Bochs/bochs/cpu/mult64.cc
Kevin Lawton 402d02974d Moved the EFLAGS.RF check and clearing of inhibit_mask code
in cpu.cc out of the main loop, and into the asynchronous
events handling.  I went through all the code paths, and
there doesn't seem to be any reason for that code to be
in the hot loop.

Added another accessor for getting instruction data, called
modC0().  A lot of instructions test whether the mod field
of mod-nnn-rm is 0xc0 or not, ie., it's a register operation
and not memory.  So I flag this in fetchdecode{,64}.cc.
This added on the order of 1% performance improvement for
a Win95 boot.

Macroized a few leftover calls to Write_RMV_virtual_xyz()
that didn't get modified in the x86-64 merge.  Really, they
just call the real function for now, but I want to have them
available to do direct writes with the guest2host TLB pointers.
2002-09-20 03:52:59 +00:00

492 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: mult64.cc,v 1.4 2002-09-20 03:52:58 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
unsigned partial_add(Bit32u *sum,Bit32u b)
{
Bit32u t = *sum;
*sum += b;
return (*sum < t);
}
void
long_mul(Bit128u *product, Bit64u op1, Bit64u op2)
{
Bit32u op_1[2],op_2[2];
Bit32u result[5];
Bit64u nn;
unsigned c;
int i,j,k;
op_1[0] = op1 & 0xffffffff;
op_1[1] = op1 >> 32;
op_2[0] = op2 & 0xffffffff;
op_2[1] = op2 >> 32;
for (i = 0; i < 4; i++) result[i] = 0;
for (i = 0; i < 2; i++) {
for (j = 0; j < 2; j++) {
nn = (Bit64u) op_1[i] * (Bit64u) op_2[j];
k = i + j;
c = partial_add(&result[k++],nn & 0xffffffff);
c = partial_add(&result[k++],(nn >> 32) + c);
while (k < 4 && c != 0) {
c = partial_add(&result[k++],c);
}
}
}
product->lo = result[0] + ((Bit64u) result[1] << 32);
product->hi = result[2] + ((Bit64u) result[3] << 32);
}
void
long_neg(Bit128s *n)
{
Bit64u t;
t = n->lo;
n->lo = -n->lo;
if (t > (Bit64u)n->lo) --n->hi;
n->hi = -n->hi;
}
void
long_imul(Bit128s *product, Bit64s op1, Bit64s op2)
{
unsigned s1,s2;
//BX_DEBUG (("long_imul %08X%08X X %08X%08X->",(unsigned)(op1 >> 32),(unsigned)op1,(unsigned)(op2 >> 32),(unsigned)op2));
if (s1 = (op1 < 0)) op1 = -op1;
if (s2 = (op2 < 0)) op2 = -op2;
long_mul((Bit128u*)product,(Bit64u)op1,(Bit64u)op2);
if (s1 ^ s2) {
long_neg(product);
}
//BX_DEBUG (("%08X%08X%08X%08X",
// (unsigned)(product->hi >> 32),(unsigned)product->hi,
// (unsigned)(product->lo >> 32),(unsigned)product->lo));
}
void
long_shl(Bit128u *a)
{
Bit64u c;
c = a->lo >> 63;
a->lo <<= 1;
a->hi <<= 1;
a->hi |= c;
}
void
long_shr(Bit128u *a)
{
Bit64u c;
c = a->hi << 63;
a->hi >>= 1;
a->lo >>= 1;
a->lo |= c;
}
unsigned
long_sub(Bit128u *a,Bit128u *b)
{
Bit64u t;
int c;
t = a->lo;
a->lo -= b->lo;
c = (a->lo > t);
t = a -> hi;
a->hi -= b->hi + c;
return(a->hi > t);
}
Boolean
long_le(Bit128u *a,Bit128u *b)
{
if (a->hi == b->hi) {
return(a->lo <= b->lo);
} else {
return(a->hi <= b->hi);
}
}
void
long_div(Bit128u *quotient,Bit64u *remainder,Bit128u *dividend,Bit64u divisor)
{
/*
n := 0;
while (divisor <= dividend) do
inc(n);
divisor := divisor * 2;
end;
quotient := 0;
while n > 0 do
divisor := divisor div 2;
quotient := quotient * 2;
temp := dividend;
dividend := dividend - divisor;
if temp > dividend then
dividend := temp;
else
inc(quotient);
end;
dec(n);
end;
remainder := dividend;
*/
Bit128u d,acc,q,temp;
int n,c;
d.lo = divisor;
d.hi = 0;
acc.lo = dividend->lo;
acc.hi = dividend->hi;
q.lo = 0;
q.hi = 0;
n = 0;
//BX_DEBUG (("ldiv: n=%d d=%08X acc=%08X",n,d.lo,acc.lo));
while (long_le(&d,&acc) && n < 128) {
long_shl(&d);
n++;
}
//BX_DEBUG (("ldiv: n=%d d=%08X acc=%08X",n,d.lo,acc.lo));
while (n > 0) {
long_shr(&d);
long_shl(&q);
temp.lo = acc.lo;
temp.hi = acc.hi;
c = long_sub(&acc,&d);
if (c) {
acc.lo = temp.lo;
acc.hi = temp.hi;
} else {
q.lo++;
}
n--;
}
//BX_DEBUG (("ldiv: n=%d d=%08X acc=%08X",n,d.lo,acc.lo));
*remainder = acc.lo;
quotient->lo = q.lo;
quotient->hi = q.hi;
}
void
long_idiv(Bit128s *quotient,Bit64s *remainder,Bit128s *dividend,Bit64s divisor)
{
unsigned s1,s2;
Bit128s temp;
temp = *dividend;
if (s1 = (temp.hi < 0)) {
long_neg(&temp);
}
if (s2 = (divisor < 0)) divisor = -divisor;
long_div((Bit128u*)quotient,(Bit64u*)remainder,(Bit128u*)&temp,divisor);
if (s1 ^ s2) {
long_neg(quotient);
}
if (s2) {
*remainder = -*remainder;
}
}
void
BX_CPU_C::MUL_RAXEq(bxInstruction_c *i)
{
Bit64u op1_64, op2_64;
Bit128u product_128;
Boolean temp_flag;
op1_64 = RAX;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &op2_64);
}
//product_128 = ((Bit128u) op1_64) * ((Bit128u) op2_64);
long_mul(&product_128,op1_64,op2_64);
//product_64l = (Bit64u) (product_128 & 0xFFFFFFFFFFFFFFFF);
//product_64h = (Bit64u) (product_128 >> 64);
/* now write product back to destination */
RAX = product_128.lo;
RDX = product_128.hi;
/* set eflags:
* MUL affects the following flags: C,O
*/
temp_flag = (product_128.hi != 0);
SET_FLAGS_OxxxxC(temp_flag, temp_flag);
}
void
BX_CPU_C::IMUL_RAXEq(bxInstruction_c *i)
{
Bit64s op1_64, op2_64;
Bit128s product_128;
//Bit64u product_64h, product_64l;
op1_64 = RAX;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), (Bit64u *) &op2_64);
}
//product_128 = ((Bit128s) op1_64) * ((Bit128s) op2_64);
long_imul(&product_128,op1_64,op2_64);
//product_64l = (Bit64u) (product_128 & 0xFFFFFFFFFFFFFFFF);
//product_64h = (Bit64u) (product_128 >> 64);
/* now write product back to destination */
RAX = product_128.lo;
RDX = product_128.hi;
/* set eflags:
* IMUL affects the following flags: C,O
* IMUL r/m16: condition for clearing CF & OF:
* RDX:RAX = sign-extend of RAX
*/
if ( (RDX==BX_CONST64(0xffffffffffffffff)) && (RAX & BX_CONST64(0x8000000000000000)) ) {
SET_FLAGS_OxxxxC(0, 0);
}
else if ( (RDX==BX_CONST64(0x0000000000000000)) && (RAX < BX_CONST64(0x8000000000000000)) ) {
SET_FLAGS_OxxxxC(0, 0);
}
else {
SET_FLAGS_OxxxxC(1, 1);
}
}
void
BX_CPU_C::DIV_RAXEq(bxInstruction_c *i)
{
Bit64u op2_64, remainder_64, quotient_64l;
Bit128u op1_128, quotient_128;
op1_128.lo = RAX;
op1_128.hi = RDX;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), &op2_64);
}
if (op2_64 == 0) {
exception(BX_DE_EXCEPTION, 0, 0);
}
//quotient_128 = op1_128 / op2_64;
//remainder_64 = (Bit64u) (op1_128 % op2_64);
//quotient_64l = (Bit64u) (quotient_128 & 0xFFFFFFFFFFFFFFFF);
long_div(&quotient_128,&remainder_64,&op1_128,op2_64);
quotient_64l = quotient_128.lo;
//if (quotient_128 != quotient_64l) {
if (quotient_128.hi != 0) {
exception(BX_DE_EXCEPTION, 0, 0);
}
/* set EFLAGS:
* DIV affects the following flags: O,S,Z,A,P,C are undefined
*/
/* now write quotient back to destination */
RAX = quotient_64l;
RDX = remainder_64;
}
void
BX_CPU_C::IDIV_RAXEq(bxInstruction_c *i)
{
Bit64s op2_64, remainder_64, quotient_64l;
Bit128s op1_128, quotient_128;
op1_128.lo = RAX;
op1_128.hi = RDX;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), (Bit64u *) &op2_64);
}
if (op2_64 == 0) {
exception(BX_DE_EXCEPTION, 0, 0);
}
//quotient_128 = op1_128 / op2_64;
//remainder_64 = (Bit64s) (op1_128 % op2_64);
//quotient_64l = (Bit64s) (quotient_128 & 0xFFFFFFFFFFFFFFFF);
long_idiv(&quotient_128,&remainder_64,&op1_128,op2_64);
quotient_64l = quotient_128.lo;
//if (quotient_128 != quotient_64l) {
if (quotient_128.hi != 0) {
exception(BX_DE_EXCEPTION, 0, 0);
}
/* set EFLAGS:
* IDIV affects the following flags: O,S,Z,A,P,C are undefined
*/
/* now write quotient back to destination */
RAX = quotient_64l;
RDX = remainder_64;
}
void
BX_CPU_C::IMUL_GqEqId(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 2
BX_PANIC(("IMUL_GdEdId() unsupported on 8086!"));
#else
Bit64s op2_64, op3_64, product_64;
Bit128s product_128;
op3_64 = (Bit32s) i->Id();
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), (Bit64u *) &op2_64);
}
product_64 = op2_64 * op3_64;
//product_128 = ((Bit128s) op2_64) * ((Bit128s) op3_64);
long_imul(&product_128,op2_64,op3_64);
/* now write product back to destination */
BX_WRITE_64BIT_REG(i->nnn(), product_64);
/* set eflags:
* IMUL affects the following flags: C,O
* IMUL r16,r/m16,imm16: condition for clearing CF & OF:
* result exactly fits within r16
*/
if (product_128.lo == product_64) {
SET_FLAGS_OxxxxC(0, 0);
}
else {
SET_FLAGS_OxxxxC(1, 1);
}
#endif
}
void
BX_CPU_C::IMUL_GqEq(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("IMUL_GvEv() unsupported on 8086!"));
#else
Bit64s op1_64, op2_64, product_64;
Bit128s product_128;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_64 = BX_READ_64BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_qword(i->seg(), RMAddr(i), (Bit64u *) &op2_64);
}
op1_64 = BX_READ_64BIT_REG(i->nnn());
product_64 = op1_64 * op2_64;
//product_128 = ((Bit128s) op1_64) * ((Bit128s) op2_64);
long_imul(&product_128,op1_64,op2_64);
/* now write product back to destination */
BX_WRITE_64BIT_REG(i->nnn(), product_64);
/* set eflags:
* IMUL affects the following flags: C,O
* IMUL r16,r/m16,imm16: condition for clearing CF & OF:
* result exactly fits within r16
*/
if (product_128.lo == product_64) {
SET_FLAGS_OxxxxC(0, 0);
}
else {
SET_FLAGS_OxxxxC(1, 1);
}
#endif
}