281 lines
8.8 KiB
C++
281 lines
8.8 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id$
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2007-2011 Stanislav Shwartsman
|
|
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
// Make code more tidy with a few macros.
|
|
#if BX_SUPPORT_X86_64==0
|
|
#define RIP EIP
|
|
#endif
|
|
|
|
bxPageWriteStampTable pageWriteStampTable;
|
|
|
|
void flushICaches(void)
|
|
{
|
|
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++) {
|
|
BX_CPU(i)->iCache.flushICacheEntries();
|
|
#if BX_SUPPORT_TRACE_CACHE
|
|
BX_CPU(i)->async_event |= BX_ASYNC_EVENT_STOP_TRACE;
|
|
#endif
|
|
}
|
|
|
|
pageWriteStampTable.resetWriteStamps();
|
|
}
|
|
|
|
void handleSMC(bx_phy_address pAddr, Bit32u mask)
|
|
{
|
|
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++) {
|
|
#if BX_SUPPORT_TRACE_CACHE
|
|
BX_CPU(i)->async_event |= BX_ASYNC_EVENT_STOP_TRACE;
|
|
#endif
|
|
BX_CPU(i)->iCache.handleSMC(pAddr, mask);
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_TRACE_CACHE
|
|
|
|
bxICacheEntry_c* BX_CPU_C::serveICacheMiss(bxICacheEntry_c *entry, Bit32u eipBiased, bx_phy_address pAddr)
|
|
{
|
|
bxICacheEntry_c *vc_hit = BX_CPU_THIS_PTR iCache.lookup_victim_cache(pAddr, BX_CPU_THIS_PTR fetchModeMask);
|
|
if (vc_hit) {
|
|
return vc_hit;
|
|
}
|
|
|
|
BX_CPU_THIS_PTR iCache.victim_entry(entry, BX_CPU_THIS_PTR fetchModeMask);
|
|
|
|
BX_CPU_THIS_PTR iCache.alloc_trace(entry);
|
|
|
|
// Cache miss. We weren't so lucky, but let's be optimistic - try to build
|
|
// trace from incoming instruction bytes stream !
|
|
entry->pAddr = pAddr;
|
|
entry->traceMask = 0;
|
|
|
|
unsigned remainingInPage = BX_CPU_THIS_PTR eipPageWindowSize - eipBiased;
|
|
const Bit8u *fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
|
|
int ret;
|
|
|
|
bxInstruction_c *i = entry->i;
|
|
|
|
Bit32u pageOffset = PAGE_OFFSET((Bit32u) pAddr);
|
|
Bit32u traceMask = 0;
|
|
|
|
for (unsigned n=0;n<BX_MAX_TRACE_LENGTH;n++)
|
|
{
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
|
|
ret = fetchDecode64(fetchPtr, i, remainingInPage);
|
|
else
|
|
#endif
|
|
ret = fetchDecode32(fetchPtr, i, remainingInPage);
|
|
|
|
if (ret < 0) {
|
|
// Fetching instruction on segment/page boundary
|
|
if (n > 0) {
|
|
// The trace is already valid, it has several instructions inside,
|
|
// in this case just drop the boundary instruction and stop
|
|
// tracing.
|
|
break;
|
|
}
|
|
// First instruction is boundary fetch, leave the trace cache entry
|
|
// invalid for now because boundaryFetch() can fault
|
|
entry->pAddr = ~entry->pAddr;
|
|
entry->tlen = 1;
|
|
boundaryFetch(fetchPtr, remainingInPage, i);
|
|
|
|
// Add the instruction to trace cache
|
|
entry->pAddr = ~entry->pAddr;
|
|
entry->traceMask = 0x80000000; /* last line in page */
|
|
pageWriteStampTable.markICacheMask(entry->pAddr, entry->traceMask);
|
|
pageWriteStampTable.markICacheMask(BX_CPU_THIS_PTR pAddrPage, 0x1);
|
|
BX_CPU_THIS_PTR iCache.commit_page_split_trace(BX_CPU_THIS_PTR pAddrPage, entry);
|
|
return entry;
|
|
}
|
|
|
|
// add instruction to the trace
|
|
unsigned iLen = i->ilen();
|
|
entry->tlen++;
|
|
|
|
BX_INSTR_OPCODE(BX_CPU_ID, fetchPtr, iLen,
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, long64_mode());
|
|
|
|
traceMask |= 1 << (pageOffset >> 7);
|
|
traceMask |= 1 << ((pageOffset + iLen - 1) >> 7);
|
|
|
|
// continue to the next instruction
|
|
remainingInPage -= iLen;
|
|
if (ret != 0 /* stop trace indication */ || remainingInPage == 0) break;
|
|
pAddr += iLen;
|
|
pageOffset += iLen;
|
|
fetchPtr += iLen;
|
|
i++;
|
|
|
|
// try to find a trace starting from current pAddr and merge
|
|
if (remainingInPage >= 15) // avoid merging with page split trace
|
|
if (mergeTraces(entry, i, pAddr)) break;
|
|
}
|
|
|
|
//BX_INFO(("commit trace %08x len=%d mask %08x", (Bit32u) entry->pAddr, entry->tlen, pageWriteStampTable.getFineGranularityMapping(entry->pAddr)));
|
|
|
|
entry->traceMask |= traceMask;
|
|
|
|
pageWriteStampTable.markICacheMask(pAddr, entry->traceMask);
|
|
|
|
BX_CPU_THIS_PTR iCache.commit_trace(entry->tlen);
|
|
|
|
return entry;
|
|
}
|
|
|
|
bx_bool BX_CPU_C::mergeTraces(bxICacheEntry_c *entry, bxInstruction_c *i, bx_phy_address pAddr)
|
|
{
|
|
bxICacheEntry_c *e = BX_CPU_THIS_PTR iCache.get_entry(pAddr, BX_CPU_THIS_PTR fetchModeMask);
|
|
|
|
if (e->pAddr == pAddr)
|
|
{
|
|
// determine max amount of instruction to take from another entry
|
|
unsigned max_length = e->tlen;
|
|
if (max_length + entry->tlen > BX_MAX_TRACE_LENGTH)
|
|
max_length = BX_MAX_TRACE_LENGTH - entry->tlen;
|
|
if(max_length == 0) return 0;
|
|
|
|
memcpy(i, e->i, sizeof(bxInstruction_c)*max_length);
|
|
entry->tlen += max_length;
|
|
BX_ASSERT(entry->tlen <= BX_MAX_TRACE_LENGTH);
|
|
|
|
entry->traceMask |= e->traceMask;
|
|
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#else // BX_SUPPORT_TRACE_CACHE == 0
|
|
|
|
bx_bool BX_CPU_C::fetchInstruction(bxInstruction_c *iStorage, Bit32u eipBiased)
|
|
{
|
|
unsigned remainingInPage = BX_CPU_THIS_PTR eipPageWindowSize - eipBiased;
|
|
const Bit8u *fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
|
|
int ret;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
|
|
ret = fetchDecode64(fetchPtr, iStorage, remainingInPage);
|
|
else
|
|
#endif
|
|
ret = fetchDecode32(fetchPtr, iStorage, remainingInPage);
|
|
|
|
if (ret < 0) {
|
|
// handle instrumentation callback inside boundaryFetch
|
|
boundaryFetch(fetchPtr, remainingInPage, iStorage);
|
|
return 0;
|
|
}
|
|
|
|
#if BX_INSTRUMENTATION
|
|
BX_INSTR_OPCODE(BX_CPU_ID, fetchPtr, iStorage->ilen(),
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, long64_mode());
|
|
#endif
|
|
|
|
return 1;
|
|
}
|
|
|
|
bxICacheEntry_c* BX_CPU_C::serveICacheMiss(bxICacheEntry_c *entry, Bit32u eipBiased, bx_phy_address pAddr)
|
|
{
|
|
// The entry will be marked valid if fetchdecode will succeed
|
|
if (fetchInstruction(entry->i, eipBiased)) {
|
|
entry->pAddr = pAddr;
|
|
pageWriteStampTable.markICache(pAddr, entry->i->ilen());
|
|
}
|
|
else {
|
|
entry->pAddr = BX_ICACHE_INVALID_PHY_ADDRESS;
|
|
}
|
|
|
|
return entry;
|
|
}
|
|
|
|
#endif
|
|
|
|
void BX_CPU_C::boundaryFetch(const Bit8u *fetchPtr, unsigned remainingInPage, bxInstruction_c *i)
|
|
{
|
|
unsigned j, k;
|
|
Bit8u fetchBuffer[32];
|
|
int ret;
|
|
|
|
if (remainingInPage >= 15) {
|
|
BX_ERROR(("boundaryFetch #GP(0): too many instruction prefixes"));
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
// Read all leftover bytes in current page up to boundary.
|
|
for (j=0; j<remainingInPage; j++) {
|
|
fetchBuffer[j] = *fetchPtr++;
|
|
}
|
|
|
|
// The 2nd chunk of the instruction is on the next page.
|
|
// Set RIP to the 0th byte of the 2nd page, and force a
|
|
// prefetch so direct access of that physical page is possible, and
|
|
// all the associated info is updated.
|
|
RIP += remainingInPage;
|
|
prefetch();
|
|
|
|
unsigned fetchBufferLimit = 15;
|
|
if (BX_CPU_THIS_PTR eipPageWindowSize < 15) {
|
|
BX_DEBUG(("boundaryFetch: small window size after prefetch=%d bytes, remainingInPage=%d bytes", BX_CPU_THIS_PTR eipPageWindowSize, remainingInPage));
|
|
fetchBufferLimit = BX_CPU_THIS_PTR eipPageWindowSize;
|
|
}
|
|
|
|
// We can fetch straight from the 0th byte, which is eipFetchPtr;
|
|
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr;
|
|
|
|
// read leftover bytes in next page
|
|
for (k=0; k<fetchBufferLimit; k++, j++) {
|
|
fetchBuffer[j] = *fetchPtr++;
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
|
|
ret = fetchDecode64(fetchBuffer, i, remainingInPage+fetchBufferLimit);
|
|
else
|
|
#endif
|
|
ret = fetchDecode32(fetchBuffer, i, remainingInPage+fetchBufferLimit);
|
|
|
|
if (ret < 0) {
|
|
BX_INFO(("boundaryFetch #GP(0): failed to complete instruction decoding"));
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
// Restore EIP since we fudged it to start at the 2nd page boundary.
|
|
RIP = BX_CPU_THIS_PTR prev_rip;
|
|
|
|
// Since we cross an instruction boundary, note that we need a prefetch()
|
|
// again on the next instruction. Perhaps we can optimize this to
|
|
// eliminate the extra prefetch() since we do it above, but have to
|
|
// think about repeated instructions, etc.
|
|
// invalidate_prefetch_q();
|
|
|
|
BX_INSTR_OPCODE(BX_CPU_ID, fetchBuffer, i->ilen(),
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, long64_mode());
|
|
}
|