Bochs/bochs/cpu/sse_pfp.cc
2009-04-11 17:00:28 +00:00

3342 lines
99 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: sse_pfp.cc,v 1.54 2009-04-11 17:00:28 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2003 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_SSE
#include "fpu/softfloat-specialize.h"
void BX_CPU_C::check_exceptionsSSE(int exceptions_flags)
{
exceptions_flags &= 0x3F;
int unmasked = ~(MXCSR.get_exceptions_masks()) & exceptions_flags;
MXCSR.set_exceptions(exceptions_flags);
if (unmasked)
{
if(BX_CPU_THIS_PTR cr4.get_OSXMMEXCPT())
exception(BX_XM_EXCEPTION, 0, 0);
else
exception(BX_UD_EXCEPTION, 0, 0);
}
}
BX_CPP_INLINE void mxcsr_to_softfloat_status_word(float_status_t &status, bx_mxcsr_t mxcsr)
{
status.float_exception_flags = 0; // clear exceptions before execution
status.float_nan_handling_mode = float_first_operand_nan;
status.float_rounding_mode = mxcsr.get_rounding_mode();
// if underflow is masked and FUZ is 1, set it to 1, else to 0
status.flush_underflow_to_zero =
(mxcsr.get_flush_masked_underflow() && mxcsr.get_UM()) ? 1 : 0;
}
/* Comparison predicate for CMPSS/CMPPS instructions */
static float32_compare_method compare32[4] = {
float32_eq,
float32_lt,
float32_le,
float32_unordered
};
#if BX_SUPPORT_SSE >= 2
/* Comparison predicate for CMPSD/CMPPD instructions */
static float64_compare_method compare64[4] = {
float64_eq,
float64_lt,
float64_le,
float64_unordered
};
#endif
#endif // BX_SUPPORT_SSE
/*
* Opcode: 0F 2A
* Convert two 32bit signed integers from MMX/MEM to two single precision FP
* When a conversion is inexact, the value returned is rounded according
* to rounding control bits in MXCSR register.
* Possible floating point exceptions: #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTPI2PS_VpsQq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
/* check floating point status word for a pending FPU exceptions */
FPU_check_pending_exceptions();
BxPackedMmxRegister op;
BxPackedXmmRegister result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_MMX_REG(i->rm());
}
else {
// do not cause transition to MMX state if no MMX register touched
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
MMXUQ(op) = read_virtual_qword(i->seg(), eaddr);
}
BX_CPU_THIS_PTR prepareFPU2MMX(); /* FPU2MMX state transition */
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
result.xmm32u(0) = int32_to_float32(MMXUD0(op), status_word);
result.xmm32u(1) = int32_to_float32(MMXUD1(op), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), result.xmm64u(0));
#else
BX_INFO(("CVTPI2PS_VpsQq: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 2A
* Convert two 32bit signed integers from MMX/MEM to two double precision FP
* Possible floating point exceptions: -
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTPI2PD_VpdQq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
/* check floating point status word for a pending FPU exceptions */
FPU_check_pending_exceptions();
BxPackedMmxRegister op;
BxPackedXmmRegister result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_MMX_REG(i->rm());
}
else {
// do not cause transition to MMX state if no MMX register touched
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
MMXUQ(op) = read_virtual_qword(i->seg(), eaddr);
}
BX_CPU_THIS_PTR prepareFPU2MMX(); /* FPU2MMX state transition */
result.xmm64u(0) = int32_to_float64(MMXUD0(op));
result.xmm64u(1) = int32_to_float64(MMXUD1(op));
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("CVTPI2PD_VpdQd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 2A
* Convert one 32bit signed integer to one double precision FP
* Possible floating point exceptions: -
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTSI2SD_VsdEd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
float64 result;
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
Bit64u op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_64BIT_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword_64(i->seg(), eaddr);
}
result = int64_to_float64(op, status_word);
}
else
#endif
{
Bit32u op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_32BIT_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_dword(i->seg(), eaddr);
}
result = int32_to_float64(op);
}
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), result);
#else
BX_INFO(("CVTSI2SD_VsdEd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 2A
* Convert one 32bit signed integer to one single precision FP
* When a conversion is inexact, the value returned is rounded according
* to rounding control bits in MXCSR register.
* Possible floating point exceptions: #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTSI2SS_VssEd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
float32 result;
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
Bit64u op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_64BIT_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword_64(i->seg(), eaddr);
}
result = int64_to_float32(op, status_word);
}
else
#endif
{
Bit32u op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_32BIT_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_dword(i->seg(), eaddr);
}
result = int32_to_float32(op, status_word);
}
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(), result);
#else
BX_INFO(("CVTSI2SS_VssEd: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 2C
* Convert two single precision FP numbers to two signed doubleword integers
* in MMX using truncation if the conversion is inexact
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTTPS2PI_PqWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
/* check floating point status word for a pending FPU exceptions */
FPU_check_pending_exceptions();
Bit64u op;
BxPackedMmxRegister result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword(i->seg(), eaddr);
}
BX_CPU_THIS_PTR prepareFPU2MMX(); /* FPU2MMX state transition */
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
float32 r0 = (float32)(op & 0xFFFFFFFF);
float32 r1 = (float32)(op >> 32);
if (MXCSR.get_DAZ()) {
r0 = float32_denormal_to_zero(r0);
r1 = float32_denormal_to_zero(r1);
}
MMXUD0(result) = float32_to_int32_round_to_zero(r0, status_word);
MMXUD1(result) = float32_to_int32_round_to_zero(r1, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_MMX_REG(i->nnn(), result);
#else
BX_INFO(("CVTTPS2PI_PqWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 2C
* Convert two double precision FP numbers to two signed doubleword integers
* in MMX using truncation if the conversion is inexact
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTTPD2PI_PqWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
/* check floating point status word for a pending FPU exceptions */
FPU_check_pending_exceptions();
BxPackedXmmRegister op;
BxPackedMmxRegister result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
BX_CPU_THIS_PTR prepareFPU2MMX(); /* FPU2MMX state transition */
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op.xmm64u(0) = float64_denormal_to_zero(op.xmm64u(0));
op.xmm64u(1) = float64_denormal_to_zero(op.xmm64u(1));
}
MMXUD0(result) = float64_to_int32_round_to_zero(op.xmm64u(0), status_word);
MMXUD1(result) = float64_to_int32_round_to_zero(op.xmm64u(1), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_MMX_REG(i->nnn(), result);
#else
BX_INFO(("CVTTPD2PI_PqWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 2C
* Convert one double precision FP number to doubleword integer using
* truncation if the conversion is inexact
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTTSD2SI_GdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) op = float64_denormal_to_zero(op);
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
Bit64u result = float64_to_int64_round_to_zero(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_64BIT_REG(i->nnn(), result);
}
else
#endif
{
Bit32u result = float64_to_int32_round_to_zero(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_32BIT_REGZ(i->nnn(), result);
}
#else
BX_INFO(("CVTTSD2SI_GdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 2C
* Convert one single precision FP number to doubleword integer using
* truncation if the conversion is inexact
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTTSS2SI_GdWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) op = float32_denormal_to_zero(op);
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
Bit64u result = float32_to_int64_round_to_zero(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_64BIT_REG(i->nnn(), result);
}
else
#endif
{
Bit32u result = float32_to_int32_round_to_zero(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_32BIT_REGZ(i->nnn(), result);
}
#else
BX_INFO(("CVTTSS2SI_GdWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 2D
* Convert two single precision FP numbers to two signed doubleword integers
* in MMX register. When a conversion is inexact, the value returned is
* rounded according to rounding control bits in MXCSR register.
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTPS2PI_PqWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
/* check floating point status word for a pending FPU exceptions */
FPU_check_pending_exceptions();
Bit64u op;
BxPackedMmxRegister result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword(i->seg(), eaddr);
}
BX_CPU_THIS_PTR prepareFPU2MMX(); /* FPU2MMX state transition */
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
float32 r0 = (float32)(op & 0xFFFFFFFF);
float32 r1 = (float32)(op >> 32);
if (MXCSR.get_DAZ()) {
r0 = float32_denormal_to_zero(r0);
r1 = float32_denormal_to_zero(r1);
}
MMXUD0(result) = float32_to_int32(r0, status_word);
MMXUD1(result) = float32_to_int32(r1, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_MMX_REG(i->nnn(), result);
#else
BX_INFO(("CVTPS2PI_PqWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 2D
* Convert two double precision FP numbers to two signed doubleword integers
* in MMX register. When a conversion is inexact, the value returned is
* rounded according to rounding control bits in MXCSR register.
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTPD2PI_PqWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
/* check floating point status word for a pending FPU exceptions */
FPU_check_pending_exceptions();
BxPackedXmmRegister op;
BxPackedMmxRegister result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
BX_CPU_THIS_PTR prepareFPU2MMX(); /* FPU2MMX state transition */
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op.xmm64u(0) = float64_denormal_to_zero(op.xmm64u(0));
op.xmm64u(1) = float64_denormal_to_zero(op.xmm64u(1));
}
MMXUD0(result) = float64_to_int32(op.xmm64u(0), status_word);
MMXUD1(result) = float64_to_int32(op.xmm64u(1), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_MMX_REG(i->nnn(), result);
#else
BX_INFO(("CVTPD2PI_PqWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 2D
* Convert one double precision FP number to doubleword integer
* When a conversion is inexact, the value returned is rounded according
* to rounding control bits in MXCSR register.
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTSD2SI_GdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) op = float64_denormal_to_zero(op);
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
Bit64u result = float64_to_int64(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_64BIT_REG(i->nnn(), result);
}
else
#endif
{
Bit32u result = float64_to_int32(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_32BIT_REGZ(i->nnn(), result);
}
#else
BX_INFO(("CVTSD2SI_GdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 2D
* Convert one single precision FP number to doubleword integer.
* When a conversion is inexact, the value returned is rounded according
* to rounding control bits in MXCSR register.
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTSS2SI_GdWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) op = float32_denormal_to_zero(op);
#if BX_SUPPORT_X86_64
if (i->os64L()) /* 64 bit operand size mode */
{
Bit64u result = float32_to_int64(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_64BIT_REG(i->nnn(), result);
}
else
#endif
{
Bit32u result = float32_to_int32(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_32BIT_REGZ(i->nnn(), result);
}
#else
BX_INFO(("CVTSS2SI_GdWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 5A
* Convert two single precision FP numbers to two double precision FP numbers
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTPS2PD_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
Bit64u op;
BxPackedXmmRegister result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
float32 r0 = (float32)(op & 0xFFFFFFFF);
float32 r1 = (float32)(op >> 32);
if (MXCSR.get_DAZ()) {
r0 = float32_denormal_to_zero(r0);
r1 = float32_denormal_to_zero(r1);
}
result.xmm64u(0) = float32_to_float64(r0, status_word);
result.xmm64u(1) = float32_to_float64(r1, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("CVTPS2PD_VpsWps: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 5A
* Convert two double precision FP numbers to two single precision FP.
* When a conversion is inexact, the value returned is rounded according
* to rounding control bits in MXCSR register.
* Possible floating point exceptions: #I, #D, #O, #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTPD2PS_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op, result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op.xmm64u(0) = float64_denormal_to_zero(op.xmm64u(0));
op.xmm64u(1) = float64_denormal_to_zero(op.xmm64u(1));
}
result.xmm32u(0) = float64_to_float32(op.xmm64u(0), status_word);
result.xmm32u(1) = float64_to_float32(op.xmm64u(1), status_word);
result.xmm64u(1) = 0;
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("CVTPD2PS_VpdWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 5A
* Convert one double precision FP number to one single precision FP.
* When a conversion is inexact, the value returned is rounded according
* to rounding control bits in MXCSR register.
* Possible floating point exceptions: #I, #D, #O, #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTSD2SS_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op;
float32 result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) op = float64_denormal_to_zero(op);
result = float64_to_float32(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(), result);
#else
BX_INFO(("CVTSD2SS_VsdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 5A
* Convert one single precision FP number to one double precision FP.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTSS2SD_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float32 op;
float64 result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) op = float32_denormal_to_zero(op);
result = float32_to_float64(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), result);
#else
BX_INFO(("CVTSS2SD_VssWss: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 5B
* Convert four signed integers to four single precision FP numbers.
* When a conversion is inexact, the value returned is rounded according
* to rounding control bits in MXCSR register.
* Possible floating point exceptions: #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTDQ2PS_VpsWdq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
BX_CPU_THIS_PTR prepareFPU2MMX(); /* FPU2MMX state transition */
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
op.xmm32u(0) = int32_to_float32(op.xmm32u(0), status_word);
op.xmm32u(1) = int32_to_float32(op.xmm32u(1), status_word);
op.xmm32u(2) = int32_to_float32(op.xmm32u(2), status_word);
op.xmm32u(3) = int32_to_float32(op.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("CVTDQ2PS_VpsWdq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 5B
* Convert four single precision FP to four doubleword integers.
* When a conversion is inexact, the value returned is rounded according
* to rounding control bits in MXCSR register.
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTPS2DQ_VdqWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op.xmm32u(0) = float32_denormal_to_zero(op.xmm32u(0));
op.xmm32u(1) = float32_denormal_to_zero(op.xmm32u(1));
op.xmm32u(2) = float32_denormal_to_zero(op.xmm32u(2));
op.xmm32u(3) = float32_denormal_to_zero(op.xmm32u(3));
}
op.xmm32u(0) = float32_to_int32(op.xmm32u(0), status_word);
op.xmm32u(1) = float32_to_int32(op.xmm32u(1), status_word);
op.xmm32u(2) = float32_to_int32(op.xmm32u(2), status_word);
op.xmm32u(3) = float32_to_int32(op.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("CVTPS2DQ_VdqWps: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 5B
* Convert four single precision FP to four doubleword integers using
* truncation if the conversion is inexact.
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTTPS2DQ_VdqWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op.xmm32u(0) = float32_denormal_to_zero(op.xmm32u(0));
op.xmm32u(1) = float32_denormal_to_zero(op.xmm32u(1));
op.xmm32u(2) = float32_denormal_to_zero(op.xmm32u(2));
op.xmm32u(3) = float32_denormal_to_zero(op.xmm32u(3));
}
op.xmm32u(0) = float32_to_int32_round_to_zero(op.xmm32u(0), status_word);
op.xmm32u(1) = float32_to_int32_round_to_zero(op.xmm32u(1), status_word);
op.xmm32u(2) = float32_to_int32_round_to_zero(op.xmm32u(2), status_word);
op.xmm32u(3) = float32_to_int32_round_to_zero(op.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("CVTTPS2DQ_VdqWps: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F E6
* Convert two double precision FP to two signed doubleword integers using
* truncation if the conversion is inexact.
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTTPD2DQ_VqWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op, result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op.xmm64u(0) = float64_denormal_to_zero(op.xmm64u(0));
op.xmm64u(1) = float64_denormal_to_zero(op.xmm64u(1));
}
result.xmm32u(0) = float64_to_int32_round_to_zero(op.xmm64u(0), status_word);
result.xmm32u(1) = float64_to_int32_round_to_zero(op.xmm64u(1), status_word);
result.xmm64u(1) = 0;
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("CVTTPD2DQ_VqWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F E6
* Convert two double precision FP to two signed doubleword integers.
* When a conversion is inexact, the value returned is rounded according
* to rounding control bits in MXCSR register.
* Possible floating point exceptions: #I, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTPD2DQ_VqWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op, result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op.xmm64u(0) = float64_denormal_to_zero(op.xmm64u(0));
op.xmm64u(1) = float64_denormal_to_zero(op.xmm64u(1));
}
result.xmm32u(0) = float64_to_int32(op.xmm64u(0), status_word);
result.xmm32u(1) = float64_to_int32(op.xmm64u(1), status_word);
result.xmm64u(1) = 0;
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("CVTPD2DQ_VqWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F E6
* Convert two 32bit signed integers from XMM/MEM to two double precision FP
* Possible floating point exceptions: -
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CVTDQ2PD_VpdWq(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
Bit64u op;
BxPackedXmmRegister result;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword(i->seg(), eaddr);
}
Bit32u r0 = (Bit32u)(op & 0xFFFFFFFF);
Bit32u r1 = (Bit32u)(op >> 32);
result.xmm64u(0) = int32_to_float64(r0);
result.xmm64u(1) = int32_to_float64(r1);
BX_WRITE_XMM_REG(i->nnn(), result);
#else
BX_INFO(("CVTDQ2PD_VpdWq: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 2E
* Compare two single precision FP numbers and set EFLAGS accordintly.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::UCOMISS_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op1 = BX_READ_XMM_REG_LO_DWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float32_denormal_to_zero(op1);
op2 = float32_denormal_to_zero(op2);
}
int rc = float32_compare_quiet(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_CPU_THIS_PTR write_eflags_fpu_compare(rc);
#else
BX_INFO(("UCOMISS_VssWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 2E
* Compare two double precision FP numbers and set EFLAGS accordintly.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::UCOMISD_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op1 = BX_READ_XMM_REG_LO_QWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float64_denormal_to_zero(op1);
op2 = float64_denormal_to_zero(op2);
}
int rc = float64_compare_quiet(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_CPU_THIS_PTR write_eflags_fpu_compare(rc);
#else
BX_INFO(("UCOMISD_VsdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 2F
* Compare two single precision FP numbers and set EFLAGS accordintly.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::COMISS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op1 = BX_READ_XMM_REG_LO_DWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float32_denormal_to_zero(op1);
op2 = float32_denormal_to_zero(op2);
}
int rc = float32_compare(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_CPU_THIS_PTR write_eflags_fpu_compare(rc);
#else
BX_INFO(("COMISS_VpsWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 2F
* Compare two double precision FP numbers and set EFLAGS accordintly.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::COMISD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op1 = BX_READ_XMM_REG_LO_QWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float64_denormal_to_zero(op1);
op2 = float64_denormal_to_zero(op2);
}
int rc = float64_compare(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_CPU_THIS_PTR write_eflags_fpu_compare(rc);
#else
BX_INFO(("COMISD_VpdWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 51
* Square Root packed single precision.
* Possible floating point exceptions: #I, #D, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SQRTPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op.xmm32u(0) = float32_denormal_to_zero(op.xmm32u(0));
op.xmm32u(1) = float32_denormal_to_zero(op.xmm32u(1));
op.xmm32u(2) = float32_denormal_to_zero(op.xmm32u(2));
op.xmm32u(3) = float32_denormal_to_zero(op.xmm32u(3));
}
op.xmm32u(0) = float32_sqrt(op.xmm32u(0), status_word);
op.xmm32u(1) = float32_sqrt(op.xmm32u(1), status_word);
op.xmm32u(2) = float32_sqrt(op.xmm32u(2), status_word);
op.xmm32u(3) = float32_sqrt(op.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("SQRTPS_VpsWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 51
* Square Root packed double precision.
* Possible floating point exceptions: #I, #D, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SQRTPD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op.xmm64u(0) = float64_denormal_to_zero(op.xmm64u(0));
op.xmm64u(1) = float64_denormal_to_zero(op.xmm64u(1));
}
op.xmm64u(0) = float64_sqrt(op.xmm64u(0), status_word);
op.xmm64u(1) = float64_sqrt(op.xmm64u(1), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("SQRTPD_VpdWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 51
* Square Root scalar double precision.
* Possible floating point exceptions: #I, #D, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SQRTSD_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) op = float64_denormal_to_zero(op);
op = float64_sqrt(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), op);
#else
BX_INFO(("SQRTSD_VsdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 51
* Square Root scalar single precision.
* Possible floating point exceptions: #I, #D, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SQRTSS_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) op = float32_denormal_to_zero(op);
op = float32_sqrt(op, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(), op);
#else
BX_INFO(("SQRTSS_VssWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 58
* Add packed single precision FP numbers from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADDPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
op1.xmm32u(0) = float32_add(op1.xmm32u(0), op2.xmm32u(0), status_word);
op1.xmm32u(1) = float32_add(op1.xmm32u(1), op2.xmm32u(1), status_word);
op1.xmm32u(2) = float32_add(op1.xmm32u(2), op2.xmm32u(2), status_word);
op1.xmm32u(3) = float32_add(op1.xmm32u(3), op2.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("ADDPS_VpsWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 58
* Add packed double precision FP numbers from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADDPD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
op1.xmm64u(0) = float64_add(op1.xmm64u(0), op2.xmm64u(0), status_word);
op1.xmm64u(1) = float64_add(op1.xmm64u(1), op2.xmm64u(1), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("ADDPD_VpdWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 58
* Add the lower double precision FP number from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADDSD_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op1 = BX_READ_XMM_REG_LO_QWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float64_denormal_to_zero(op1);
op2 = float64_denormal_to_zero(op2);
}
op1 = float64_add(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), op1);
#else
BX_INFO(("ADDSD_VsdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 58
* Add the lower single precision FP number from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADDSS_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op1 = BX_READ_XMM_REG_LO_DWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float32_denormal_to_zero(op1);
op2 = float32_denormal_to_zero(op2);
}
op1 = float32_add(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(), op1);
#else
BX_INFO(("ADDSS_VssWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 59
* Multiply packed single precision FP numbers from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MULPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
op1.xmm32u(0) = float32_mul(op1.xmm32u(0), op2.xmm32u(0), status_word);
op1.xmm32u(1) = float32_mul(op1.xmm32u(1), op2.xmm32u(1), status_word);
op1.xmm32u(2) = float32_mul(op1.xmm32u(2), op2.xmm32u(2), status_word);
op1.xmm32u(3) = float32_mul(op1.xmm32u(3), op2.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MULPS_VpsWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 59
* Multiply packed double precision FP numbers from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MULPD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
op1.xmm64u(0) = float64_mul(op1.xmm64u(0), op2.xmm64u(0), status_word);
op1.xmm64u(1) = float64_mul(op1.xmm64u(1), op2.xmm64u(1), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MULPD_VpdWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 59
* Multiply the lower double precision FP number from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MULSD_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op1 = BX_READ_XMM_REG_LO_QWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float64_denormal_to_zero(op1);
op2 = float64_denormal_to_zero(op2);
}
op1 = float64_mul(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), op1);
#else
BX_INFO(("MULSD_VsdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 59
* Multiply the lower single precision FP number from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MULSS_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op1 = BX_READ_XMM_REG_LO_DWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float32_denormal_to_zero(op1);
op2 = float32_denormal_to_zero(op2);
}
op1 = float32_mul(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(), op1);
#else
BX_INFO(("MULSS_VssWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 5C
* Subtract packed single precision FP numbers from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUBPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
op1.xmm32u(0) = float32_sub(op1.xmm32u(0), op2.xmm32u(0), status_word);
op1.xmm32u(1) = float32_sub(op1.xmm32u(1), op2.xmm32u(1), status_word);
op1.xmm32u(2) = float32_sub(op1.xmm32u(2), op2.xmm32u(2), status_word);
op1.xmm32u(3) = float32_sub(op1.xmm32u(3), op2.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("SUBPS_VpsWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 5C
* Subtract packed double precision FP numbers from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUBPD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
op1.xmm64u(0) = float64_sub(op1.xmm64u(0), op2.xmm64u(0), status_word);
op1.xmm64u(1) = float64_sub(op1.xmm64u(1), op2.xmm64u(1), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("SUBPD_VpdWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 5C
* Subtract the lower double precision FP number from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUBSD_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op1 = BX_READ_XMM_REG_LO_QWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float64_denormal_to_zero(op1);
op2 = float64_denormal_to_zero(op2);
}
op1 = float64_sub(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), op1);
#else
BX_INFO(("SUBSD_VsdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 5C
* Subtract the lower single precision FP number from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SUBSS_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op1 = BX_READ_XMM_REG_LO_DWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float32_denormal_to_zero(op1);
op2 = float32_denormal_to_zero(op2);
}
op1 = float32_sub(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(), op1);
#else
BX_INFO(("SUBSS_VssWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 5D
* Calculate the minimum single precision FP between XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MINPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
int rc;
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
rc = float32_compare(op1.xmm32u(0), op2.xmm32u(0), status_word);
op1.xmm32u(0) = (rc == float_relation_less) ? op1.xmm32u(0) : op2.xmm32u(0);
rc = float32_compare(op1.xmm32u(1), op2.xmm32u(1), status_word);
op1.xmm32u(1) = (rc == float_relation_less) ? op1.xmm32u(1) : op2.xmm32u(1);
rc = float32_compare(op1.xmm32u(2), op2.xmm32u(2), status_word);
op1.xmm32u(2) = (rc == float_relation_less) ? op1.xmm32u(2) : op2.xmm32u(2);
rc = float32_compare(op1.xmm32u(3), op2.xmm32u(3), status_word);
op1.xmm32u(3) = (rc == float_relation_less) ? op1.xmm32u(3) : op2.xmm32u(3);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MINPS_VpsWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 5D
* Calculate the minimum double precision FP between XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MINPD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
int rc;
if (MXCSR.get_DAZ())
{
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
rc = float64_compare(op1.xmm64u(0), op2.xmm64u(0), status_word);
op1.xmm64u(0) = (rc == float_relation_less) ? op1.xmm64u(0) : op2.xmm64u(0);
rc = float64_compare(op1.xmm64u(1), op2.xmm64u(1), status_word);
op1.xmm64u(1) = (rc == float_relation_less) ? op1.xmm64u(1) : op2.xmm64u(1);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MINPD_VpdWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 5D
* Calculate the minimum scalar double precision FP between XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MINSD_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op1 = BX_READ_XMM_REG_LO_QWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float64_denormal_to_zero(op1);
op2 = float64_denormal_to_zero(op2);
}
int rc = float64_compare(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(),
(rc == float_relation_less) ? op1 : op2);
#else
BX_INFO(("MINSD_VsdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 5D
* Calculate the minimum scalar single precision FP between XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MINSS_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op1 = BX_READ_XMM_REG_LO_DWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float32_denormal_to_zero(op1);
op2 = float32_denormal_to_zero(op2);
}
int rc = float32_compare(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(),
(rc == float_relation_less) ? op1 : op2);
#else
BX_INFO(("MINSS_VssWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 5E
* Divide packed single precision FP numbers from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #Z, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::DIVPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
op1.xmm32u(0) = float32_div(op1.xmm32u(0), op2.xmm32u(0), status_word);
op1.xmm32u(1) = float32_div(op1.xmm32u(1), op2.xmm32u(1), status_word);
op1.xmm32u(2) = float32_div(op1.xmm32u(2), op2.xmm32u(2), status_word);
op1.xmm32u(3) = float32_div(op1.xmm32u(3), op2.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("DIVPS_VpsWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 5E
* Divide packed double precision FP numbers from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #Z, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::DIVPD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
op1.xmm64u(0) = float64_div(op1.xmm64u(0), op2.xmm64u(0), status_word);
op1.xmm64u(1) = float64_div(op1.xmm64u(1), op2.xmm64u(1), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("DIVPD_VpdWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 5E
* Divide the lower double precision FP number from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #Z, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::DIVSD_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op1 = BX_READ_XMM_REG_LO_QWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float64_denormal_to_zero(op1);
op2 = float64_denormal_to_zero(op2);
}
op1 = float64_div(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), op1);
#else
BX_INFO(("DIVSD_VsdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 5E
* Divide the lower single precision FP number from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #Z, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::DIVSS_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op1 = BX_READ_XMM_REG_LO_DWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float32_denormal_to_zero(op1);
op2 = float32_denormal_to_zero(op2);
}
op1 = float32_div(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(), op1);
#else
BX_INFO(("DIVSS_VssWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F 5F
* Calculate the maximum single precision FP between XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MAXPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
int rc;
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
rc = float32_compare(op1.xmm32u(0), op2.xmm32u(0), status_word);
op1.xmm32u(0) = (rc == float_relation_greater) ? op1.xmm32u(0) : op2.xmm32u(0);
rc = float32_compare(op1.xmm32u(1), op2.xmm32u(1), status_word);
op1.xmm32u(1) = (rc == float_relation_greater) ? op1.xmm32u(1) : op2.xmm32u(1);
rc = float32_compare(op1.xmm32u(2), op2.xmm32u(2), status_word);
op1.xmm32u(2) = (rc == float_relation_greater) ? op1.xmm32u(2) : op2.xmm32u(2);
rc = float32_compare(op1.xmm32u(3), op2.xmm32u(3), status_word);
op1.xmm32u(3) = (rc == float_relation_greater) ? op1.xmm32u(3) : op2.xmm32u(3);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MAXPS_VpsWps: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 5F
* Calculate the maximum double precision FP between XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MAXPD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
int rc;
if (MXCSR.get_DAZ())
{
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
rc = float64_compare(op1.xmm64u(0), op2.xmm64u(0), status_word);
op1.xmm64u(0) = (rc == float_relation_greater) ? op1.xmm64u(0) : op2.xmm64u(0);
rc = float64_compare(op1.xmm64u(1), op2.xmm64u(1), status_word);
op1.xmm64u(1) = (rc == float_relation_greater) ? op1.xmm64u(1) : op2.xmm64u(1);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("MAXPD_VpdWpd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 5F
* Calculate the maximum scalar double precision FP between XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MAXSD_VsdWsd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op1 = BX_READ_XMM_REG_LO_QWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float64_denormal_to_zero(op1);
op2 = float64_denormal_to_zero(op2);
}
int rc = float64_compare(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(),
(rc == float_relation_greater) ? op1 : op2);
#else
BX_INFO(("MAXSD_VsdWsd: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F 5F
* Calculate the maxumim scalar single precision FP between XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MAXSS_VssWss(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op1 = BX_READ_XMM_REG_LO_DWORD(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1 = float32_denormal_to_zero(op1);
op2 = float32_denormal_to_zero(op2);
}
int rc = float32_compare(op1, op2, status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(),
(rc == float_relation_greater) ? op1 : op2);
#else
BX_INFO(("MAXSS_VssWss: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 7C
* Add horizontally packed double precision FP in XMM2/MEM from XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::HADDPD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 3
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
op1.xmm64u(0) = float64_add(op1.xmm64u(0), op1.xmm64u(1), status_word);
op1.xmm64u(1) = float64_add(op2.xmm64u(0), op2.xmm64u(1), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("HADDPD_VpdWpd: required SSE3, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 7C
* Add horizontally packed single precision FP in XMM2/MEM from XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::HADDPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 3
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
op1.xmm32u(0) = float32_add(op1.xmm32u(0), op1.xmm32u(1), status_word);
op1.xmm32u(1) = float32_add(op1.xmm32u(2), op1.xmm32u(3), status_word);
op1.xmm32u(2) = float32_add(op2.xmm32u(0), op2.xmm32u(1), status_word);
op1.xmm32u(3) = float32_add(op2.xmm32u(2), op2.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("HADDPS_VpsWps: required SSE3, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F 7D
* Subtract horizontally packed double precision FP in XMM2/MEM from XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::HSUBPD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 3
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
op1.xmm64u(0) = float64_sub(op1.xmm64u(0), op1.xmm64u(1), status_word);
op1.xmm64u(1) = float64_sub(op2.xmm64u(0), op2.xmm64u(1), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("HSUBPD_VpdWpd: required SSE3, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F 7D
* Subtract horizontally packed single precision FP in XMM2/MEM from XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::HSUBPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 3
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
op1.xmm32u(0) = float32_sub(op1.xmm32u(0), op1.xmm32u(1), status_word);
op1.xmm32u(1) = float32_sub(op1.xmm32u(2), op1.xmm32u(3), status_word);
op1.xmm32u(2) = float32_sub(op2.xmm32u(0), op2.xmm32u(1), status_word);
op1.xmm32u(3) = float32_sub(op2.xmm32u(2), op2.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("HSUBPS_VpsWps: required SSE3, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 0F C2
* Compare packed single precision FP values using Ib as comparison predicate.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPPS_VpsWpsIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status;
mxcsr_to_softfloat_status_word(status, MXCSR);
int ib = i->Ib();
/* mask used bits, ignore reserved */
if (ib > 7) {
BX_ERROR(("CMPPS_VpsWpsIb: unrecognized predicate %u", i->Ib()));
}
ib &= 7;
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
if(ib < 4)
{
op1.xmm32u(0) =
compare32[ib](op1.xmm32u(0), op2.xmm32u(0), status) ? 0xFFFFFFFF : 0;
op1.xmm32u(1) =
compare32[ib](op1.xmm32u(1), op2.xmm32u(1), status) ? 0xFFFFFFFF : 0;
op1.xmm32u(2) =
compare32[ib](op1.xmm32u(2), op2.xmm32u(2), status) ? 0xFFFFFFFF : 0;
op1.xmm32u(3) =
compare32[ib](op1.xmm32u(3), op2.xmm32u(3), status) ? 0xFFFFFFFF : 0;
}
else
{
ib -= 4;
op1.xmm32u(0) =
compare32[ib](op1.xmm32u(0), op2.xmm32u(0), status) ? 0 : 0xFFFFFFFF;
op1.xmm32u(1) =
compare32[ib](op1.xmm32u(1), op2.xmm32u(1), status) ? 0 : 0xFFFFFFFF;
op1.xmm32u(2) =
compare32[ib](op1.xmm32u(2), op2.xmm32u(2), status) ? 0 : 0xFFFFFFFF;
op1.xmm32u(3) =
compare32[ib](op1.xmm32u(3), op2.xmm32u(3), status) ? 0 : 0xFFFFFFFF;
}
BX_CPU_THIS_PTR check_exceptionsSSE(status.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("CMPPS_VpsWpsIb: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F C2
* Compare packed double precision FP values using Ib as comparison predicate.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPPD_VpdWpdIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status;
mxcsr_to_softfloat_status_word(status, MXCSR);
int ib = i->Ib();
/* mask used bits, ignore reserved */
if (ib > 7) {
BX_ERROR(("CMPPD_VpdWpdIb: unrecognized predicate %u", i->Ib()));
}
ib &= 7;
if (MXCSR.get_DAZ())
{
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
if(ib < 4)
{
op1.xmm64u(0) = compare64[ib](op1.xmm64u(0), op2.xmm64u(0), status) ?
BX_CONST64(0xFFFFFFFFFFFFFFFF) : 0;
op1.xmm64u(1) = compare64[ib](op1.xmm64u(1), op2.xmm64u(1), status) ?
BX_CONST64(0xFFFFFFFFFFFFFFFF) : 0;
}
else
{
ib -= 4;
op1.xmm64u(0) = compare64[ib](op1.xmm64u(0), op2.xmm64u(0), status) ?
0 : BX_CONST64(0xFFFFFFFFFFFFFFFF);
op1.xmm64u(1) = compare64[ib](op1.xmm64u(1), op2.xmm64u(1), status) ?
0 : BX_CONST64(0xFFFFFFFFFFFFFFFF);
}
BX_CPU_THIS_PTR check_exceptionsSSE(status.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("CMPPD_VpdWpdIb: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F C2
* Compare double precision FP values using Ib as comparison predicate.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSD_VsdWsdIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 2
BX_CPU_THIS_PTR prepareSSE();
float64 op1 = BX_READ_XMM_REG_LO_QWORD(i->nnn()), op2, result = 0;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
int ib = i->Ib();
/* mask used bits, ignore reserved */
if (ib > 7) {
BX_ERROR(("CMPSD_VsdWsdIb: unrecognized predicate %u", i->Ib()));
}
ib &= 7;
if (MXCSR.get_DAZ())
{
op1 = float64_denormal_to_zero(op1);
op2 = float64_denormal_to_zero(op2);
}
if(ib < 4) {
if(compare64[ib](op1, op2, status_word)) {
result = BX_CONST64(0xFFFFFFFFFFFFFFFF);
} else {
result = 0;
}
} else {
if(compare64[ib-4](op1, op2, status_word)) {
result = 0;
} else {
result = BX_CONST64(0xFFFFFFFFFFFFFFFF);
}
}
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), result);
#else
BX_INFO(("CMPSD_VsdWsdIb: required SSE2, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F3 0F C2
* Compare single precision FP values using Ib as comparison predicate.
* Possible floating point exceptions: #I, #D
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSS_VssWssIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 1
BX_CPU_THIS_PTR prepareSSE();
float32 op1 = BX_READ_XMM_REG_LO_DWORD(i->nnn()), op2, result = 0;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2 = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
int ib = i->Ib();
/* mask used bits, ignore reserved */
if (ib > 7) {
BX_ERROR(("CMPSS_VssWssIb: unrecognized predicate %u", i->Ib()));
}
ib &= 7;
if (MXCSR.get_DAZ())
{
op1 = float32_denormal_to_zero(op1);
op2 = float32_denormal_to_zero(op2);
}
if(ib < 4) {
if(compare32[ib](op1, op2, status_word)) {
result = 0xFFFFFFFF;
} else {
result = 0;
}
} else {
if(compare32[ib-4](op1, op2, status_word)) {
result = 0;
} else {
result = 0xFFFFFFFF;
}
}
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(), result);
#else
BX_INFO(("CMPSS_VssWssIb: required SSE, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: 66 0F D0
* Add/Subtract packed double precision FP numbers from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADDSUBPD_VpdWpd(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 3
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ())
{
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
op1.xmm64u(0) = float64_sub(op1.xmm64u(0), op2.xmm64u(0), status_word);
op1.xmm64u(1) = float64_add(op1.xmm64u(1), op2.xmm64u(1), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("ADDSUBPD_VpdWpd: required SSE3, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/*
* Opcode: F2 0F D0
* Add/Substract packed single precision FP numbers from XMM2/MEM to XMM1.
* Possible floating point exceptions: #I, #D, #O, #U, #P
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ADDSUBPS_VpsWps(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 3
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
op1.xmm32u(0) = float32_sub(op1.xmm32u(0), op2.xmm32u(0), status_word);
op1.xmm32u(1) = float32_add(op1.xmm32u(1), op2.xmm32u(1), status_word);
op1.xmm32u(2) = float32_sub(op1.xmm32u(2), op2.xmm32u(2), status_word);
op1.xmm32u(3) = float32_add(op1.xmm32u(3), op2.xmm32u(3), status_word);
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("ADDSUBPS_VpsWps: required SSE3, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
// for 3-byte opcodes
#if (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)
/* 66 0F 3A 08 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROUNDPS_VpsWpsIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
Bit8u control = i->Ib();
// override MXCSR rounding mode with control coming from imm8
if ((control & 0x4) == 0)
status_word.float_rounding_mode = control & 0x3;
if (MXCSR.get_DAZ()) {
op.xmm32u(0) = float32_denormal_to_zero(op.xmm32u(0));
op.xmm32u(1) = float32_denormal_to_zero(op.xmm32u(1));
op.xmm32u(2) = float32_denormal_to_zero(op.xmm32u(2));
op.xmm32u(3) = float32_denormal_to_zero(op.xmm32u(3));
}
for (unsigned j=0; j < 4; j++) {
if (float32_is_nan(op.xmm32u(j))) {
op.xmm32u(j) = propagateFloat32NaN(op.xmm32u(j), status_word);
}
else {
op.xmm32u(j) = float32_to_int32(op.xmm32u(j), status_word);
op.xmm32u(j) = int32_to_float32(op.xmm32u(j), status_word);
}
}
// ignore precision exception result
if (control & 0x8)
status_word.float_exception_flags &= ~float_flag_inexact;
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("ROUNDPS_VpsWpsIb: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 3A 09 */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROUNDPD_VpdWpdIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
Bit8u control = i->Ib();
// override MXCSR rounding mode with control coming from imm8
if ((control & 0x4) == 0)
status_word.float_rounding_mode = control & 0x3;
if (MXCSR.get_DAZ()) {
op.xmm64u(0) = float64_denormal_to_zero(op.xmm64u(0));
op.xmm64u(1) = float64_denormal_to_zero(op.xmm64u(1));
}
for (unsigned j=0; j < 2; j++) {
if (float64_is_nan(op.xmm64u(j))) {
op.xmm64u(j) = propagateFloat64NaN(op.xmm64u(j), status_word);
}
else {
op.xmm64u(j) = float64_to_int64(op.xmm64u(j), status_word);
op.xmm64u(j) = int64_to_float64(op.xmm64u(j), status_word);
}
}
// ignore precision exception result
if (control & 0x8)
status_word.float_exception_flags &= ~float_flag_inexact;
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op);
#else
BX_INFO(("ROUNDPD_VpdWpdIb: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 3A 0A */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROUNDSS_VssWssIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
float32 op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_DWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_dword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
Bit8u control = i->Ib();
// override MXCSR rounding mode with control coming from imm8
if ((control & 0x4) == 0)
status_word.float_rounding_mode = control & 0x3;
if (MXCSR.get_DAZ()) op = float32_denormal_to_zero(op);
if (float32_is_nan(op)) {
op = propagateFloat32NaN(op, status_word);
}
else {
op = int32_to_float32(float32_to_int32(op, status_word), status_word);
}
// ignore precision exception result
if (control & 0x8)
status_word.float_exception_flags &= ~float_flag_inexact;
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_DWORD(i->nnn(), op);
#else
BX_INFO(("ROUNDSS_VssWssIb: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* 66 0F 3A 0B */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROUNDSD_VsdWsdIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
float64 op;
/* op is a register or memory reference */
if (i->modC0()) {
op = BX_READ_XMM_REG_LO_QWORD(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op = read_virtual_qword(i->seg(), eaddr);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
Bit8u control = i->Ib();
// override MXCSR rounding mode with control coming from imm8
if ((control & 0x4) == 0)
status_word.float_rounding_mode = control & 0x3;
if (MXCSR.get_DAZ()) op = float64_denormal_to_zero(op);
if (float64_is_nan(op))
op = propagateFloat64NaN(op, status_word);
else
op = int64_to_float64(float64_to_int64(op, status_word), status_word);
// ignore precision exception result
if (control & 0x8)
status_word.float_exception_flags &= ~float_flag_inexact;
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG_LO_QWORD(i->nnn(), op);
#else
BX_INFO(("ROUNDSD_VsdWsdIb: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* Opcode: 66 0F 3A 40
* Selectively multiply packed SP floating-point values from xmm1 with
* packed SP floating-point values from xmm2, add and selectively
* store the packed SP floating-point values or zero values to xmm1
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::DPPS_VpsWpsIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, tmp;
Bit8u mask = i->Ib();
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op1.xmm32u(0) = float32_denormal_to_zero(op1.xmm32u(0));
op1.xmm32u(1) = float32_denormal_to_zero(op1.xmm32u(1));
op1.xmm32u(2) = float32_denormal_to_zero(op1.xmm32u(2));
op1.xmm32u(3) = float32_denormal_to_zero(op1.xmm32u(3));
op2.xmm32u(0) = float32_denormal_to_zero(op2.xmm32u(0));
op2.xmm32u(1) = float32_denormal_to_zero(op2.xmm32u(1));
op2.xmm32u(2) = float32_denormal_to_zero(op2.xmm32u(2));
op2.xmm32u(3) = float32_denormal_to_zero(op2.xmm32u(3));
}
tmp.xmm64u(0) = tmp.xmm64u(1) = 0;
if (mask & 0x10)
tmp.xmm32u(0) = float32_mul(op1.xmm32u(0), op2.xmm32u(0), status_word);
if (mask & 0x20)
tmp.xmm32u(1) = float32_mul(op1.xmm32u(1), op2.xmm32u(1), status_word);
if (mask & 0x40)
tmp.xmm32u(2) = float32_mul(op1.xmm32u(2), op2.xmm32u(2), status_word);
if (mask & 0x80)
tmp.xmm32u(3) = float32_mul(op1.xmm32u(3), op2.xmm32u(3), status_word);
float32 r1 = float32_add(tmp.xmm32u(0), tmp.xmm32u(1), status_word);
float32 r2 = float32_add(tmp.xmm32u(2), tmp.xmm32u(3), status_word);
float32 r = float32_add(r1, r2, status_word);
op1.xmm64u(0) = op1.xmm64u(1) = 0;
if (mask & 0x01) op1.xmm32u(0) = r;
if (mask & 0x02) op1.xmm32u(1) = r;
if (mask & 0x04) op1.xmm32u(2) = r;
if (mask & 0x08) op1.xmm32u(3) = r;
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("DPPS_VpsWpsIb: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
/* Opcode: 66 0F 3A 41
* Selectively multiply packed DP floating-point values from xmm1 with
* packed DP floating-point values from xmm2, add and selectively
* store the packed DP floating-point values or zero values to xmm1
*/
void BX_CPP_AttrRegparmN(1) BX_CPU_C::DPPD_VpdWpdIb(bxInstruction_c *i)
{
#if BX_SUPPORT_SSE >= 4
BX_CPU_THIS_PTR prepareSSE();
BxPackedXmmRegister op1 = BX_READ_XMM_REG(i->nnn()), op2, tmp;
Bit8u mask = i->Ib();
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_XMM_REG(i->rm());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
readVirtualDQwordAligned(i->seg(), eaddr, (Bit8u *) &op2);
}
float_status_t status_word;
mxcsr_to_softfloat_status_word(status_word, MXCSR);
if (MXCSR.get_DAZ()) {
op1.xmm64u(0) = float64_denormal_to_zero(op1.xmm64u(0));
op1.xmm64u(1) = float64_denormal_to_zero(op1.xmm64u(1));
op2.xmm64u(0) = float64_denormal_to_zero(op2.xmm64u(0));
op2.xmm64u(1) = float64_denormal_to_zero(op2.xmm64u(1));
}
tmp.xmm64u(0) = tmp.xmm64u(1) = 0;
if (mask & 0x10)
tmp.xmm64u(0) = float64_mul(op1.xmm64u(0), op2.xmm64u(0), status_word);
if (mask & 0x20)
tmp.xmm64u(1) = float64_mul(op1.xmm64u(1), op2.xmm64u(1), status_word);
float64 result = float64_add(tmp.xmm64u(0), tmp.xmm64u(1), status_word);
op1.xmm64u(0) = op1.xmm64u(1) = 0;
if (mask & 0x01) op1.xmm64u(0) = result;
if (mask & 0x02) op1.xmm64u(1) = result;
BX_CPU_THIS_PTR check_exceptionsSSE(status_word.float_exception_flags);
BX_WRITE_XMM_REG(i->nnn(), op1);
#else
BX_INFO(("DPPD_VpdWpdIb: required SSE4, use --enable-sse option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
#endif // BX_SUPPORT_SSE >= 4 || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)