this_ptr)
{
bx_local_apic_c *class_ptr = (bx_local_apic_c *) this_ptr;
class_ptr->periodic();
}
void bx_local_apic_c::periodic(void) // KPL: changed prototype
{
if (!timer_active) {
BX_ERROR(("%s: bx_local_apic_c::periodic called, timer_active==0", cpu->name));
return;
}
BX_DEBUG(("%s: bx_local_apic_c::periodic called", cpu->name));
// timer reached zero since the last call to periodic.
Bit32u timervec = lvt[APIC_LVT_TIMER];
if (timervec & 0x20000) {
// Periodic mode.
// If timer is not masked, trigger interrupt.
if ((timervec & 0x10000)==0)
trigger_irq (timervec & 0xff, id, APIC_EDGE_TRIGGERED);
// Reload timer values.
timer_current = timer_initial;
ticksInitial = bx_pc_system.getTicksTotal(); // Take a reading.
BX_DEBUG(("%s: local apic timer (periodic) triggered int, reset counter to 0x%08x", cpu->name, timer_current));
}
else {
// one-shot mode
timer_current = 0;
// If timer is not masked, trigger interrupt.
if ((timervec & 0x10000)==0)
trigger_irq (timervec & 0xff, id, APIC_EDGE_TRIGGERED);
timer_active = false;
BX_DEBUG (("%s: local apic timer (one-shot) triggered int", cpu->name));
bx_pc_system.deactivate_timer(timer_handle); // Make sure.
}
}
#endif /* if BX_SUPPORT_APIC */