Bochs/bochs/cpu/tasking.cc
Stanislav Shwartsman 65082e4a4f Handle granularity field for LDT
Next step - fix code duplication with TSS
2006-08-25 19:56:03 +00:00

805 lines
31 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: tasking.cc,v 1.36 2006-08-25 19:56:03 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_CPU_LEVEL >= 2
// Notes:
// ======
// ======================
// 286 Task State Segment
// ======================
// dynamic item | hex dec offset
// 0 task LDT selector | 2a 42
// 1 DS selector | 28 40
// 1 SS selector | 26 38
// 1 CS selector | 24 36
// 1 ES selector | 22 34
// 1 DI | 20 32
// 1 SI | 1e 30
// 1 BP | 1c 28
// 1 SP | 1a 26
// 1 BX | 18 24
// 1 DX | 16 22
// 1 CX | 14 20
// 1 AX | 12 18
// 1 flag word | 10 16
// 1 IP (entry point) | 0e 14
// 0 SS for CPL 2 | 0c 12
// 0 SP for CPL 2 | 0a 10
// 0 SS for CPL 1 | 08 08
// 0 SP for CPL 1 | 06 06
// 0 SS for CPL 0 | 04 04
// 0 SP for CPL 0 | 02 02
// back link selector to TSS | 00 00
// ======================
// 386 Task State Segment
// ======================
// |31 16|15 0|
// |I/O Map Base |000000000000000000000|T| 64 static
// |0000000000000000| LDT | 60 static
// |0000000000000000| GS selector | 5c dynamic
// |0000000000000000| FS selector | 58 dynamic
// |0000000000000000| DS selector | 54 dynamic
// |0000000000000000| SS selector | 50 dynamic
// |0000000000000000| CS selector | 4c dynamic
// |0000000000000000| ES selector | 48 dynamic
// | EDI | 44 dynamic
// | ESI | 40 dynamic
// | EBP | 3c dynamic
// | ESP | 38 dynamic
// | EBX | 34 dynamic
// | EDX | 30 dynamic
// | ECX | 2c dynamic
// | EAX | 28 dynamic
// | EFLAGS | 24 dynamic
// | EIP (entry point) | 20 dynamic
// | CR3 (PDPR) | 1c static
// |000000000000000 | SS for CPL 2 | 18 static
// | ESP for CPL 2 | 14 static
// |000000000000000 | SS for CPL 1 | 10 static
// | ESP for CPL 1 | 0c static
// |000000000000000 | SS for CPL 0 | 08 static
// | ESP for CPL 0 | 04 static
// |000000000000000 | back link to prev TSS | 00 dynamic (updated only when return expected)
// ==================================================
// Effect of task switch on Busy, NT, and Link Fields
// ==================================================
// Field jump call/interrupt iret
// ------------------------------------------------------
// new busy bit Set Set No change
// old busy bit Cleared No change Cleared
// new NT flag No change Set No change
// old NT flag No change No change Cleared
// new link No change old TSS selector No change
// old link No change No change No change
// CR0.TS Set Set Set
// Note: I checked 386, 486, and Pentium, and they all exhibited
// exactly the same behaviour as above. There seems to
// be some misprints in the Intel docs.
void BX_CPU_C::task_switch(bx_selector_t *tss_selector,
bx_descriptor_t *tss_descriptor, unsigned source,
Bit32u dword1, Bit32u dword2)
{
Bit32u obase32; // base address of old TSS
Bit32u nbase32; // base address of new TSS
Bit32u temp32, newCR3;
Bit16u raw_cs_selector, raw_ss_selector, raw_ds_selector, raw_es_selector,
raw_fs_selector, raw_gs_selector, raw_ldt_selector;
Bit16u temp16, trap_word;
bx_selector_t cs_selector, ss_selector, ds_selector, es_selector,
fs_selector, gs_selector, ldt_selector;
bx_descriptor_t cs_descriptor, ss_descriptor, ldt_descriptor;
Bit32u old_TSS_max, new_TSS_max, old_TSS_limit, new_TSS_limit;
Bit32u newEAX, newECX, newEDX, newEBX;
Bit32u newESP, newEBP, newESI, newEDI;
Bit32u newEFLAGS, newEIP;
unsigned exception_no = 256; // no exception
Bit16u error_code = 0;
BX_DEBUG(("TASKING: ENTER"));
invalidate_prefetch_q();
// Discard any traps and inhibits for new context; traps will
// resume upon return.
BX_CPU_THIS_PTR debug_trap = 0;
BX_CPU_THIS_PTR inhibit_mask = 0;
// STEP 1: The following checks are made before calling task_switch(),
// for JMP & CALL only. These checks are NOT made for exceptions,
// interrupts & IRET.
//
// 1) TSS DPL must be >= CPL
// 2) TSS DPL must be >= TSS selector RPL
// 3) TSS descriptor is not busy.
// TSS must be present, else #NP(TSS selector)
if (tss_descriptor->p==0) {
BX_ERROR(("task_switch: TSS descriptor is not present !"));
exception(BX_NP_EXCEPTION, tss_selector->value & 0xfffc, 0);
}
// STEP 2: The processor performs limit-checking on the target TSS
// to verify that the TSS limit is greater than or equal
// to 67h (2Bh for 16-bit TSS).
// Gather info about old TSS
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
// sanity check type: cannot have busy bit
old_TSS_max = 43;
}
else {
old_TSS_max = 103;
}
// Gather info about new TSS
if (tss_descriptor->type <= 3) { // {1,3}
new_TSS_max = 43;
}
else { // tss_descriptor->type = {9,11}
new_TSS_max = 103;
}
obase32 = BX_CPU_THIS_PTR tr.cache.u.tss.base; // old TSS.base
old_TSS_limit = BX_CPU_THIS_PTR tr.cache.u.tss.limit_scaled;
nbase32 = tss_descriptor->u.tss.base; // new TSS.base
new_TSS_limit = tss_descriptor->u.tss.limit_scaled;
// TSS must have valid limit, else #TS(TSS selector)
if (tss_selector->ti || tss_descriptor->valid==0 ||
new_TSS_limit < new_TSS_max)
{
BX_ERROR(("task_switch(): new TSS limit < %d", new_TSS_max));
exception(BX_TS_EXCEPTION, tss_selector->value & 0xfffc, 0);
}
if (obase32 == nbase32) {
BX_INFO(("TASK SWITCH: switching to the same TSS !"));
}
#if BX_SUPPORT_PAGING
// Check that old TSS, new TSS, and all segment descriptors
// used in the task switch are paged in.
if (BX_CPU_THIS_PTR cr0.pg)
{
// Old TSS
(void) dtranslate_linear(obase32, 0, BX_WRITE);
(void) dtranslate_linear(obase32 + old_TSS_max, 0, BX_WRITE);
// New TSS
(void) dtranslate_linear(nbase32, 0, BX_READ);
(void) dtranslate_linear(nbase32 + new_TSS_max, 0, BX_READ);
// ??? Humm, we check the new TSS region with READ above,
// but sometimes we need to write the link field in that
// region. We also sometimes update other fields, perhaps
// we need to WRITE check them here also, so that we keep
// the written state consistent (ie, we don't encounter a
// page fault in the middle).
if (source==BX_TASK_FROM_CALL_OR_INT)
{
(void) dtranslate_linear(nbase32, 0, BX_WRITE);
(void) dtranslate_linear(nbase32 + 2, 0, BX_WRITE);
}
}
#endif // BX_SUPPORT_PAGING
// Privilege and busy checks done in CALL, JUMP, INT, IRET
// STEP 3: Save the current task state in the TSS. Up to this point,
// any exception that occurs aborts the task switch without
// changing the processor state.
/* save current machine state in old task's TSS */
Bit32u oldEFLAGS = read_eflags();
/* if moving to busy task, clear NT bit */
if (tss_descriptor->type == BX_SYS_SEGMENT_BUSY_286_TSS ||
tss_descriptor->type == BX_SYS_SEGMENT_BUSY_386_TSS)
{
oldEFLAGS &= ~EFlagsNTMask;
}
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
temp16 = IP; access_linear(obase32 + 14, 2, 0, BX_WRITE, &temp16);
temp16 = oldEFLAGS; access_linear(obase32 + 16, 2, 0, BX_WRITE, &temp16);
temp16 = AX; access_linear(obase32 + 18, 2, 0, BX_WRITE, &temp16);
temp16 = CX; access_linear(obase32 + 20, 2, 0, BX_WRITE, &temp16);
temp16 = DX; access_linear(obase32 + 22, 2, 0, BX_WRITE, &temp16);
temp16 = BX; access_linear(obase32 + 24, 2, 0, BX_WRITE, &temp16);
temp16 = SP; access_linear(obase32 + 26, 2, 0, BX_WRITE, &temp16);
temp16 = BP; access_linear(obase32 + 28, 2, 0, BX_WRITE, &temp16);
temp16 = SI; access_linear(obase32 + 30, 2, 0, BX_WRITE, &temp16);
temp16 = DI; access_linear(obase32 + 32, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
access_linear(obase32 + 34, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
access_linear(obase32 + 36, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
access_linear(obase32 + 38, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
access_linear(obase32 + 40, 2, 0, BX_WRITE, &temp16);
}
else {
temp32 = EIP; access_linear(obase32 + 0x20, 4, 0, BX_WRITE, &temp32);
temp32 = oldEFLAGS; access_linear(obase32 + 0x24, 4, 0, BX_WRITE, &temp32);
temp32 = EAX; access_linear(obase32 + 0x28, 4, 0, BX_WRITE, &temp32);
temp32 = ECX; access_linear(obase32 + 0x2c, 4, 0, BX_WRITE, &temp32);
temp32 = EDX; access_linear(obase32 + 0x30, 4, 0, BX_WRITE, &temp32);
temp32 = EBX; access_linear(obase32 + 0x34, 4, 0, BX_WRITE, &temp32);
temp32 = ESP; access_linear(obase32 + 0x38, 4, 0, BX_WRITE, &temp32);
temp32 = EBP; access_linear(obase32 + 0x3c, 4, 0, BX_WRITE, &temp32);
temp32 = ESI; access_linear(obase32 + 0x40, 4, 0, BX_WRITE, &temp32);
temp32 = EDI; access_linear(obase32 + 0x44, 4, 0, BX_WRITE, &temp32);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
access_linear(obase32 + 0x48, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
access_linear(obase32 + 0x4c, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
access_linear(obase32 + 0x50, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
access_linear(obase32 + 0x54, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
access_linear(obase32 + 0x58, 2, 0, BX_WRITE, &temp16);
temp16 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
access_linear(obase32 + 0x5c, 2, 0, BX_WRITE, &temp16);
}
// effect on link field of new task
if (source == BX_TASK_FROM_CALL_OR_INT)
{
// set to selector of old task's TSS
temp16 = BX_CPU_THIS_PTR tr.selector.value;
access_linear(nbase32, 2, 0, BX_WRITE, &temp16);
}
// STEP 4: The new-task state is loaded from the TSS
if (tss_descriptor->type <= 3) {
access_linear(nbase32 + 14, 2, 0, BX_READ, &temp16);
newEIP = temp16; // zero out upper word
access_linear(nbase32 + 16, 2, 0, BX_READ, &temp16);
newEFLAGS = temp16;
// incoming TSS is 16bit:
// - upper word of general registers is set to 0xFFFF
// - upper word of eflags is zero'd
// - FS, GS are zero'd
// - upper word of eIP is zero'd
access_linear(nbase32 + 18, 2, 0, BX_READ, &temp16);
newEAX = 0xffff0000 | temp16;
access_linear(nbase32 + 20, 2, 0, BX_READ, &temp16);
newECX = 0xffff0000 | temp16;
access_linear(nbase32 + 22, 2, 0, BX_READ, &temp16);
newEDX = 0xffff0000 | temp16;
access_linear(nbase32 + 24, 2, 0, BX_READ, &temp16);
newEBX = 0xffff0000 | temp16;
access_linear(nbase32 + 26, 2, 0, BX_READ, &temp16);
newESP = 0xffff0000 | temp16;
access_linear(nbase32 + 28, 2, 0, BX_READ, &temp16);
newEBP = 0xffff0000 | temp16;
access_linear(nbase32 + 30, 2, 0, BX_READ, &temp16);
newESI = 0xffff0000 | temp16;
access_linear(nbase32 + 32, 2, 0, BX_READ, &temp16);
newEDI = 0xffff0000 | temp16;
access_linear(nbase32 + 34, 2, 0, BX_READ, &raw_es_selector);
access_linear(nbase32 + 36, 2, 0, BX_READ, &raw_cs_selector);
access_linear(nbase32 + 38, 2, 0, BX_READ, &raw_ss_selector);
access_linear(nbase32 + 40, 2, 0, BX_READ, &raw_ds_selector);
access_linear(nbase32 + 42, 2, 0, BX_READ, &raw_ldt_selector);
raw_fs_selector = 0; // use a NULL selector
raw_gs_selector = 0; // use a NULL selector
// No CR3 change for 286 task switch
newCR3 = 0; // keep compiler happy (not used)
trap_word = 0; // keep compiler happy (not used)
}
else {
if (BX_CPU_THIS_PTR cr0.pg)
access_linear(nbase32 + 0x1c, 4, 0, BX_READ, &newCR3);
else
newCR3 = 0; // keep compiler happy (not used)
access_linear(nbase32 + 0x20, 4, 0, BX_READ, &newEIP);
access_linear(nbase32 + 0x24, 4, 0, BX_READ, &newEFLAGS);
access_linear(nbase32 + 0x28, 4, 0, BX_READ, &newEAX);
access_linear(nbase32 + 0x2c, 4, 0, BX_READ, &newECX);
access_linear(nbase32 + 0x30, 4, 0, BX_READ, &newEDX);
access_linear(nbase32 + 0x34, 4, 0, BX_READ, &newEBX);
access_linear(nbase32 + 0x38, 4, 0, BX_READ, &newESP);
access_linear(nbase32 + 0x3c, 4, 0, BX_READ, &newEBP);
access_linear(nbase32 + 0x40, 4, 0, BX_READ, &newESI);
access_linear(nbase32 + 0x44, 4, 0, BX_READ, &newEDI);
access_linear(nbase32 + 0x48, 2, 0, BX_READ, &raw_es_selector);
access_linear(nbase32 + 0x4c, 2, 0, BX_READ, &raw_cs_selector);
access_linear(nbase32 + 0x50, 2, 0, BX_READ, &raw_ss_selector);
access_linear(nbase32 + 0x54, 2, 0, BX_READ, &raw_ds_selector);
access_linear(nbase32 + 0x58, 2, 0, BX_READ, &raw_fs_selector);
access_linear(nbase32 + 0x5c, 2, 0, BX_READ, &raw_gs_selector);
access_linear(nbase32 + 0x60, 2, 0, BX_READ, &raw_ldt_selector);
access_linear(nbase32 + 0x64, 2, 0, BX_READ, &trap_word);
}
// Step 5: If CALL, interrupt, or JMP, set busy flag in new task's
// TSS descriptor. If IRET, leave set.
if (source == BX_TASK_FROM_JUMP || source == BX_TASK_FROM_CALL_OR_INT)
{
// set the new task's busy bit
Bit32u laddr = BX_CPU_THIS_PTR gdtr.base + (tss_selector->index<<3) + 4;
access_linear(laddr, 4, 0, BX_READ, &dword2);
dword2 |= 0x00000200;
access_linear(laddr, 4, 0, BX_WRITE, &dword2);
}
// Step 6: If JMP or IRET, clear busy bit in old task TSS descriptor,
// otherwise leave set.
// effect on Busy bit of old task
if (source == BX_TASK_FROM_JUMP || source == BX_TASK_FROM_IRET) {
// Bit is cleared
Bit32u laddr = BX_CPU_THIS_PTR gdtr.base +
(BX_CPU_THIS_PTR tr.selector.index<<3) + 4;
access_linear(laddr, 4, 0, BX_READ, &temp32);
temp32 &= ~0x00000200;
access_linear(laddr, 4, 0, BX_WRITE, &temp32);
}
//
// Commit point. At this point, we commit to the new
// context. If an unrecoverable error occurs in further
// processing, we complete the task switch without performing
// additional access and segment availablility checks and
// generate the appropriate exception prior to beginning
// execution of the new task.
//
// Step 7: Load the task register with the segment selector and
// descriptor for the new task TSS.
BX_CPU_THIS_PTR tr.selector = *tss_selector;
BX_CPU_THIS_PTR tr.cache = *tss_descriptor;
// Reset the busy-flag, because all functions expect non-busy types in
// tr.cache. From Peter Lammich <peterl@sourceforge.net>.
BX_CPU_THIS_PTR tr.cache.type &= ~2;
// Step 8: Set TS flag in the CR0 image stored in the new task TSS.
BX_CPU_THIS_PTR cr0.ts = 1;
BX_CPU_THIS_PTR cr0.val32 |= 0x00000008;
// Task switch clears LE/L3/L2/L1/L0 in DR7
BX_CPU_THIS_PTR dr7 &= ~0x00000155;
// Step 9: If call or interrupt, set the NT flag in the eflags
// image stored in new task's TSS. If IRET or JMP,
// NT is restored from new TSS eflags image. (no change)
// effect on NT flag of new task
if (source == BX_TASK_FROM_CALL_OR_INT) {
newEFLAGS |= EFlagsNTMask; // NT flag is set
}
// Step 10: Load the new task (dynamic) state from new TSS.
// Any errors associated with loading and qualification of
// segment descriptors in this step occur in the new task's
// context. State loaded here includes LDTR, CR3,
// EFLAGS, EIP, general purpose registers, and segment
// descriptor parts of the segment registers.
if ((tss_descriptor->type >= 9) && BX_CPU_THIS_PTR cr0.pg) {
// change CR3 only if it actually modified
if (newCR3 != BX_CPU_THIS_PTR cr3) {
CR3_change(newCR3); // Tell paging unit about new cr3 value
BX_DEBUG (("task_switch changing CR3 to 0x%08x", newCR3));
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_TASKSWITCH, newCR3);
}
}
BX_CPU_THIS_PTR prev_eip = EIP = newEIP;
EAX = newEAX;
ECX = newECX;
EDX = newEDX;
EBX = newEBX;
ESP = newESP;
EBP = newEBP;
ESI = newESI;
EDI = newEDI;
writeEFlags(newEFLAGS, EFlagsValidMask);
// Fill in selectors for all segment registers. If errors
// occur later, the selectors will at least be loaded.
parse_selector(raw_cs_selector, &cs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector = cs_selector;
parse_selector(raw_ds_selector, &ds_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector = ds_selector;
parse_selector(raw_es_selector, &es_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector = es_selector;
parse_selector(raw_ss_selector, &ss_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector = ss_selector;
parse_selector(raw_fs_selector, &fs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector = fs_selector;
parse_selector(raw_gs_selector, &gs_selector);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector = gs_selector;
parse_selector(raw_ldt_selector, &ldt_selector);
BX_CPU_THIS_PTR ldtr.selector = ldt_selector;
// Start out with invalid descriptor caches, fill in
// with values only as they are validated.
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit_scaled = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 0;
// LDTR
if (ldt_selector.ti) {
// LDT selector must be in GDT
BX_INFO(("task_switch: bad LDT selector TI=1"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
if ( (raw_ldt_selector & 0xfffc) != 0 ) {
bx_bool good = fetch_raw_descriptor2(&ldt_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad LDT fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &ldt_descriptor);
// LDT selector of new task is valid, else #TS(new task's LDT)
if (ldt_descriptor.valid==0 ||
ldt_descriptor.type!=BX_SYS_SEGMENT_LDT ||
ldt_descriptor.segment)
{
BX_INFO(("task_switch: bad LDT segment"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
// LDT of new task is present in memory, else #TS(new tasks's LDT)
if (! IS_PRESENT(ldt_descriptor)) {
exception_no = BX_TS_EXCEPTION;
error_code = raw_ldt_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in LDTR shadow cache
BX_CPU_THIS_PTR ldtr.cache = ldt_descriptor;
}
else {
// NULL LDT selector is OK, leave cache invalid
}
if (v8086_mode()) {
// load seg regs as 8086 registers
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], raw_cs_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], raw_ss_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], raw_ds_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], raw_es_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], raw_fs_selector);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], raw_gs_selector);
}
else {
// if new selector is not null then perform following checks:
// index must be within its descriptor table limits else #TS(selector)
// AR byte must indicate data or readable code else #TS(selector)
// if data or non-conforming code then:
// DPL must be >= CPL else #TS(selector)
// DPL must be >= RPL else #TS(selector)
// AR byte must indicate PRESENT else #NP(selector)
// load cache with new segment descriptor and set valid bit
// CS
if ( (raw_cs_selector & 0xfffc) != 0 ) {
bx_bool good = fetch_raw_descriptor2(&cs_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad CS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &cs_descriptor);
// CS descriptor AR byte must indicate code segment else #TS(CS)
if (cs_descriptor.valid==0 || cs_descriptor.segment==0 ||
IS_DATA_SEGMENT(cs_descriptor.type))
{
BX_PANIC(("task_switch: CS not valid executable seg"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// if non-conforming then DPL must equal selector RPL else #TS(CS)
if (IS_CODE_SEGMENT_NON_CONFORMING(cs_descriptor.type) &&
cs_descriptor.dpl != cs_selector.rpl)
{
BX_INFO(("task_switch: non-conforming: CS.dpl!=CS.RPL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// if conforming then DPL must be <= selector RPL else #TS(CS)
if (IS_CODE_SEGMENT_CONFORMING(cs_descriptor.type) &&
cs_descriptor.dpl > cs_selector.rpl)
{
BX_INFO(("task_switch: conforming: CS.dpl>RPL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// Code segment is present in memory, else #NP(new code segment)
if (! IS_PRESENT(cs_descriptor)) {
BX_PANIC(("task_switch: CS.p==0"));
exception_no = BX_NP_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache = cs_descriptor;
}
else {
// If new cs selector is null #TS(CS)
BX_PANIC(("task_switch: CS NULL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_cs_selector & 0xfffc;
goto post_exception;
}
#if BX_SUPPORT_ICACHE
BX_CPU_THIS_PTR updateFetchModeMask();
#endif
// SS
if ( (raw_ss_selector & 0xfffc) != 0 )
{
bx_bool good = fetch_raw_descriptor2(&ss_selector, &dword1, &dword2);
if (!good) {
BX_INFO(("task_switch: bad SS fetch"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
parse_descriptor(dword1, dword2, &ss_descriptor);
// SS selector must be within its descriptor table limits else #TS(SS)
// SS descriptor AR byte must must indicate writable data segment,
// else #TS(SS)
if (ss_descriptor.valid==0 || ss_descriptor.segment==0 ||
IS_CODE_SEGMENT(ss_descriptor.type) ||
!IS_DATA_SEGMENT_WRITEABLE(ss_descriptor.type))
{
BX_INFO(("task_switch: SS not valid"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
//
// Stack segment is present in memory, else #SS(new stack segment)
//
if (! IS_PRESENT(ss_descriptor)) {
BX_PANIC(("task_switch: SS not present"));
exception_no = BX_SS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
// Stack segment DPL matches CS.RPL, else #TS(new stack segment)
if (ss_descriptor.dpl != cs_selector.rpl) {
BX_PANIC(("task_switch: SS.rpl != CS.RPL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
// Stack segment DPL matches selector RPL, else #TS(new stack segment)
if (ss_descriptor.dpl != ss_selector.rpl) {
BX_PANIC(("task_switch: SS.dpl != SS.rpl"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
// All checks pass, fill in shadow cache
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache = ss_descriptor;
}
else {
// SS selector is valid, else #TS(new stack segment)
BX_PANIC(("task_switch: SS NULL"));
exception_no = BX_TS_EXCEPTION;
error_code = raw_ss_selector & 0xfffc;
goto post_exception;
}
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS],
&ds_selector, raw_ds_selector, cs_selector.rpl);
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES],
&es_selector, raw_es_selector, cs_selector.rpl);
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS],
&fs_selector, raw_fs_selector, cs_selector.rpl);
task_switch_load_selector(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS],
&gs_selector, raw_gs_selector, cs_selector.rpl);
}
if ((tss_descriptor->type>=9) && (trap_word & 0x0001)) {
BX_CPU_THIS_PTR debug_trap |= 0x00008000; // BT flag in DR6
BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
BX_INFO(("task_switch: T bit set in new TSS"));
}
//
// Step 14: Begin execution of new task.
//
BX_DEBUG(( "TASKING: LEAVE" ));
return;
post_exception:
BX_CPU_THIS_PTR debug_trap = 0;
BX_CPU_THIS_PTR inhibit_mask = 0;
BX_INFO(("task switch: posting exception %u after commit point", exception_no));
exception(exception_no, error_code, 0);
}
void BX_CPU_C::task_switch_load_selector(bx_segment_reg_t *seg,
bx_selector_t *selector, Bit16u raw_selector, Bit8u cs_rpl)
{
bx_descriptor_t descriptor;
Bit32u dword1, dword2;
// NULL selector is OK, will leave cache invalid
if ((raw_selector & 0xfffc) != 0)
{
bx_bool good = fetch_raw_descriptor2(selector, &dword1, &dword2);
if (!good) {
BX_ERROR(("task_switch(%s): bad selector fetch !", strseg(seg)));
exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0);
}
parse_descriptor(dword1, dword2, &descriptor);
/* AR byte must indicate data or readable code segment else #TS(selector) */
if (descriptor.segment==0 || (IS_CODE_SEGMENT(descriptor.type) &&
IS_CODE_SEGMENT_READABLE(descriptor.type) == 0))
{
BX_ERROR(("task_switch(%s): not data or readable code !", strseg(seg)));
exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0);
}
/* If data or non-conforming code, then both the RPL and the CPL
* must be less than or equal to DPL in AR byte else #GP(selector) */
if (IS_DATA_SEGMENT(descriptor.type) ||
IS_CODE_SEGMENT_NON_CONFORMING(descriptor.type))
{
if ((selector->rpl > descriptor.dpl) || (cs_rpl > descriptor.dpl)) {
BX_ERROR(("load_seg_reg(%s): RPL & CPL must be <= DPL", strseg(seg)));
exception(BX_TS_EXCEPTION, raw_selector & 0xfffc, 0);
}
}
if (! IS_PRESENT(descriptor)) {
BX_ERROR(("task_switch(%s): descriptor not present !", strseg(seg)));
exception(BX_NP_EXCEPTION, raw_selector & 0xfffc, 0);
}
// All checks pass, fill in shadow cache
seg->cache = descriptor;
}
}
void BX_CPU_C::get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp)
{
if (BX_CPU_THIS_PTR tr.cache.valid==0)
BX_PANIC(("get_SS_ESP_from_TSS: TR.cache invalid"));
if (BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_AVAIL_386_TSS) {
// 32-bit TSS
Bit32u TSSstackaddr = 8*pl + 4;
if ((TSSstackaddr+7) > BX_CPU_THIS_PTR tr.cache.u.tss.limit_scaled) {
BX_DEBUG(("get_SS_ESP_from_TSS(386): TSSstackaddr > TSS.LIMIT"));
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
}
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss.base +
TSSstackaddr+4, 2, 0, BX_READ, ss);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss.base +
TSSstackaddr, 4, 0, BX_READ, esp);
}
else if (BX_CPU_THIS_PTR tr.cache.type==BX_SYS_SEGMENT_AVAIL_286_TSS) {
// 16-bit TSS
Bit16u temp16;
Bit32u TSSstackaddr = 4*pl + 2;
if ((TSSstackaddr+4) > BX_CPU_THIS_PTR tr.cache.u.tss.limit_scaled) {
BX_DEBUG(("get_SS_ESP_from_TSS(286): TSSstackaddr > TSS.LIMIT"));
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
}
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss.base +
TSSstackaddr+2, 2, 0, BX_READ, ss);
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss.base +
TSSstackaddr, 2, 0, BX_READ, &temp16);
*esp = temp16; // truncate
}
else {
BX_PANIC(("get_SS_ESP_from_TSS: TR is bogus type (%u)",
(unsigned) BX_CPU_THIS_PTR tr.cache.type));
}
}
#if BX_SUPPORT_X86_64
void BX_CPU_C::get_RSP_from_TSS(unsigned pl, Bit64u *rsp)
{
if (BX_CPU_THIS_PTR tr.cache.valid==0)
BX_PANIC(("get_RSP_from_TSS: TR.cache invalid"));
// 32-bit TSS
Bit32u TSSstackaddr = 8*pl + 4;
if ((TSSstackaddr+7) > BX_CPU_THIS_PTR tr.cache.u.tss.limit_scaled) {
BX_DEBUG(("get_RSP_from_TSS(): TSSstackaddr > TSS.LIMIT"));
exception(BX_TS_EXCEPTION, BX_CPU_THIS_PTR tr.selector.value & 0xfffc, 0);
}
access_linear(BX_CPU_THIS_PTR tr.cache.u.tss.base +
TSSstackaddr, 8, 0, BX_READ, rsp);
}
#endif // #if BX_SUPPORT_X86_64
#endif