Bochs/bochs/iodev/sound/sb16.cc
Volker Ruppert 85a914c9e9 - implemented "fast-dma" support for 16 bit and in the SB16
- TODO: fix BX_DBG_DMA_REPORT
2012-07-14 14:20:36 +00:00

3911 lines
108 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2012 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
// The original version of the SB16 support written and donated by Josef Drexler
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
#include "iodev.h"
#if BX_SUPPORT_SB16
#include "sb16.h"
#include "soundmod.h"
#include "soundlnx.h"
#include "soundwin.h"
#include "soundosx.h"
#include "soundsdl.h"
#define LOG_THIS theSB16Device->
bx_sb16_c *theSB16Device = NULL;
// builtin configuration handling functions
void sb16_init_options(void)
{
bx_param_c *sound = SIM->get_param("sound");
bx_list_c *menu = new bx_list_c(sound, "sb16", "SB16 Configuration");
menu->set_options(menu->SHOW_PARENT);
bx_param_bool_c *enabled = new bx_param_bool_c(menu,
"enabled",
"Enable SB16 emulation",
"Enables the SB16 emulation",
0);
bx_param_num_c *midimode = new bx_param_num_c(menu,
"midimode",
"Midi mode",
"Controls the MIDI output format.",
0, 3,
0);
bx_param_filename_c *midifile = new bx_param_filename_c(menu,
"midifile",
"MIDI file",
"The filename is where the MIDI data is sent. This can be device or just a file.",
"", BX_PATHNAME_LEN);
bx_param_num_c *wavemode = new bx_param_num_c(menu,
"wavemode",
"Wave mode",
"Controls the wave output format.",
0, 3,
0);
bx_param_filename_c *wavefile = new bx_param_filename_c(menu,
"wavefile",
"Wave file",
"This is the device/file where the wave output is stored",
"", BX_PATHNAME_LEN);
bx_param_num_c *loglevel = new bx_param_num_c(menu,
"loglevel",
"Log level",
"Controls how verbose the SB16 emulation is (0 = no log, 5 = all errors and infos).",
0, 5,
0);
bx_param_filename_c *logfile = new bx_param_filename_c(menu,
"logfile",
"Log file",
"The file to write the SB16 emulator messages to.",
"", BX_PATHNAME_LEN);
logfile->set_extension("log");
bx_param_num_c *dmatimer = new bx_param_num_c(menu,
"dmatimer",
"DMA timer",
"Microseconds per second for a DMA cycle.",
0, BX_MAX_BIT32U,
0);
midimode->set_options(midimode->USE_SPIN_CONTROL);
wavemode->set_options(wavemode->USE_SPIN_CONTROL);
loglevel->set_options(loglevel->USE_SPIN_CONTROL);
loglevel->set_group("SB16");
dmatimer->set_group("SB16");
bx_list_c *deplist = new bx_list_c(NULL);
deplist->add(midimode);
deplist->add(wavemode);
deplist->add(loglevel);
deplist->add(dmatimer);
enabled->set_dependent_list(deplist);
deplist = new bx_list_c(NULL);
deplist->add(midifile);
midimode->set_dependent_list(deplist);
deplist = new bx_list_c(NULL);
deplist->add(wavefile);
wavemode->set_dependent_list(deplist);
deplist = new bx_list_c(NULL);
deplist->add(logfile);
loglevel->set_dependent_list(deplist);
}
Bit32s sb16_options_parser(const char *context, int num_params, char *params[])
{
if (!strcmp(params[0], "sb16")) {
int enable = 1;
bx_list_c *base = (bx_list_c*) SIM->get_param(BXPN_SOUND_SB16);
for (int i = 1; i < num_params; i++) {
if (!strncmp(params[i], "enabled=", 8)) {
enable = atol(&params[i][8]);
} else if (!strncmp(params[i], "midi=", 5)) {
SIM->get_param_string("midifile", base)->set(&params[i][5]);
} else if (!strncmp(params[i], "midimode=", 9)) {
SIM->get_param_num("midimode", base)->set(atol(&params[i][9]));
} else if (!strncmp(params[i], "wave=", 5)) {
SIM->get_param_string("wavefile", base)->set(&params[i][5]);
} else if (!strncmp(params[i], "wavemode=", 9)) {
SIM->get_param_num("wavemode", base)->set(atol(&params[i][9]));
} else if (!strncmp(params[i], "log=", 4)) {
SIM->get_param_string("logfile", base)->set(&params[i][4]);
} else if (!strncmp(params[i], "loglevel=", 9)) {
SIM->get_param_num("loglevel", base)->set(atol(&params[i][9]));
} else if (!strncmp(params[i], "dmatimer=", 9)) {
SIM->get_param_num("dmatimer", base)->set(atol(&params[i][9]));
} else {
BX_ERROR(("%s: unknown parameter for sb16 ignored.", context));
}
}
if ((enable != 0) && (SIM->get_param_num("dmatimer", base)->get() > 0))
SIM->get_param_bool("enabled", base)->set(1);
else
SIM->get_param_bool("enabled", base)->set(0);
} else {
BX_PANIC(("%s: unknown directive '%s'", context, params[0]));
}
return 0;
}
Bit32s sb16_options_save(FILE *fp)
{
bx_list_c *base = (bx_list_c*) SIM->get_param(BXPN_SOUND_SB16);
fprintf(fp, "sb16: enabled=%d", SIM->get_param_bool("enabled", base)->get());
if (SIM->get_param_bool("enabled", base)->get()) {
fprintf(fp, ", midimode=%d, midi=%s, wavemode=%d, wave=%s, loglevel=%d, log=%s, dmatimer=%d",
SIM->get_param_num("midimode", base)->get(),
SIM->get_param_string("midifile", base)->getptr(),
SIM->get_param_num("wavemode", base)->get(),
SIM->get_param_string("wavefile", base)->getptr(),
SIM->get_param_num("loglevel", base)->get(),
SIM->get_param_string("logfile", base)->getptr(),
SIM->get_param_num("dmatimer", base)->get());
}
fprintf(fp, "\n");
return 0;
}
// device plugin entry points
int libsb16_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
theSB16Device = new bx_sb16_c();
BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theSB16Device, BX_PLUGIN_SB16);
// add new configuration parameter for the config interface
sb16_init_options();
// register add-on option for bochsrc and command line
SIM->register_addon_option("sb16", sb16_options_parser, sb16_options_save);
return(0); // Success
}
void libsb16_LTX_plugin_fini(void)
{
delete theSB16Device;
SIM->unregister_addon_option("sb16");
((bx_list_c*)SIM->get_param("sound"))->remove("sb16");
}
// some shortcuts to save typing
#define LOGFILE BX_SB16_THIS logfile
#define MIDIDATA BX_SB16_THIS midifile
#define WAVEDATA BX_SB16_THIS wavefile
#define MPU BX_SB16_THIS mpu401
#define DSP BX_SB16_THIS dsp
#define MIXER BX_SB16_THIS mixer
#define EMUL BX_SB16_THIS emuldata
#define OPL BX_SB16_THIS opl
#define BX_SB16_OUTPUT BX_SB16_THIS soundmod
// here's a safe way to print out null pointeres
#define MIGHT_BE_NULL(x) ((x==NULL)? "(null)" : x)
// the device object
bx_sb16_c::bx_sb16_c(void)
{
put("SB16");
memset(&mpu401, 0, sizeof(mpu401));
memset(&dsp, 0, sizeof(dsp));
memset(&opl, 0, sizeof(opl));
currentdma8 = 0;
currentdma16 = 0;
mpu401.timer_handle = BX_NULL_TIMER_HANDLE;
dsp.timer_handle = BX_NULL_TIMER_HANDLE;
opl.timer_handle = BX_NULL_TIMER_HANDLE;
soundmod = NULL;
midimode = 0;
midifile = NULL;
wavemode = 0;
wavefile = NULL;
loglevel = 0;
logfile = NULL;
}
bx_sb16_c::~bx_sb16_c(void)
{
switch (midimode)
{
case 2:
if (MIDIDATA != NULL)
finishmidifile();
break;
case 1:
if (MPU.outputinit != 0)
BX_SB16_OUTPUT->closemidioutput();
break;
case 3:
if (MIDIDATA != NULL)
fclose(MIDIDATA);
break;
}
switch (wavemode)
{
case 2:
if (WAVEDATA != NULL)
finishvocfile();
break;
case 1:
if (DSP.outputinit != 0)
BX_SB16_OUTPUT->closewaveoutput();
if (DSP.inputinit != 0)
BX_SB16_OUTPUT->closewaveinput();
break;
case 3:
if (WAVEDATA != NULL)
fclose(WAVEDATA);
break;
}
delete(BX_SB16_OUTPUT);
delete [] DSP.dma.chunk;
if ((SIM->get_param_num(BXPN_SB16_LOGLEVEL)->get() > 0) && LOGFILE)
fclose(LOGFILE);
BX_DEBUG(("Exit"));
}
void bx_sb16_c::init(void)
{
unsigned addr, i;
// Read in values from config interface
bx_list_c *base = (bx_list_c*) SIM->get_param(BXPN_SOUND_SB16);
// Check if the device is disabled or not configured
if (!SIM->get_param_bool("enabled", base)->get()) {
BX_INFO(("SB16 disabled"));
// mark unused plugin for removal
((bx_param_bool_c*)((bx_list_c*)SIM->get_param(BXPN_PLUGIN_CTRL))->get_by_name("sb16"))->set(0);
return;
}
if ((strlen(SIM->get_param_string("logfile", base)->getptr()) < 1))
SIM->get_param_num("loglevel", base)->set(0);
if (SIM->get_param_num("loglevel", base)->get() > 0)
{
LOGFILE = fopen(SIM->get_param_string("logfile", base)->getptr(),"w"); // logfile for errors etc.
if (LOGFILE == NULL)
{
BX_ERROR(("Error opening file %s. Logging disabled.", SIM->get_param_string("logfile", base)->getptr()));
SIM->get_param_num("loglevel", base)->set(0);
}
}
BX_SB16_THIS midimode = SIM->get_param_num("midimode", base)->get();
BX_SB16_THIS wavemode = SIM->get_param_num("wavemode", base)->get();
BX_SB16_THIS dmatimer = SIM->get_param_num("dmatimer", base)->get();
BX_SB16_THIS loglevel = SIM->get_param_num("loglevel", base)->get();
char *wavefile = SIM->get_param_string(BXPN_SB16_WAVEFILE)->getptr();
if ((BX_SB16_THIS wavemode == 1) || (BX_SB16_THIS midimode == 1)) {
// let the output functions initialize
if (!strcmp(wavefile, "sdl")) {
BX_SB16_OUTPUT = DEV_sound_init_module("sdl", BX_SB16_THISP);
} else {
BX_SB16_OUTPUT = DEV_sound_init_module("default", BX_SB16_THISP);
}
if (BX_SB16_OUTPUT == NULL) {
writelog(MIDILOG(2), "Couldn't initialize output devices. Output disabled.");
BX_SB16_THIS midimode = 0;
BX_SB16_THIS wavemode = 0;
}
}
DSP.dma.chunk = new Bit8u[BX_SOUNDLOW_WAVEPACKETSIZE];
DSP.dma.chunkindex = 0;
if (BX_SB16_THIS wavemode == 1) {
int ret = BX_SB16_OUTPUT->openwaveoutput(wavefile);
if (ret != BX_SOUNDLOW_OK) {
writelog(WAVELOG(2), "Error: Could not open wave output device.");
BX_SB16_THIS wavemode = 0;
DSP.outputinit = 0;
} else {
DSP.outputinit = 1;
}
}
DSP.inputinit = 0;
MPU.outputinit = 0;
if (DSP.dma.chunk == NULL)
{
writelog(WAVELOG(2), "Couldn't allocate wave buffer - wave output disabled.");
BX_SB16_THIS wavemode = 0;
}
BX_INFO(("midi=%d,%s wave=%d,%s log=%d,%s dmatimer=%d",
BX_SB16_THIS midimode, MIGHT_BE_NULL(SIM->get_param_string("midifile", base)->getptr()),
BX_SB16_THIS wavemode, MIGHT_BE_NULL(SIM->get_param_string("wavefile", base)->getptr()),
BX_SB16_THIS loglevel, MIGHT_BE_NULL(SIM->get_param_string("logfile", base)->getptr()),
BX_SB16_THIS dmatimer));
// allocate the FIFO buffers - except for the MPUMIDICMD buffer
// these sizes are generous, 16 or 8 would probably be sufficient
MPU.datain.init((int) 64); // the input
MPU.dataout.init((int) 64); // and output
MPU.cmd.init((int) 64); // and command buffers
MPU.midicmd.init((int) 256); // and the midi command buffer (note- large SYSEX'es have to fit!)
DSP.datain.init((int) 64); // the DSP input
DSP.dataout.init((int) 64); // and output buffers
EMUL.datain.init((int) 64); // the emulator ports
EMUL.dataout.init((int) 64); // for changing emulator settings
// reset all parts of the hardware by
// triggering their reset functions
// reset the Emulator port
emul_write(0x00);
// reset the MPU401
mpu_command(0xff);
MPU.last_delta_time = 0xffffffff;
// reset the DSP
DSP.dma.highspeed = 0;
DSP.dma.mode = 0;
DSP.irqpending = 0;
DSP.midiuartmode = 0;
DSP.resetport = 1; // so that one call to dsp_reset is sufficient
dsp_reset(0); // (reset is 1 to 0 transition)
DSP.testreg = 0;
BX_SB16_IRQ = -1; // will be initialized later by the mixer reset
for (i=0; i<BX_SB16_MIX_REG; i++)
MIXER.reg[i] = 0xff;
MIXER.reg[0x00] = 0; // reset register
MIXER.reg[0x80] = 2; // IRQ 5
MIXER.reg[0x81] = 2; // 8-bit DMA 1, no 16-bit DMA
MIXER.reg[0x82] = 2 << 5; // no IRQ pending
MIXER.reg[0xfd] = 16; // ???
MIXER.reg[0xfe] = 6; // ???
set_irq_dma(); // set the IRQ and DMA
// call the mixer reset
mixer_writeregister(0x00);
mixer_writedata(0x00);
// reset the FM emulation
OPL.mode = fminit;
OPL.timer_running = 0;
opl_entermode(single);
// csp
memset(&BX_SB16_THIS csp_reg[0], 0, sizeof(BX_SB16_THIS csp_reg));
BX_SB16_THIS csp_reg[5] = 0x01;
BX_SB16_THIS csp_reg[9] = 0xf8;
// Allocate the IO addresses, 2x0..2xf, 3x0..3x4 and 388..38b
for (addr=BX_SB16_IO; addr<BX_SB16_IO+BX_SB16_IOLEN; addr++) {
DEV_register_ioread_handler(this, &read_handler, addr, "SB16", 1);
DEV_register_iowrite_handler(this, &write_handler, addr, "SB16", 1);
}
for (addr=BX_SB16_IOMPU; addr<BX_SB16_IOMPU+BX_SB16_IOMPULEN; addr++) {
DEV_register_ioread_handler(this, &read_handler, addr, "SB16", 1);
DEV_register_iowrite_handler(this, &write_handler, addr, "SB16", 1);
}
for (addr=BX_SB16_IOADLIB; addr<BX_SB16_IOADLIB+BX_SB16_IOADLIBLEN; addr++) {
DEV_register_ioread_handler(this, read_handler, addr, "SB16", 1);
DEV_register_iowrite_handler(this, write_handler, addr, "SB16", 1);
}
writelog(BOTHLOG(1),
"SB16 emulation initialised, IRQ %d, IO %03x/%03x/%03x, DMA %d/%d",
BX_SB16_IRQ, BX_SB16_IO, BX_SB16_IOMPU, BX_SB16_IOADLIB,
BX_SB16_DMAL, BX_SB16_DMAH);
// initialize the timers
if (MPU.timer_handle == BX_NULL_TIMER_HANDLE) {
MPU.timer_handle = bx_pc_system.register_timer
(BX_SB16_THISP, mpu_timer, 500000 / 384, 1, 1, "sb16.mpu");
// midi timer: active, continuous, 500000 / 384 seconds (384 = delta time, 500000 = sec per beat at 120 bpm. Don't change this!)
}
if (DSP.timer_handle == BX_NULL_TIMER_HANDLE) {
DSP.timer_handle = bx_pc_system.register_timer
(BX_SB16_THISP, dsp_dmatimer, 1, 1, 0, "sb16.dsp");
// dma timer: inactive, continuous, frequency variable
}
if (OPL.timer_handle == BX_NULL_TIMER_HANDLE) {
OPL.timer_handle = bx_pc_system.register_timer
(BX_SB16_THISP, opl_timer, 80, 1, 0, "sb16.opl");
// opl timer: inactive, continuous, frequency 80us
}
writelog(MIDILOG(4), "Timers initialized, midi %d, dma %d, opl %d",
MPU.timer_handle, DSP.timer_handle, OPL.timer_handle);
MPU.current_timer = 0;
// init runtime parameters
bx_list_c *misc_rt = (bx_list_c*)SIM->get_param(BXPN_MENU_RUNTIME_MISC);
misc_rt->add(SIM->get_param(BXPN_SB16_DMATIMER));
misc_rt->add(SIM->get_param(BXPN_SB16_LOGLEVEL));
SIM->get_param_num(BXPN_SB16_DMATIMER)->set_handler(sb16_param_handler);
SIM->get_param_num(BXPN_SB16_DMATIMER)->set_runtime_param(1);
SIM->get_param_num(BXPN_SB16_LOGLEVEL)->set_handler(sb16_param_handler);
SIM->get_param_num(BXPN_SB16_LOGLEVEL)->set_runtime_param(1);
}
void bx_sb16_c::reset(unsigned type)
{
}
void bx_sb16_c::register_state(void)
{
unsigned i, j;
char name[8];
bx_list_c *chip, *ins_map, *item, *patch;
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "sb16", "SB16 State");
bx_list_c *mpu = new bx_list_c(list, "mpu");
new bx_shadow_bool_c(mpu, "uartmode", &MPU.uartmode);
new bx_shadow_bool_c(mpu, "irqpending", &MPU.irqpending);
new bx_shadow_bool_c(mpu, "forceuartmode", &MPU.forceuartmode);
new bx_shadow_bool_c(mpu, "singlecommand", &MPU.singlecommand);
new bx_shadow_bool_c(mpu, "outputinit", &MPU.outputinit);
new bx_shadow_num_c(mpu, "current_timer", &MPU.current_timer);
new bx_shadow_num_c(mpu, "last_delta_time", &MPU.last_delta_time);
bx_list_c *patchtbl = new bx_list_c(mpu, "patchtable");
for (i=0; i<BX_SB16_PATCHTABLESIZE; i++) {
sprintf(name, "0x%02x", i);
patch = new bx_list_c(patchtbl, name);
new bx_shadow_num_c(patch, "banklsb", &MPU.banklsb[i]);
new bx_shadow_num_c(patch, "bankmsb", &MPU.bankmsb[i]);
new bx_shadow_num_c(patch, "program", &MPU.program[i]);
}
bx_list_c *dsp = new bx_list_c(list, "dsp");
new bx_shadow_num_c(dsp, "resetport", &DSP.resetport, BASE_HEX);
new bx_shadow_num_c(dsp, "speaker", &DSP.speaker, BASE_HEX);
new bx_shadow_num_c(dsp, "prostereo", &DSP.prostereo, BASE_HEX);
new bx_shadow_bool_c(dsp, "irqpending", &DSP.irqpending);
new bx_shadow_bool_c(dsp, "midiuartmode", &DSP.midiuartmode);
new bx_shadow_num_c(dsp, "testreg", &DSP.testreg, BASE_HEX);
bx_list_c *dma = new bx_list_c(dsp, "dma");
new bx_shadow_num_c(dma, "mode", &DSP.dma.mode);
new bx_shadow_num_c(dma, "bits", &DSP.dma.bits);
new bx_shadow_num_c(dma, "bps", &DSP.dma.bps);
new bx_shadow_num_c(dma, "format", &DSP.dma.format);
new bx_shadow_num_c(dma, "timer", &DSP.dma.timer);
new bx_shadow_bool_c(dma, "fifo", &DSP.dma.fifo);
new bx_shadow_bool_c(dma, "output", &DSP.dma.output);
new bx_shadow_bool_c(dma, "stereo", &DSP.dma.stereo);
new bx_shadow_bool_c(dma, "issigned", &DSP.dma.issigned);
new bx_shadow_bool_c(dma, "highspeed", &DSP.dma.highspeed);
new bx_shadow_num_c(dma, "count", &DSP.dma.count);
new bx_shadow_num_c(dma, "chunkindex", &DSP.dma.chunkindex);
new bx_shadow_num_c(dma, "chunkcount", &DSP.dma.chunkcount);
new bx_shadow_num_c(dma, "timeconstant", &DSP.dma.timeconstant);
new bx_shadow_num_c(dma, "blocklength", &DSP.dma.blocklength);
new bx_shadow_num_c(dma, "samplerate", &DSP.dma.samplerate);
new bx_shadow_bool_c(dsp, "outputinit", &DSP.outputinit);
new bx_shadow_bool_c(dsp, "inputinit", &DSP.inputinit);
new bx_shadow_data_c(list, "chunk", DSP.dma.chunk, BX_SOUNDLOW_WAVEPACKETSIZE);
bx_list_c *csp = new bx_list_c(list, "csp_reg");
for (i=0; i<256; i++) {
sprintf(name, "0x%02x", i);
new bx_shadow_num_c(csp, name, &BX_SB16_THIS csp_reg[i], BASE_HEX);
}
bx_list_c *opl = new bx_list_c(list, "opl");
new bx_shadow_num_c(opl, "mode", (Bit8u*)&OPL.mode);
new bx_shadow_num_c(opl, "timer_running", &OPL.timer_running);
new bx_shadow_num_c(opl, "midichannels", &OPL.midichannels);
new bx_shadow_num_c(opl, "drumchannel", &OPL.drumchannel);
for (i=0; i<2; i++) {
sprintf(name, "chip%d", i+1);
chip = new bx_list_c(opl, name);
new bx_shadow_num_c(chip, "index", &OPL.index[i]);
new bx_shadow_num_c(chip, "wsenable", &OPL.wsenable[i]);
new bx_shadow_num_c(chip, "timer1", &OPL.timer[i*2]);
new bx_shadow_num_c(chip, "timer2", &OPL.timer[i*2+1]);
new bx_shadow_num_c(chip, "timerinit1", &OPL.timerinit[i*2]);
new bx_shadow_num_c(chip, "timerinit2", &OPL.timerinit[i*2+1]);
new bx_shadow_num_c(chip, "tmask", &OPL.tmask[i]);
new bx_shadow_num_c(chip, "tflag", &OPL.tflag[i]);
new bx_shadow_num_c(chip, "percmode", &OPL.percmode[i]);
new bx_shadow_num_c(chip, "cyhhnote", &OPL.cyhhnote[i]);
new bx_shadow_num_c(chip, "cyhhon", &OPL.cyhhon[i]);
}
bx_list_c *oper = new bx_list_c(opl, "oper");
for (i=0; i<BX_SB16_FM_NOP; i++) {
sprintf(name, "%d", i);
item = new bx_list_c(oper, name);
for (j=0; j<BX_SB16_FM_OPB; j++) {
sprintf(name, "%d", j);
new bx_shadow_num_c(item, name, &OPL.oper[i][j]);
}
}
bx_list_c *chan = new bx_list_c(opl, "chan");
for (i=0; i<BX_SB16_FM_NCH; i++) {
sprintf(name, "%d", i);
item = new bx_list_c(chan, name);
new bx_shadow_num_c(item, "nop", &OPL.chan[i].nop);
new bx_shadow_num_c(item, "ncarr", &OPL.chan[i].ncarr);
new bx_shadow_num_c(item, "opnum1", &OPL.chan[i].opnum[0]);
new bx_shadow_num_c(item, "opnum2", &OPL.chan[i].opnum[1]);
new bx_shadow_num_c(item, "opnum3", &OPL.chan[i].opnum[2]);
new bx_shadow_num_c(item, "opnum4", &OPL.chan[i].opnum[3]);
new bx_shadow_num_c(item, "freq", &OPL.chan[i].freq);
new bx_shadow_num_c(item, "afreq", &OPL.chan[i].afreq);
new bx_shadow_num_c(item, "midichan", &OPL.chan[i].midichan);
new bx_shadow_bool_c(item, "needprogch", &OPL.chan[i].needprogch);
new bx_shadow_num_c(item, "midinote", &OPL.chan[i].midinote);
new bx_shadow_bool_c(item, "midion", &OPL.chan[i].midion);
new bx_shadow_num_c(item, "midibend", &OPL.chan[i].midibend);
new bx_shadow_num_c(item, "outputlevel1", &OPL.chan[i].outputlevel[0]);
new bx_shadow_num_c(item, "outputlevel2", &OPL.chan[i].outputlevel[1]);
new bx_shadow_num_c(item, "outputlevel3", &OPL.chan[i].outputlevel[2]);
new bx_shadow_num_c(item, "outputlevel4", &OPL.chan[i].outputlevel[3]);
new bx_shadow_num_c(item, "midivol", &OPL.chan[i].midivol);
}
new bx_shadow_num_c(list, "mixer_regindex", &MIXER.regindex, BASE_HEX);
bx_list_c *mixer = new bx_list_c(list, "mixer_reg");
for (i=0; i<BX_SB16_MIX_REG; i++) {
sprintf(name, "0x%02x", i);
new bx_shadow_num_c(mixer, name, &MIXER.reg[i], BASE_HEX);
}
bx_list_c *emul = new bx_list_c(list, "emul");
new bx_shadow_num_c(emul, "remaps", &EMUL.remaps);
bx_list_c *remap = new bx_list_c(emul, "remaplist");
for (i=0; i<EMUL.remaps; i++) {
sprintf(name, "0x%02x", i);
ins_map = new bx_list_c(remap, name);
new bx_shadow_num_c(ins_map, "oldbankmsb", &EMUL.remaplist[i].oldbankmsb);
new bx_shadow_num_c(ins_map, "oldbanklsb", &EMUL.remaplist[i].oldbanklsb);
new bx_shadow_num_c(ins_map, "oldprogch", &EMUL.remaplist[i].oldprogch);
new bx_shadow_num_c(ins_map, "newbankmsb", &EMUL.remaplist[i].newbankmsb);
new bx_shadow_num_c(ins_map, "newbanklsb", &EMUL.remaplist[i].newbanklsb);
new bx_shadow_num_c(ins_map, "newprogch", &EMUL.remaplist[i].newprogch);
}
}
void bx_sb16_c::after_restore_state(void)
{
set_irq_dma();
}
// the timer functions
void bx_sb16_c::mpu_timer (void *this_ptr)
{
((bx_sb16_c *) this_ptr)->mpu401.current_timer++;
}
void bx_sb16_c::dsp_dmatimer(void *this_ptr)
{
bx_sb16_c *This = (bx_sb16_c *) this_ptr;
// raise the DRQ line. It is then lowered by the dma read / write functions
// when the next byte has been sent / received.
// However, don't do this if the next byte/word will fill up the
// output buffer and the output functions are not ready yet
// or if buffer is empty in input mode.
if ((BX_SB16_THIS wavemode != 1) ||
((This->dsp.dma.chunkindex + 1 < BX_SOUNDLOW_WAVEPACKETSIZE) &&
(This->dsp.dma.count > 0)) ||
(BX_SB16_OUTPUT->waveready() == BX_SOUNDLOW_OK)) {
if (((This->dsp.dma.output == 0) && (This->dsp.dma.chunkcount > 0)) ||
(This->dsp.dma.output == 1)) {
if ((DSP.dma.bits == 8) || (BX_SB16_DMAH == 0)) {
DEV_dma_set_drq(BX_SB16_DMAL, 1);
} else {
DEV_dma_set_drq(BX_SB16_DMAH, 1);
}
}
}
}
void bx_sb16_c::opl_timer (void *this_ptr)
{
((bx_sb16_c *) this_ptr)->opl_timerevent();
}
// the various IO handlers
// The DSP/FM music part
// dsp_reset() resets the DSP after the sequence 1/0. Returns
// 0xaa on the data port
void bx_sb16_c::dsp_reset(Bit32u value)
{
writelog(WAVELOG(4), "DSP Reset port write value %x", value);
// just abort high speed mode if it is set
if (DSP.dma.highspeed != 0)
{
DSP.dma.highspeed = 0;
writelog(WAVELOG(4), "High speed mode aborted");
return;
}
if ((DSP.resetport == 1) && (value == 0))
{
// 1-0 sequences to reset port, do one of the following:
// if in UART MIDI mode, abort it, don't reset
// if in Highspeed mode (not SB16!), abort it, don't reset
// otherwise reset
if (DSP.midiuartmode != 0)
{ // abort UART MIDI mode
DSP.midiuartmode = 0;
writelog(MIDILOG(4), "DSP UART MIDI mode aborted");
return;
}
// do the reset
writelog(WAVELOG(4), "DSP resetting...");
if (DSP.irqpending != 0)
{
DEV_pic_lower_irq(BX_SB16_IRQ);
writelog(WAVELOG(4), "DSP reset: IRQ untriggered");
}
if (DSP.dma.mode != 0)
{
writelog(WAVELOG(4), "DSP reset: DMA aborted");
DSP.dma.mode = 1; // no auto init anymore
dsp_dmadone();
}
DSP.resetport = 0;
DSP.speaker = 0;
DSP.irqpending = 0;
DSP.midiuartmode = 0;
DSP.prostereo = 0;
DSP.dma.mode = 0;
DSP.dma.fifo = 0;
DSP.dma.output = 0;
DSP.dma.stereo = 0;
DSP.dma.issigned = 0;
DSP.dma.count = 0;
DSP.dma.highspeed = 0;
DSP.dma.chunkindex = 0;
DSP.dataout.reset(); // clear the buffers
DSP.datain.reset();
DSP.dataout.put(0xaa); // acknowledge the reset
}
else
DSP.resetport = value;
}
// dsp_dataread() reads the data port of the DSP
Bit32u bx_sb16_c::dsp_dataread()
{
Bit8u value = 0xff;
// if we are in MIDI UART mode, call the mpu401 part instead
if (DSP.midiuartmode != 0)
value = mpu_dataread();
else
{
// default behaviour: if none available, return last byte again
// if (DSP.dataout.empty() == 0)
DSP.dataout.get(&value);
}
writelog(WAVELOG(4), "DSP Data port read, result = %x", value);
return(value);
}
// dsp_datawrite() writes a command or data byte to the data port
void bx_sb16_c::dsp_datawrite(Bit32u value)
{
int bytesneeded;
Bit8u index = 0, mode = 0, value8 = 0;
Bit16u length = 0;
writelog(WAVELOG(4), "DSP Data port write, value %x", value);
// in high speed mode, any data passed to DSP is a sample
if (DSP.dma.highspeed != 0)
{
dsp_getsamplebyte(value);
return;
}
// route information to mpu401 part if in MIDI UART mode
if (DSP.midiuartmode != 0)
{
mpu_datawrite(value);
return;
}
if (DSP.datain.hascommand() == 1) // already a command pending, add to argument list
{
if (DSP.datain.put(value) == 0)
{
writelog(WAVELOG(3), "DSP command buffer overflow for command %02x",
DSP.datain.currentcommand());
}
}
else // no command pending, set one up
{
bytesneeded = 0; // find out how many arguments the command takes
switch (value)
{ // all fallbacks intended!
case 0x04:
case 0x0f:
case 0x10:
case 0x40:
case 0x38:
case 0xe0:
case 0xe4:
case 0xf9:
bytesneeded = 1;
break;
case 0x05:
case 0x0e:
case 0x14:
case 0x16:
case 0x17:
case 0x41:
case 0x42:
case 0x48:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x80:
bytesneeded = 2;
break;
// 0xb0 ... 0xbf:
case 0xb0:
case 0xb1:
case 0xb2:
case 0xb3:
case 0xb4:
case 0xb5:
case 0xb6:
case 0xb7:
case 0xb8:
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf:
// 0xc0 ... 0xcf:
case 0xc0:
case 0xc1:
case 0xc2:
case 0xc3:
case 0xc4:
case 0xc5:
case 0xc6:
case 0xc7:
case 0xc8:
case 0xc9:
case 0xca:
case 0xcb:
case 0xcc:
case 0xcd:
case 0xce:
case 0xcf:
bytesneeded = 3;
break;
}
DSP.datain.newcommand(value, bytesneeded);
}
if (DSP.datain.commanddone() == 1) // command is complete, process it
{
writelog(WAVELOG(4), "DSP command %x with %d arg bytes",
DSP.datain.currentcommand(), DSP.datain.bytes());
switch (DSP.datain.currentcommand())
{
// DSP commands - comments are the parameters for
// this command, and/or the output
// ASP commands (Advanced Signal Processor)
// undocumented (?), just from looking what an SB16 does
case 0x04:
DSP.datain.get(&value8);
break;
case 0x05:
DSP.datain.get(&value8);
DSP.datain.get(&value8);
break;
case 0x0e:
DSP.datain.get(&index);
DSP.datain.get(&value8);
BX_SB16_THIS csp_reg[index] = value;
break;
case 0x0f:
DSP.datain.get(&index);
DSP.dataout.put(BX_SB16_THIS csp_reg[index]);
break;
// direct mode DAC
case 0x10:
// 1: 8bit sample
DSP.datain.get(&value8); // sample is ignored
break;
// uncomp'd, normal DAC DMA
case 0x14:
// 1,2: lo(length) hi(length)
DSP.datain.getw(&length);
dsp_dma(0xc0, 0x00, length, 0);
break;
// 2-bit comp'd, normal DAC DMA, no ref byte
case 0x16:
// 1,2: lo(length) hi(length)
DSP.datain.getw(&length);
dsp_dma(0xc0, 0x00, length, 2);
break;
// 2-bit comp'd, normal DAC DMA, 1 ref byte
case 0x17:
// 1,2: lo(length) hi(length)
DSP.datain.getw(&length);
dsp_dma(0xc0, 0x00, length, 2|8);
break;
// uncomp'd, auto DAC DMA
case 0x1c:
// none
dsp_dma(0xc4, 0x00, DSP.dma.blocklength, 0);
break;
// 2-bit comp'd, auto DAC DMA, 1 ref byte
case 0x1f:
// none
dsp_dma(0xc4, 0x00, DSP.dma.blocklength, 2|8);
break;
// direct mode ADC
case 0x20:
// o1: 8bit sample
DSP.dataout.put(0x80); // put a silence, for now.
break;
// uncomp'd, normal ADC DMA
case 0x24:
// 1,2: lo(length) hi(length)
DSP.datain.getw(&length);
dsp_dma(0xc8, 0x00, length, 0);
break;
// uncomp'd, auto ADC DMA
case 0x2c:
// none
dsp_dma(0xcc, 0x00, DSP.dma.blocklength, 0);
break;
// ? polling mode MIDI input
case 0x30:
break;
// ? interrupt mode MIDI input
case 0x31:
break;
// 0x34..0x37: UART mode MIDI output
case 0x34:
// UART mode MIDI input/output
case 0x35:
// UART polling mode MIDI IO with time stamp
case 0x36:
// UART interrupt mode MIDI IO with time stamp
case 0x37:
// Fallbacks intended - all set the midi uart mode
DSP.midiuartmode = 1;
break;
// MIDI output
case 0x38:
DSP.datain.get(&value8);
// route to mpu401 part
mpu_datawrite(value8);
break;
// set time constant
case 0x40:
// 1: timeconstant
DSP.datain.get(&value8);
DSP.dma.timeconstant = value8 << 8;
DSP.dma.samplerate = (Bit32u) 256000000L / ((Bit32u) 65536L - (Bit32u) DSP.dma.timeconstant);
break;
// set samplerate for input
case 0x41:
// (fallback intended)
// set samplerate for output
case 0x42:
// 1,2: hi(frq) lo(frq)
DSP.datain.getw1(&(DSP.dma.samplerate));
DSP.dma.timeconstant = 65536 - (Bit32u) 256000000 / (Bit32u) DSP.dma.samplerate;
break;
// set block length
case 0x48:
// 1,2: lo(blk len) hi(blk len)
DSP.datain.getw(&(DSP.dma.blocklength));
break;
// 4-bit comp'd, normal DAC DMA, no ref byte
case 0x74:
// 1,2: lo(length) hi(length)
DSP.datain.getw(&length);
dsp_dma(0xc0, 0x00, length, 4);
break;
// 4-bit comp'd, normal DAC DMA, 1 ref byte
case 0x75:
// 1,2: lo(length) hi(length)
DSP.datain.getw(&length);
dsp_dma(0xc0, 0x00, length, 4|8);
break;
// 3-bit comp'd, normal DAC DMA, no ref byte
case 0x76:
// 1,2: lo(length) hi(length)
DSP.datain.getw(&length);
dsp_dma(0xc0, 0x00, length, 3);
break;
// 3-bit comp'd, normal DAC DMA, 1 ref byte
case 0x77:
// 1,2: lo(length) hi(length)
DSP.datain.getw(&length);
dsp_dma(0xc0, 0x00, length, 3|8);
break;
// 4-bit comp'd, auto DAC DMA, 1 ref byte
case 0x7d:
// none
dsp_dma(0xc4, 0x00, DSP.dma.blocklength, 4|8);
break;
// 3-bit comp'd, auto DAC DMA, 1 ref byte
case 0x7f:
// none
dsp_dma(0xc4, 0x00, DSP.dma.blocklength, 3|8);
break;
// silence period
case 0x80:
// 1,2: lo(silence) hi(silence) (len in samples)
DSP.datain.getw(&length);
// only handled for VOC output so far
if (BX_SB16_THIS wavemode == 2)
{
Bit8u temparray[3] = { length & 0xff, length >> 8, DSP.dma.timeconstant >> 8 };
writevocblock(3, 3, temparray, 0, NULL);
}
break;
// 8-bit auto DAC DMA, highspeed
case 0x90:
//none
dsp_dma(0xc4, 0x00, DSP.dma.blocklength, 16);
break;
// 8-bit normal DAC DMA, highspeed
case 0x91:
//none
dsp_dma(0xc0, 0x00, DSP.dma.blocklength, 16);
break;
// 8-bit auto ADC DMA, highspeed
case 0x98:
//none
dsp_dma(0xcc, 0x00, DSP.dma.blocklength, 16);
break;
case 0x99: // 8-bit normal DMA
//none
dsp_dma(0xc8, 0x00, DSP.dma.blocklength, 16);
break;
// switch to mono for SBPro DAC/ADC
case 0xa0:
// none
DSP.prostereo = 1;
break;
// switch to stereo for SBPro DAC/ADC
case 0xa8:
//// none
DSP.prostereo = 2;
break;
// 0xb0 ... 0xbf:
// 16 bit DAC/ADC DMA, general commands
// fallback intended
case 0xb0:
case 0xb1:
case 0xb2:
case 0xb3:
case 0xb4:
case 0xb5:
case 0xb6:
case 0xb7:
case 0xb8:
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf:
// 0xc0 ... 0xcf:
// 8 bit DAC/ADC DMA, general commands
case 0xc0:
case 0xc1:
case 0xc2:
case 0xc3:
case 0xc4:
case 0xc5:
case 0xc6:
case 0xc7:
case 0xc8:
case 0xc9:
case 0xca:
case 0xcb:
case 0xcc:
case 0xcd:
case 0xce:
case 0xcf:
DSP.datain.get(&mode);
DSP.datain.getw(&length);
dsp_dma(DSP.datain.currentcommand(), mode, length, 0);
break;
// pause 8 bit DMA transfer
case 0xd0:
// none
if (DSP.dma.mode != 0)
dsp_disabledma();
break;
// speaker on
case 0xd1:
// none
DSP.speaker = 1;
break;
// speaker off
case 0xd3:
// none
DSP.speaker = 0;
break;
// continue 8 bit DMA, see 0xd0
case 0xd4:
// none
if (DSP.dma.mode != 0)
dsp_enabledma();
break;
// pause 16 bit DMA
case 0xd5:
// none
if (DSP.dma.mode != 0)
dsp_disabledma();
break;
// continue 16 bit DMA, see 0xd5
case 0xd6:
// none
if (DSP.dma.mode != 0)
dsp_enabledma();
break;
// read speaker on/off (out ff=on, 00=off)
case 0xd8:
// none, o1: speaker; ff/00
DSP.dataout.put((DSP.speaker == 1)?0xff:0x00);
break;
// stop 16 bit auto DMA
case 0xd9:
// none
if (DSP.dma.mode != 0)
{
DSP.dma.mode = 1; // no auto init anymore
dsp_dmadone();
}
break;
// stop 8 bit auto DMA
case 0xda:
// none
if (DSP.dma.mode != 0)
{
DSP.dma.mode = 1; // no auto init anymore
dsp_dmadone();
}
break;
// DSP identification
case 0xe0:
DSP.datain.get(&value8);
DSP.dataout.put(~value8);
break;
// get version, out 2 bytes (major, minor)
case 0xe1:
// none, o1/2: version major.minor
DSP.dataout.put(4);
if (DSP.dataout.put(5) == 0)
{
writelog(WAVELOG(3), "DSP version couldn't be written - buffer overflow");
}
break;
case 0xe3:
// none, output: Copyright string
// the Windows driver needs the exact text, otherwise it
// won't load. Same for diagnose.exe
DSP.dataout.puts("COPYRIGHT (C) CREATIVE TECHNOLOGY LTD, 1992.");
DSP.dataout.put(0); // need extra string end
break;
// write test register
case 0xe4:
DSP.datain.get(&DSP.testreg);
break;
// read test register
case 0xe8:
DSP.dataout.put(DSP.testreg);
break;
// Trigger 8-bit IRQ
case 0xf2:
DSP.dataout.put(0xaa);
DSP.irqpending = 1;
MIXER.reg[0x82] |= 1; // reg 82 shows the kind of IRQ
DEV_pic_raise_irq(BX_SB16_IRQ);
break;
// ??? - Win98 needs this
case 0xf9:
DSP.datain.get(&value8);
switch (value8) {
case 0x0e:
DSP.dataout.put(0xff);
break;
case 0x0f:
DSP.dataout.put(0x07);
break;
case 0x37:
DSP.dataout.put(0x38);
break;
default:
DSP.dataout.put(0x00);
}
break;
// unknown command
default:
writelog(WAVELOG(3), "unknown DSP command %x, ignored",
DSP.datain.currentcommand());
break;
}
DSP.datain.clearcommand();
DSP.datain.flush();
}
}
// dsp_dma() initiates all kinds of dma transfers
void bx_sb16_c::dsp_dma(Bit8u command, Bit8u mode, Bit16u length, Bit8u comp)
{
int ret;
bx_list_c *base;
// command: 8bit, 16bit, in/out, single/auto, fifo
// mode: mono/stereo, signed/unsigned
// (for info on command and mode see sound blaster programmer's manual,
// cmds bx and cx)
// length: number of samples - not number of bytes
// comp: bit-coded are: type of compression; ref-byte; highspeed
// D0..D2: 0=none, 2,3,4 bits ADPCM
// D3: ref-byte
// D6: highspeed
writelog(WAVELOG(4), "DMA initialized. Cmd %02x, mode %02x, length %d, comp %d",
command, mode, length, comp);
if ((command >> 4) == 0xb) // 0xb? = 16 bit DMA
{
DSP.dma.bits = 16;
DSP.dma.bps = 2;
}
else // 0xc? = 8 bit DMA
{
DSP.dma.bits = 8;
DSP.dma.bps = 1;
}
// Prevent division by zero in some instances
if (DSP.dma.samplerate == 0)
DSP.dma.samplerate= 10752;
command &= 0x0f;
DSP.dma.output = 1 - (command >> 3); // 1=output, 0=input
DSP.dma.mode = 1 + ((command >> 2) & 1); // 0=none, 1=normal, 2=auto
DSP.dma.fifo = (command >> 1) & 1; // ? not sure what this is
DSP.dma.stereo = (mode >> 5) & 1;
if (DSP.dma.stereo != 0)
DSP.dma.bps *= 2;
DSP.dma.blocklength = length;
DSP.dma.issigned = (mode >> 4) & 1;
DSP.dma.highspeed = (comp >> 4) & 1;
DSP.dma.chunkindex = 0;
DSP.dma.chunkcount = 0;
Bit32u sampledatarate = (Bit32u) DSP.dma.samplerate * (Bit32u) DSP.dma.bps;
if ((DSP.dma.bits == 16) && (BX_SB16_DMAH != 0)) {
DSP.dma.count = (DSP.dma.blocklength + 1) * (DSP.dma.bps / 2) - 1;
DSP.dma.timer = BX_SB16_THIS dmatimer / (sampledatarate / 2) * BX_DMA_BUFFER_SIZE;
} else {
DSP.dma.count = (DSP.dma.blocklength + 1) * DSP.dma.bps - 1;
DSP.dma.timer = BX_SB16_THIS dmatimer / sampledatarate * BX_DMA_BUFFER_SIZE;
}
writelog(WAVELOG(5), "DMA is %db, %dHz, %s, %s, mode %d, %s, %s, %d bps, %d usec/DMA",
DSP.dma.bits, DSP.dma.samplerate, (DSP.dma.stereo != 0)?"stereo":"mono",
(DSP.dma.output == 1)?"output":"input", DSP.dma.mode,
(DSP.dma.issigned == 1)?"signed":"unsigned",
(DSP.dma.highspeed == 1)?"highspeed":"normal speed",
sampledatarate, DSP.dma.timer);
DSP.dma.format = DSP.dma.issigned | ((comp & 7) << 1) | ((comp & 8) << 4);
// write the output to the device/file
if (DSP.dma.output == 1) {
if (BX_SB16_THIS wavemode == 1) {
if (DSP.outputinit == 1) {
ret = BX_SB16_OUTPUT->startwaveplayback(DSP.dma.samplerate, DSP.dma.bits, DSP.dma.stereo, DSP.dma.format);
if (ret != BX_SOUNDLOW_OK) {
BX_SB16_THIS wavemode = 0;
writelog(WAVELOG(2), "Error: Could not start wave playback.");
}
}
} else if ((BX_SB16_THIS wavemode == 2) ||
(BX_SB16_THIS wavemode == 3)) {
base = (bx_list_c*) SIM->get_param(BXPN_SOUND_SB16);
WAVEDATA = fopen(SIM->get_param_string("wavefile", base)->getptr(),"wb");
if (WAVEDATA == NULL) {
writelog (WAVELOG(2), "Error opening file %s. Wavemode disabled.",
SIM->get_param_string("wavefile", base)->getptr());
BX_SB16_THIS wavemode = 0;
} else if (BX_SB16_THIS wavemode == 2) {
initvocfile();
}
}
DSP.dma.chunkcount = sampledatarate / 10; // 0.1 sec
if (DSP.dma.chunkcount > BX_SOUNDLOW_WAVEPACKETSIZE) {
DSP.dma.chunkcount = BX_SOUNDLOW_WAVEPACKETSIZE;
}
} else {
if (BX_SB16_THIS wavemode == 1) {
if (DSP.inputinit == 0) {
ret = BX_SB16_OUTPUT->openwaveinput(SIM->get_param_string(BXPN_SB16_WAVEFILE)->getptr(), sb16_adc_handler);
if (ret != BX_SOUNDLOW_OK) {
BX_SB16_THIS wavemode = 0;
writelog(WAVELOG(2), "Error: Could not open wave input device.");
} else {
DSP.inputinit = 1;
}
}
if (DSP.inputinit == 1) {
ret = BX_SB16_OUTPUT->startwaverecord(DSP.dma.samplerate, DSP.dma.bits, DSP.dma.stereo, DSP.dma.format);
if (ret != BX_SOUNDLOW_OK) {
BX_SB16_THIS wavemode = 0;
writelog(WAVELOG(2), "Error: Could not start wave record.");
}
}
}
DSP.dma.chunkcount = 0;
}
dsp_enabledma();
}
Bit32u bx_sb16_c::sb16_adc_handler(void *this_ptr, Bit32u buflen)
{
bx_sb16_c *class_ptr = (bx_sb16_c*)this_ptr;
class_ptr->dsp_adc_handler(buflen);
return 0;
}
Bit32u bx_sb16_c::dsp_adc_handler(Bit32u buflen)
{
Bit32u len;
len = DSP.dma.chunkcount - DSP.dma.chunkindex;
if (len > 0) {
memcpy(DSP.dma.chunk, DSP.dma.chunk+DSP.dma.chunkindex, len);
DSP.dma.chunkcount = len;
}
DSP.dma.chunkindex = 0;
if ((DSP.dma.chunkcount + buflen) > BX_SOUNDLOW_WAVEPACKETSIZE) {
DSP.dma.chunkcount = BX_SOUNDLOW_WAVEPACKETSIZE;
len = DSP.dma.chunkcount + buflen - BX_SOUNDLOW_WAVEPACKETSIZE;
BX_DEBUG(("dsp_adc_handler(): unhandled len=%d", len));
} else {
DSP.dma.chunkcount += buflen;
len = 0;
}
BX_SB16_OUTPUT->getwavepacket(DSP.dma.chunkcount, DSP.dma.chunk);
return len;
}
// dsp_enabledma(): Start the DMA timer and thus the transfer
void bx_sb16_c::dsp_enabledma()
{
bx_pc_system.activate_timer(DSP.timer_handle, DSP.dma.timer, 1);
}
// dsp_disabledma(): Stop the DMA timer and thus the transfer, but don't abort it
void bx_sb16_c::dsp_disabledma()
{
bx_pc_system.deactivate_timer(DSP.timer_handle);
}
// dsp_bufferstatus() checks if the DSP is ready for data/commands
Bit32u bx_sb16_c::dsp_bufferstatus()
{
Bit32u result = 0x7f;
// MSB set -> not ready for commands
if (DSP.datain.full() == 1) result |= 0x80;
writelog(WAVELOG(4), "DSP Buffer status read, result %x", result);
return(result);
}
// dsp_status() checks if the DSP is ready to send data
Bit32u bx_sb16_c::dsp_status()
{
Bit32u result = 0x7f;
// read might be to acknowledge IRQ
if (DSP.irqpending != 0)
{
MIXER.reg[0x82] &= (~0x01);
writelog(WAVELOG(4), "8-bit DMA or SBMIDI IRQ acknowledged");
if ((MIXER.reg[0x82] & 0x07) == 0) {
DSP.irqpending = 0;
DEV_pic_lower_irq(BX_SB16_IRQ);
}
}
// if buffer is not empty, there is data to be read
if (DSP.dataout.empty() == 0) result |= 0x80;
writelog(WAVELOG(4), "DSP output status read, result %x", result);
return(result);
}
// dsp_irq16ack() notifies that the 16bit DMA IRQ has been acknowledged
Bit32u bx_sb16_c::dsp_irq16ack()
{
Bit32u result = 0xff;
if (DSP.irqpending != 0)
{
MIXER.reg[0x82] &= (~0x02);
if ((MIXER.reg[0x82] & 0x07) == 0) {
DSP.irqpending = 0;
DEV_pic_lower_irq(BX_SB16_IRQ);
}
writelog(WAVELOG(4), "16-bit DMA IRQ acknowledged");
}
else
writelog(WAVELOG(3), "16-bit DMA IRQ acknowledged but not active!");
return result;
}
// the DMA handlers
// highlevel input and output handlers - rerouting to/from file,device
// write a wave packet to the output device
void bx_sb16_c::dsp_sendwavepacket()
{
switch (BX_SB16_THIS wavemode)
{
case 1:
BX_SB16_OUTPUT->sendwavepacket(DSP.dma.chunkindex, DSP.dma.chunk);
break;
case 3:
fwrite(DSP.dma.chunk, 1, DSP.dma.chunkindex, WAVEDATA);
break;
case 2:
Bit8u temparray[12] =
{ DSP.dma.samplerate & 0xff, DSP.dma.samplerate >> 8, 0, 0,
DSP.dma.bits, DSP.dma.stereo + 1, 0, 0, 0, 0, 0, 0 };
switch ((DSP.dma.format >> 1) & 7)
{
case 2:
temparray[7] = 3;
break;
case 3:
temparray[7] = 2;
break;
case 4:
temparray[7] = 1;
break;
}
if (DSP.dma.bits == 16)
temparray[7] = 4;
writevocblock(9, 12, temparray, DSP.dma.chunkindex, DSP.dma.chunk);
break;
}
DSP.dma.chunkindex = 0;
}
// put a sample byte into the output buffer
void bx_sb16_c::dsp_getsamplebyte(Bit8u value)
{
if (DSP.dma.chunkindex < DSP.dma.chunkcount)
DSP.dma.chunk[DSP.dma.chunkindex++] = value;
if (DSP.dma.chunkindex >= DSP.dma.chunkcount)
dsp_sendwavepacket();
}
// read a sample byte from the input buffer
Bit8u bx_sb16_c::dsp_putsamplebyte()
{
Bit8u value = DSP.dma.chunk[DSP.dma.chunkindex++];
if (DSP.dma.chunkindex >= DSP.dma.chunkcount) {
DSP.dma.chunkcount = 0;
DSP.dma.chunkindex = 0;
}
return value;
}
// called when the last byte of a DMA transfer has been received/sent
void bx_sb16_c::dsp_dmadone()
{
writelog(WAVELOG(4), "DMA transfer done, triggering IRQ");
if ((DSP.dma.output == 1) && (DSP.dma.mode != 2)) {
dsp_sendwavepacket(); // flush the output
if (BX_SB16_THIS wavemode == 1) {
BX_SB16_OUTPUT->stopwaveplayback();
} else if (BX_SB16_THIS wavemode != 0) {
fflush(WAVEDATA);
}
} else if ((DSP.dma.output == 0) && (DSP.dma.mode != 2)) {
if (BX_SB16_THIS wavemode == 1) {
BX_SB16_OUTPUT->stopwaverecord();
}
}
// generate the appropriate IRQ
if (DSP.dma.bits == 8)
MIXER.reg[0x82] |= 1;
else
MIXER.reg[0x82] |= 2;
DEV_pic_raise_irq(BX_SB16_IRQ);
DSP.irqpending = 1;
// if auto-DMA, reinitialize
if (DSP.dma.mode == 2)
{
if ((DSP.dma.bits == 16) && (BX_SB16_DMAH != 0)) {
DSP.dma.count = (DSP.dma.blocklength + 1) * (DSP.dma.bps / 2) - 1;
} else {
DSP.dma.count = (DSP.dma.blocklength + 1) * DSP.dma.bps - 1;
}
writelog(WAVELOG(4), "auto-DMA reinitializing to length %d", DSP.dma.count);
}
else
{
DSP.dma.mode = 0;
dsp_disabledma();
}
}
// now the actual transfer routines, called by the DMA controller
// note that read = from application to soundcard (output),
// and write = from soundcard to application (input)
Bit16u bx_sb16_c::dma_read8(Bit8u *buffer, Bit16u maxlen)
{
Bit16u len = 0;
DEV_dma_set_drq(BX_SB16_DMAL, 0); // the timer will raise it again
writelog(WAVELOG(5), "Received 8-bit DMA: 0x%02x, %d remaining ",
buffer[0], DSP.dma.count);
do {
dsp_getsamplebyte(buffer[len++]);
DSP.dma.count--;
} while ((len < maxlen) && (DSP.dma.count != 0xffff));
if (DSP.dma.count == 0xffff) // last byte received
dsp_dmadone();
return len;
}
Bit16u bx_sb16_c::dma_write8(Bit8u *buffer, Bit16u maxlen)
{
Bit16u len = 0;
DEV_dma_set_drq(BX_SB16_DMAL, 0); // the timer will raise it again
do {
buffer[len++] = dsp_putsamplebyte();
DSP.dma.count--;
} while ((len < maxlen) && (DSP.dma.count != 0xffff));
writelog(WAVELOG(5), "Sent 8-bit DMA: 0x%02x, %d remaining ",
buffer[0], DSP.dma.count);
if (DSP.dma.count == 0xffff) // last byte sent
dsp_dmadone();
return len;
}
Bit16u bx_sb16_c::dma_read16(Bit16u *buffer, Bit16u maxlen)
{
Bit16u len = 0;
Bit8u *buf8;
DEV_dma_set_drq(BX_SB16_DMAH, 0); // the timer will raise it again
writelog(WAVELOG(5), "Received 16-bit DMA: 0x%04x, %d remaining ",
buffer[0], DSP.dma.count);
do {
buf8 = (Bit8u*)(buffer+len);
dsp_getsamplebyte(buf8[0]);
dsp_getsamplebyte(buf8[1]);
len++;
DSP.dma.count--;
} while ((len < maxlen) && (DSP.dma.count != 0xffff));
if (DSP.dma.count == 0xffff) // last word received
dsp_dmadone();
return len;
}
Bit16u bx_sb16_c::dma_write16(Bit16u *buffer, Bit16u maxlen)
{
Bit16u len = 0;
Bit8u *buf8;
DEV_dma_set_drq(BX_SB16_DMAH, 0); // the timer will raise it again
do {
buf8 = (Bit8u*)(buffer+len);
buf8[0] = dsp_putsamplebyte();
buf8[1] = dsp_putsamplebyte();
len++;
DSP.dma.count--;
} while ((len < maxlen) && (DSP.dma.count != 0xffff));
writelog(WAVELOG(5), "Sent 16-bit DMA: 0x%4x, %d remaining ",
buffer[0], DSP.dma.count);
if (DSP.dma.count == 0xffff) // last word sent
dsp_dmadone();
return len;
}
// the mixer, supported type is CT1745 (as in an SB16)
void bx_sb16_c::mixer_writedata(Bit32u value)
{
int i;
// do some action depending on what register was written
switch (MIXER.regindex)
{
case 0: // initialize mixer
writelog(BOTHLOG(4), "Initializing mixer...");
MIXER.reg[0x04] = 0xcc;
MIXER.reg[0x0a] = 0x00;
MIXER.reg[0x22] = 0xcc;
MIXER.reg[0x26] = 0xcc;
MIXER.reg[0x28] = 0x00;
MIXER.reg[0x2e] = 0x00;
MIXER.reg[0x3c] = 0x1f;
MIXER.reg[0x3d] = 0x15;
MIXER.reg[0x3e] = 0x0b;
for (i=0x30; i<=0x35; i++)
MIXER.reg[i] = 0xc0;
for (i=0x36; i<=0x3b; i++)
MIXER.reg[i] = 0x00;
for (i=0x3f; i<=0x43; i++)
MIXER.reg[i] = 0x00;
for (i=0x44; i<=0x47; i++)
MIXER.reg[i] = 0x80;
MIXER.regindex = 0; // next mixer register read is register 0
return;
case 0x04: // DAC level
MIXER.reg[0x32] = (value & 0xf0) | 0x08;
MIXER.reg[0x33] = ((value & 0x0f) << 4) | 0x08;
break;
case 0x0a: // microphone level
MIXER.reg[0x3a] = (value << 5) | 0x18;
break;
case 0x22: // master volume
MIXER.reg[0x30] = (value & 0xf0) | 0x08;
MIXER.reg[0x31] = ((value & 0x0f) << 4) | 0x08;
break;
case 0x26: // FM level
MIXER.reg[0x34] = (value & 0xf0) | 0x08;
MIXER.reg[0x35] = ((value & 0x0f) << 4) | 0x08;
break;
case 0x28: // CD audio level
MIXER.reg[0x36] = (value & 0xf0) | 0x08;
MIXER.reg[0x37] = ((value & 0x0f) << 4) | 0x08;
break;
case 0x2e: // line in level
MIXER.reg[0x38] = (value & 0xf0) | 0x08;
MIXER.reg[0x39] = ((value & 0x0f) << 4) | 0x08;
break;
case 0x30: // master volume left
MIXER.reg[0x22] &= 0x0f;
MIXER.reg[0x22] |= (value & 0xf0);
break;
case 0x31: // master volume right
MIXER.reg[0x22] &= 0xf0;
MIXER.reg[0x22] |= (value >> 4);
break;
case 0x32: // DAC level left
MIXER.reg[0x04] &= 0x0f;
MIXER.reg[0x04] |= (value & 0xf0);
break;
case 0x33: // DAC level right
MIXER.reg[0x04] &= 0xf0;
MIXER.reg[0x04] |= (value >> 4);
break;
case 0x34: // FM level left
MIXER.reg[0x26] &= 0x0f;
MIXER.reg[0x26] |= (value & 0xf0);
break;
case 0x35: // FM level right
MIXER.reg[0x26] &= 0xf0;
MIXER.reg[0x26] |= (value >> 4);
break;
case 0x36: // CD audio level left
MIXER.reg[0x28] &= 0x0f;
MIXER.reg[0x28] |= (value & 0xf0);
break;
case 0x37: // CD audio level right
MIXER.reg[0x28] &= 0xf0;
MIXER.reg[0x28] |= (value >> 4);
break;
case 0x38: // line in level left
MIXER.reg[0x2e] &= 0x0f;
MIXER.reg[0x2e] |= (value & 0xf0);
break;
case 0x39: // line in level right
MIXER.reg[0x2e] &= 0xf0;
MIXER.reg[0x2e] |= (value >> 4);
break;
case 0x3a: // microphone level
MIXER.reg[0x0a] = (value >> 5);
break;
case 0x3b:
case 0x3c:
case 0x3d:
case 0x3e:
case 0x3f:
case 0x40:
case 0x41:
case 0x42:
case 0x43:
case 0x44:
case 0x45:
case 0x46:
case 0x47:
break;
case 0x80: // IRQ mask
case 0x81: // DMA mask
MIXER.reg[MIXER.regindex] = value;
set_irq_dma(); // both 0x80 and 0x81 handled
return;
default: // ignore read-only registers
return;
}
// store the value
MIXER.reg[MIXER.regindex] = value;
writelog(BOTHLOG(4), "mixer register %02x set to %02x",
MIXER.regindex, MIXER.reg[MIXER.regindex]);
}
Bit32u bx_sb16_c::mixer_readdata()
{
writelog(BOTHLOG(4), "read from mixer register %02x returns %02x",
MIXER.regindex, MIXER.reg[MIXER.regindex]);
return(MIXER.reg[MIXER.regindex]);
}
void bx_sb16_c::mixer_writeregister(Bit32u value)
{
MIXER.regindex = value;
}
void bx_sb16_c::set_irq_dma()
{
static bx_bool isInitialized=0;
int newirq;
int oldDMA8, oldDMA16;
// set the IRQ according to the value in mixer register 0x80
switch (MIXER.reg[0x80])
{
case 1:
newirq = 2;
break;
case 2:
newirq = 5;
break;
case 4:
newirq = 7;
break;
case 8:
newirq = 10;
break;
default:
newirq = 5;
writelog(BOTHLOG(3), "Bad value %02x in mixer register 0x80. IRQ set to %d",
MIXER.reg[0x80], newirq);
MIXER.reg[0x80] = 2;
}
if (newirq != BX_SB16_IRQ) // a different IRQ was set
{
if (BX_SB16_IRQ > 0)
DEV_unregister_irq(BX_SB16_IRQ, "SB16");
BX_SB16_IRQ = newirq;
DEV_register_irq(BX_SB16_IRQ, "SB16");
}
// set the 8 bit DMA
oldDMA8=BX_SB16_DMAL;
switch (MIXER.reg[0x81] & 0x0f)
{
case 1:
BX_SB16_DMAL = 0;
break;
case 2:
BX_SB16_DMAL = 1;
break;
case 8:
BX_SB16_DMAL = 3;
break;
default:
BX_SB16_DMAL = 1;
writelog(BOTHLOG(3), "Bad value %02x in mixer register 0x81. DMA8 set to %d",
MIXER.reg[0x81], BX_SB16_DMAL);
MIXER.reg[0x81] &= (~0x0f);
MIXER.reg[0x81] |= (1 << BX_SB16_DMAL);
}
// Unregister the previous DMA if initialized
if ((isInitialized) && (oldDMA8 != BX_SB16_DMAL))
DEV_dma_unregister_channel(oldDMA8);
// And register the new 8bits DMA Channel
if ((!isInitialized) || (oldDMA8 != BX_SB16_DMAL))
DEV_dma_register_8bit_channel(BX_SB16_DMAL, dma_read8, dma_write8, "SB16");
// and the 16 bit DMA
oldDMA16=BX_SB16_DMAH;
switch (MIXER.reg[0x81] >> 4)
{
case 0:
BX_SB16_DMAH = 0; // no 16-bit DMA
break;
case 2:
BX_SB16_DMAH = 5;
break;
case 4:
BX_SB16_DMAH = 6;
break;
case 8:
BX_SB16_DMAH = 7;
break;
default:
BX_SB16_DMAH = 0;
writelog(BOTHLOG(3), "Bad value %02x in mixer register 0x81. DMA16 set to %d",
MIXER.reg[0x81], BX_SB16_DMAH);
MIXER.reg[0x81] &= (~0xf0);
// MIXER.reg[0x81] |= (1 << BX_SB16_DMAH);
// no default 16 bit channel!
}
// Unregister the previous DMA if initialized
if ((isInitialized) && (oldDMA16 != 0) && (oldDMA16 != BX_SB16_DMAH))
DEV_dma_unregister_channel(oldDMA16);
// And register the new 16bits DMA Channel
if ((BX_SB16_DMAH != 0) && (oldDMA16 != BX_SB16_DMAH))
DEV_dma_register_16bit_channel(BX_SB16_DMAH, dma_read16, dma_write16, "SB16");
// If not already initialized
if(!isInitialized) {
isInitialized=1;
} else {
writelog(BOTHLOG(1), "Resources set to I%d D%d H%d",
BX_SB16_IRQ, BX_SB16_DMAL, BX_SB16_DMAH);
}
}
// now the MPU 401 part
// the MPU 401 status port shows if input or output are ready
// Note that the bits are inverse to their meaning
Bit32u bx_sb16_c::mpu_status()
{
Bit32u result = 0;
if ((MPU.datain.full() == 1) ||
((BX_SB16_THIS midimode == 1) &&
(BX_SB16_OUTPUT->midiready() == BX_SOUNDLOW_ERR)))
result |= 0x40; // output not ready
if (MPU.dataout.empty() == 1)
result |= 0x80; // no input available
writelog(MIDILOG(4), "MPU status port, result %02x", result);
return(result);
}
// the MPU 401 command port
void bx_sb16_c::mpu_command(Bit32u value)
{
int i;
int bytesneeded;
if (MPU.cmd.hascommand() == 1) // already a command pending, abort that one
{
if ((MPU.cmd.currentcommand() != value) ||
(MPU.cmd.commanddone() == 0))
// it's a different command, or the old one isn't done yet, abort it
{
MPU.cmd.clearcommand();
MPU.cmd.flush();
}
// if it's the same one, and we just completed the argument list,
// we leave it as it is and process it here
}
if (MPU.cmd.hascommand() == 0) // no command pending, set one up
{
bytesneeded = 0;
if ((value >> 4) == 14) bytesneeded = 1;
MPU.cmd.newcommand(value, bytesneeded);
}
if (MPU.cmd.commanddone() == 1) // command is complete, process it
{
switch (MPU.cmd.currentcommand())
{
case 0x3f:
writelog(MIDILOG(5), "MPU cmd: UART mode on");
MPU.uartmode=1;
MPU.irqpending=1;
MPU.singlecommand=0;
if (BX_SB16_IRQMPU != -1) {
MIXER.reg[0x82] |= 4;
DEV_pic_raise_irq(BX_SB16_IRQMPU);
}
break;
case 0xff:
writelog(MIDILOG(4), "MPU cmd: Master reset of device");
MPU.uartmode=MPU.forceuartmode;
MPU.singlecommand=0;
for (i=0; i<16; i++)
{
MPU.banklsb[i] = 0;
MPU.bankmsb[i] = 0;
MPU.program[i] = 0;
}
MPU.cmd.reset();
MPU.dataout.reset();
MPU.datain.reset();
MPU.midicmd.reset();
/*
if (BX_SB16_IRQ != -1) {
MIXER.reg[0x82] |= 4;
BX_SB16_THIS devices->pic->trigger_irq(BX_SB16_IRQ);
}
*/
break;
case 0xd0: // d0 and df: prefix for midi command
case 0xdf: // like uart mode, but only a single command
MPU.singlecommand = 1;
writelog(MIDILOG(4), "MPU: prefix %02x received",
MPU.cmd.currentcommand());
break;
default:
writelog(MIDILOG(3), "MPU cmd: unknown command %02x ignored",
MPU.cmd.currentcommand());
break;
}
// Need to put an MPU_ACK into the data port if command successful
// we'll fake it even if we didn't process the command, so as to
// allow detection of the MPU 401.
if (MPU.dataout.put(0xfe) == 0)
writelog(MIDILOG(3), "MPU_ACK error - output buffer full");
MPU.cmd.clearcommand(); // clear the command from the buffer
}
}
// MPU 401 data port/read: contains an MPU_ACK after receiving a command
// Will contain other data as well when other than UART mode is supported
Bit32u bx_sb16_c::mpu_dataread()
{
Bit8u res8bit;
Bit32u result;
// also acknowledge IRQ?
if (MPU.irqpending != 0)
{
MPU.irqpending = 0;
MIXER.reg[0x82] &= (~4);
if ((MIXER.reg[0x82] & 0x07) == 0)
DEV_pic_lower_irq(BX_SB16_IRQMPU);
writelog(MIDILOG(4), "MPU IRQ acknowledged");
}
if (MPU.dataout.get(&res8bit) == 0) {
writelog(MIDILOG(3), "MPU data port not ready - no data in buffer");
result = 0xff;
}
else
result = (Bit32u) res8bit;
writelog(MIDILOG(4), "MPU data port, result %02x", result);
return(result);
}
// MPU 401 data port/write: This is where the midi stream comes from,
// as well as arguments to any pending command
void bx_sb16_c::mpu_datawrite(Bit32u value)
{
writelog(MIDILOG(4), "write to MPU data port, value %02x", value);
if (MPU.cmd.hascommand() == 1)
{ // there is a command pending, add arguments to it
if (MPU.cmd.put(value) == 0)
writelog(MIDILOG(3), "MPU Command arguments too long - buffer full");
if (MPU.cmd.commanddone() == 1)
BX_SB16_THIS mpu_command(MPU.cmd.currentcommand());
}
else if ((MPU.uartmode == 0) && (MPU.singlecommand == 0))
{
// Hm? No UART mode, but still data? Maybe should send it
// to the command port... Only SBMPU401.EXE does this...
writelog(MIDILOG(4), "MPU Data %02x received but no UART mode. Assuming it's a command.", value);
mpu_command(value);
return;
}
else // no MPU command pending, in UART mode, this has to be midi data
mpu_mididata(value);
}
// A byte of midi data has been received
void bx_sb16_c::mpu_mididata(Bit32u value)
{
// first, find out if it is a midi command or midi data
bx_bool ismidicommand = 0;
if (value >= 0x80)
{ // bit 8 usually denotes a midi command...
ismidicommand = 1;
if ((value == 0xf7) && (MPU.midicmd.currentcommand() == 0xf0))
// ...except if it is a continuing SYSEX message, then it just
// denotes the end of a SYSEX chunk, not the start of a message
{
ismidicommand = 0; // first, it's not a command
MPU.midicmd.newcommand(MPU.midicmd.currentcommand(),
MPU.midicmd.bytes());
// Then, set needed bytes to current buffer
// because we didn't know the length before
}
}
if (ismidicommand == 1)
{ // this is a command, check if an old one is pending
if (MPU.midicmd.hascommand() == 1)
{
writelog(MIDILOG(3), "Midi command %02x incomplete, has %d of %d bytes.",
MPU.midicmd.currentcommand(), MPU.midicmd.bytes(),
MPU.midicmd.commandbytes());
// write as much as we can. Should we do this?
processmidicommand(0);
// clear the pending command
MPU.midicmd.clearcommand();
MPU.midicmd.flush();
}
// find the number of arguments to the command
static const signed eventlength[] = { 2, 2, 2, 2, 1, 1, 2, 255};
// note - length 255 commands have unknown length
MPU.midicmd.newcommand(value, eventlength[(value & 0x70) >> 4]);
}
else // no command, just arguments to the old command
{
if (MPU.midicmd.hascommand() == 0)
{ // no command pending, ignore the data
writelog(MIDILOG(3), "Midi data %02x received, but no command pending?", value);
return;
}
// just some data to the command
if (MPU.midicmd.put(value) == 0)
writelog(MIDILOG(3), "Midi buffer overflow!");
if (MPU.midicmd.commanddone() == 1)
{
// the command is complete, process it
writelog(MIDILOG(5), "Midi command %02x complete, has %d bytes.",
MPU.midicmd.currentcommand(), MPU.midicmd.bytes());
processmidicommand(0);
// and remove the command from the buffer
MPU.midicmd.clearcommand();
MPU.midicmd.flush();
}
}
}
// The emulator port/read: See if commands were successful
Bit32u bx_sb16_c::emul_read()
{
Bit8u res8bit;
Bit32u result;
if (EMUL.datain.get(&res8bit) == 0)
{
writelog(3, "emulator port not ready - no data in buffer");
result = 0x00;
}
else result = (Bit32u) res8bit;
writelog(4, "emulator port, result %02x", result);
return(result);
}
// Emulator port/write: Changing instrument mapping etc.
void bx_sb16_c::emul_write(Bit32u value)
{
Bit8u value8 = 0;
writelog(4, "write to emulator port, value %02x", value);
if (EMUL.dataout.hascommand() == 0) // no command pending, set it up
{
static signed char cmdlength[] = { 0, 0, 4, 2, 6, 1, 0, 0, 1, 1, 0, 1};
if (value > 11)
{
writelog(3, "emulator command %02x unknown, ignored.", value);
return;
}
writelog(5, "emulator command %02x, needs %d arguments",
value, cmdlength[value]);
EMUL.dataout.newcommand(value, cmdlength[value]);
EMUL.datain.reset();
EMUL.datain.put(0xfe);
}
else
EMUL.dataout.put(value); // otherwise just add data
if (EMUL.dataout.commanddone() == 1)
{ // process the command
writelog(4, "executing emulator command %02x with %d arguments",
EMUL.dataout.currentcommand(), EMUL.dataout.bytes());
switch (EMUL.dataout.currentcommand())
{
case 0: // reinit of emulator
writelog(4, "Emulator reinitialized");
EMUL.remaps = 0;
EMUL.dataout.reset();
EMUL.datain.reset();
EMUL.datain.put(0xfe);
break;
case 1: // dummy command to reset state of emulator port
// just give a few times to end any commands
break;
case 2: // map bank
if (EMUL.remaps >= BX_SB16_PATCHTABLESIZE) break;
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].oldbankmsb));
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].oldbanklsb));
EMUL.remaplist[EMUL.remaps].oldprogch = 0xff;
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].newbankmsb));
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].newbanklsb));
EMUL.remaplist[EMUL.remaps].newprogch = 0xff;
EMUL.datain.put(4);
writelog(4, "Map bank command received, from %d %d to %d %d",
EMUL.remaplist[EMUL.remaps].oldbankmsb,
EMUL.remaplist[EMUL.remaps].oldbanklsb,
EMUL.remaplist[EMUL.remaps].newbankmsb,
EMUL.remaplist[EMUL.remaps].newbanklsb);
EMUL.remaps++;
break;
case 3: // map program change
if (EMUL.remaps >= BX_SB16_PATCHTABLESIZE) break;
EMUL.remaplist[EMUL.remaps].oldbankmsb = 0xff;
EMUL.remaplist[EMUL.remaps].oldbanklsb = 0xff;
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].oldprogch));
EMUL.remaplist[EMUL.remaps].newbankmsb = 0xff;
EMUL.remaplist[EMUL.remaps].newbanklsb = 0xff;
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].newprogch));
EMUL.datain.put(2);
writelog(4, "Map program change received, from %d to %d",
EMUL.remaplist[EMUL.remaps].oldprogch,
EMUL.remaplist[EMUL.remaps].newprogch);
EMUL.remaps++;
break;
case 4: // map bank and program change
if (EMUL.remaps >= BX_SB16_PATCHTABLESIZE) break;
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].oldbankmsb));
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].oldbanklsb));
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].oldprogch));
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].newbankmsb));
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].newbanklsb));
EMUL.dataout.get (& (EMUL.remaplist[EMUL.remaps].newprogch));
EMUL.datain.put(6);
writelog(4, "Complete remap received, from %d %d %d to %d %d %d",
EMUL.remaplist[EMUL.remaps].oldbankmsb,
EMUL.remaplist[EMUL.remaps].oldbanklsb,
EMUL.remaplist[EMUL.remaps].oldprogch,
EMUL.remaplist[EMUL.remaps].newbankmsb,
EMUL.remaplist[EMUL.remaps].newbanklsb,
EMUL.remaplist[EMUL.remaps].newprogch);
EMUL.remaps++;
break;
case 5: EMUL.dataout.get(&value8); // dump emulator state
switch (value8)
{
case 0:
EMUL.datain.puts("SB16 Emulator for Bochs\n");
break;
case 1:
EMUL.datain.puts("UART mode=%d (force=%d)\n",
MPU.uartmode, MPU.forceuartmode);
break;
case 2:
EMUL.datain.puts("timer=%d\n", MPU.current_timer);
break;
case 3:
EMUL.datain.puts("%d remappings active\n", EMUL.remaps);
break;
case 4:
EMUL.datain.puts("Resources are A%3x I%d D%d H%d T%d P%3x; Adlib at %3x\n",
BX_SB16_IO, BX_SB16_IRQ, BX_SB16_DMAL,
BX_SB16_DMAH, 6, BX_SB16_IOMPU, BX_SB16_IOADLIB);
break;
case 5:
EMUL.datain.puts("Current OPL2/3 mode: %s",
// ok, I admit that this is a bit ugly...
(OPL.mode == single)?"single OPL2 (OPL3 disabled)\n":
(OPL.mode == adlib)?"single OPL2 (no OPL3)\n":
(OPL.mode == dual)?"double OPL2\n":
(OPL.mode == opl3)?"OPL3\n":
"unknown");
break;
default:
EMUL.datain.puts("no info. Only slots 0..5 have values.\n");
break;
}
break;
case 6: // close midi and wave files and/or output
if ((BX_SB16_THIS midimode == 2) ||
(BX_SB16_THIS midimode == 3))
{
if (BX_SB16_THIS midimode == 2) finishmidifile();
fclose(MIDIDATA);
}
else if (BX_SB16_THIS midimode == 1)
BX_SB16_OUTPUT->closemidioutput();
BX_SB16_THIS midimode = 0;
if ((BX_SB16_THIS wavemode == 2) ||
(BX_SB16_THIS wavemode == 3))
{
if (BX_SB16_THIS wavemode == 2) finishvocfile();
fclose(WAVEDATA);
}
else
BX_SB16_OUTPUT->closewaveoutput();
BX_SB16_THIS wavemode = 0;
break;
case 7: // clear bank/program mappings
EMUL.remaps = 0;
writelog(4, "Bank/program mappings cleared.");
break;
case 8: // set force uart mode on/off
EMUL.dataout.get(&value8);
MPU.forceuartmode = value8;
if (value8 != 0)
MPU.uartmode = MPU.forceuartmode;
writelog(4, "Force UART mode = %d", MPU.forceuartmode);
break;
case 9: // enter specific OPL2/3 mode
EMUL.dataout.get(&value8);
writelog(4, "Entering OPL2/3 mode %d", value8);
opl_entermode((bx_sb16_fm_mode) value8);
break;
case 10: // check emulator present
EMUL.datain.put(0x55);
break;
case 11: // send data to midi device
EMUL.dataout.get(&value8);
mpu_mididata(value8);
}
EMUL.dataout.clearcommand();
EMUL.dataout.flush();
}
}
// and finally the OPL (FM emulation) part
// select a new operational mode for the FM part
// this also serves as reset for the OPL chip
void bx_sb16_c::opl_entermode(bx_sb16_fm_mode newmode)
{
int i, j;
// do nothing if the mode is unchanged
if (OPL.mode == newmode)
return;
// if the old mode was 0, and the new mode is 3, then
// no reset is necessary, just set the flag
if ((OPL.mode == single) && (newmode == opl3))
{
writelog(MIDILOG(4), "OPL3 mode enabled");
OPL.mode = newmode;
return;
}
writelog(MIDILOG(4), "Switching to OPL mode %d from %d", newmode, OPL.mode);
for (i=0; i<BX_SB16_FM_NCH; i++)
opl_keyonoff(i, 0);
OPL.mode = newmode;
if (OPL.timer_running != 0)
{
bx_pc_system.deactivate_timer(OPL.timer_handle);
OPL.timer_running = 0;
}
OPL.drumchannel = 10;
OPL.midichannels = 0xffff; // all channels but the drum channel available
OPL.midichannels &= ~(1 << OPL.drumchannel);
for (i=0; i<2; i++) {
OPL.wsenable[i] = 0;
OPL.tmask[i] = 0;
OPL.tflag[i] = 0;
OPL.percmode[i] = 0;
}
for (i=0; i<4; i++) {
OPL.timer[i] = 0;
OPL.timerinit[i] = 0;
}
// initialize the operators
for (i=0; i<BX_SB16_FM_NOP; i++)
for (j=0; j<BX_SB16_FM_OPB; j++)
OPL.oper[i][j] = 0;
// TESTING for array bounds - compiler should bark if too high
OPL.oper[BX_SB16_FM_NOP-1][BX_SB16_FM_OPB-1] = 0;
// initialize the channels
// first zero all values
for (i=0; i<BX_SB16_FM_NCH; i++)
{
OPL.chan[i].nop = 0;
for (j=0; j<4; j++) {
OPL.chan[i].opnum[j] = 0;
OPL.chan[i].outputlevel[j] = 0;
}
OPL.chan[i].freq = 0;
OPL.chan[i].afreq = 0;
OPL.chan[i].midichan = 0xff;
OPL.chan[i].needprogch = 0;
OPL.chan[i].midion = 0;
OPL.chan[i].midinote = 0;
OPL.chan[i].midibend = 0;
OPL.chan[i].midivol = 0;
}
// assign the operators
for (i=0; i<BX_SB16_FM_NCH; i++)
{
OPL.chan[i].nop = 2;
// who invented this absolutely insane operator grouping??
// it's like this: (ch 9...17 as 0...8 but higher operators)
// ch: 0 1 2 3 4 5 6 7 8
// op1: 0 1 2 6 7 8 12 13 14
// op2: 3 4 5 9 10 11 15 16 17
OPL.chan[i].opnum[0] = i + ((int) (i / 3)) * 3;
OPL.chan[i].opnum[1] = OPL.chan[i].opnum[0] + 3;
}
// assign 4-op operators to the appropriate channels
// note- they are not used unless .nop == 4
for (i=0; i<6; i++) {
j = i + (i /3) * 6;
OPL.chan[j].opnum[2] = OPL.chan[j + 3].opnum[0];
OPL.chan[j].opnum[3] = OPL.chan[j + 3].opnum[1];
}
}
// this is called whenever one of the timer elapses
void bx_sb16_c::opl_timerevent()
{
Bit16u mask;
for (int i=0; i<4; i++) {
if ((OPL.tmask[i/2] & (1 << (i % 2))) != 0) { // only running timers
if ((i % 2) == 0) {
mask = 0xff;
} else {
mask = 0x3ff;
}
if (((OPL.timer[i]++) & mask) == 0) { // overflow occured, set flags accordingly
OPL.timer[i] = OPL.timerinit[i]; // reset the counter
if ((OPL.tmask[i/2] >> (6 - (i % 2))) == 0) { // set flags only if unmasked
writelog(MIDILOG(5), "OPL Timer Interrupt: Chip %d, Timer %d", i/2, 1 << (i % 2));
OPL.tflag[i/2] |= 1 << (6 - (i % 2)); // set the overflow flag
OPL.tflag[i/2] |= 1 << 7; // set the IRQ flag
}
}
}
}
}
// return the status of one of the OPL2's, or the
// base status of the OPL3
Bit32u bx_sb16_c::opl_status(int chipid)
{
Bit32u status = OPL.tflag[chipid];
writelog(MIDILOG(5), "OPL status of chip %d is %02x", chipid, status);
return status;
}
// set the register index for one of the OPL2's or the
// base or advanced register index for the OPL3
void bx_sb16_c::opl_index(Bit32u value, int chipid)
{
OPL.index[chipid] = value;
}
// write to the data port
void bx_sb16_c::opl_data(Bit32u value, int chipid)
{
int index = OPL.index[chipid];
int opernum = -1; // OPL3 operator number; 0..35
int channum = -1; // OPL3 channel number; 0..17
int subopnum = -1; // channel operator; 0..nop-1
writelog(MIDILOG(4), "Write to OPL(%d) register %02x: %02x",
chipid, index, value);
// first find out operator and/or channel numbers
// case 0x20 ... 0x95: includes too many ports, but that is harmless
// case 0xe0 ... 0xf5:
if (((index>=0x20) && (index<=0x95)) ||
((index>=0xe0) && (index<=0xf5))) {
// operator access
// find the operator number. 0..17 on chip 1, 18..35 on chip 2
// note, the numbers are not continuous (again...), so we need
// this rather weird calculation
opernum = index & 0x07;
if (opernum > 5) // invalid register, has no operator associated
{
opernum = -1;
goto break_here;
}
opernum += ((index & 0x18) >> 3) * 6;
if (opernum > 17) // Operators 18+ have to be accessed on other address set
{
opernum = -1;
goto break_here;
}
if (chipid == 1)
opernum += BX_SB16_FM_NOP / 2;
// find out the channel number, and which of the channel's operators this is
channum = opernum % 3 + ((int) (opernum / 6)) * 3;
subopnum = 0;
if ((opernum % 6) > 2) // second operator
subopnum = 1;
// if (channel - 3) is in a four-operator mode, that is really
// what this operator belongs to
if (channum >= 3) {
if (OPL.chan[channum - 3].nop == 4)
{
channum -= 3;
subopnum += 2;
}
}
writelog(MIDILOG(5), "Is Channel %d, Oper %d, Subop %d",
channum, opernum, subopnum);
}
else if ((index>=0xa0) && (index<=0xc8)) {
// channel access
channum = index & 0x0f;
if (OPL.chan[channum].nop == 0)
channum = -1; // the channel is disabled
writelog(MIDILOG(5), "Is channel %d", channum);
}
break_here:
switch (index & 0xff)
{
// WSEnable and Test Register
case 0x01:
OPL.wsenable[chipid] = (value >> 5) & 1;
if ((value & 0x1f) != 0)
writelog(MIDILOG(3), "Warning: Test Register set to %02x", value & 0x1f);
break;
// the two timer counts
case 0x02:
OPL.timerinit[chipid * 2] = OPL.timer[chipid * 2] = value;
break;
case 0x03:
OPL.timerinit[chipid * 2 + 1] = OPL.timer[chipid * 2 + 1] = (value << 2);
break;
// if OPL2: timer masks
// if OPL3: 4-operator modes
case 0x04:
if ((chipid == 0) || (OPL.mode == dual))
opl_settimermask(value, chipid);
else
opl_set4opmode(value & 0x3f);
break;
// only OPL3: OPL3 enable
case 0x05:
if (chipid == 1)
{
if ((value & 1) != 0)
opl_entermode(opl3);
else
opl_entermode(single);
}
break;
// Composite Sine Wave and Note-sel (ignored)
case 0x08:
if (value != 0)
writelog(MIDILOG(3),
"Warning: write of %02x to CSW/Note-sel ignored", value);
break;
// most importantly the percussion part
case 0xbd:
opl_setpercussion(value, chipid);
break;
// the operator registers
// case 0x20 ... 0x35:
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x2c:
case 0x2d:
case 0x2e:
case 0x2f:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
// case 0x60 ... 0x75:
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6a:
case 0x6b:
case 0x6c:
case 0x6d:
case 0x6e:
case 0x6f:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
// case 0x80 ... 0x95:
case 0x80:
case 0x81:
case 0x82:
case 0x83:
case 0x84:
case 0x85:
case 0x86:
case 0x87:
case 0x88:
case 0x89:
case 0x8a:
case 0x8b:
case 0x8c:
case 0x8d:
case 0x8e:
case 0x8f:
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
if (opernum != -1)
{
opl_changeop(channum, opernum, (index / 0x20) - 1, value);
break;
}
// else let default: catch it
// case 0x40 ... 0x55:
case 0x40:
case 0x41:
case 0x42:
case 0x43:
case 0x44:
case 0x45:
case 0x46:
case 0x47:
case 0x48:
case 0x49:
case 0x4a:
case 0x4b:
case 0x4c:
case 0x4d:
case 0x4e:
case 0x4f:
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
if (opernum != -1)
{
opl_changeop(channum, opernum, 1, value & 0xc0);
if (subopnum != -1)
opl_setvolume(channum, subopnum, value & 0x3f);
break;
}
// else let default: catch it
// case 0xe0 ... 0xf5:
case 0xe0:
case 0xe1:
case 0xe2:
case 0xe3:
case 0xe4:
case 0xe5:
case 0xe6:
case 0xe7:
case 0xe8:
case 0xe9:
case 0xea:
case 0xeb:
case 0xec:
case 0xed:
case 0xee:
case 0xef:
case 0xf0:
case 0xf1:
case 0xf2:
case 0xf3:
case 0xf4:
case 0xf5:
if (opernum != -1)
{
opl_changeop(channum, opernum, 5, value & 0x07);
break;
}
// else let default: catch it
// and the channel registers
// case 0xa0 ... 0xa8:
case 0xa0:
case 0xa1:
case 0xa2:
case 0xa3:
case 0xa4:
case 0xa5:
case 0xa6:
case 0xa7:
case 0xa8:
if (channum != -1)
{
if (value != (Bit32u)(OPL.chan[channum].freq & 0xff)) {
OPL.chan[channum].freq &= 0xff00;
OPL.chan[channum].freq |= value;
opl_setfreq(channum);
}
break;
}
// else let default: catch it
// case 0xb0 ... 0xb8:
case 0xb0:
case 0xb1:
case 0xb2:
case 0xb3:
case 0xb4:
case 0xb5:
case 0xb6:
case 0xb7:
case 0xb8:
if (channum != -1)
{
if ((value & 0x1f) != ((Bit32u)(OPL.chan[channum].freq >> 8) & 0x1f)) {
OPL.chan[channum].freq &= 0x00ff;
OPL.chan[channum].freq |= (value & 0x1f) << 8;
opl_setfreq(channum);
}
opl_keyonoff(channum, (value >> 5) & 1);
break;
}
// else let default: catch it
// this is a channel access, but it belongs to the instrument
// definition, so put it into value [4] of the channel's first operator
// case 0xc0 ... 0xc8:
case 0xc0:
case 0xc1:
case 0xc2:
case 0xc3:
case 0xc4:
case 0xc5:
case 0xc6:
case 0xc7:
case 0xc8:
if (channum != -1)
{
int needchange = 0;
if ((OPL.oper[OPL.chan[channum].opnum[0]][4] & 1) != (int)(value & 1))
needchange = 1;
opl_changeop(channum, OPL.chan[channum].opnum[0], 4, value & 0x3f);
if (needchange == 1)
opl_setmodulation(channum);
break;
}
// else let default: catch it
default:
writelog(MIDILOG(3), "Attempt to write %02x to unknown OPL(%d) register %02x",
value, chipid, index);
break;
}
}
// change a value of an operator
void bx_sb16_c::opl_changeop(int channum, int opernum, int byte, int value)
{
if (OPL.oper[opernum][byte] != value) {
OPL.oper[opernum][byte] = value;
OPL.chan[channum].needprogch = 1;
}
}
// called for a write to the 4-operator mode register
void bx_sb16_c::opl_set4opmode(int new4opmode)
{
int i, channel1, channel2;
writelog(MIDILOG(4), "Switching to 4-op mode %02x", new4opmode);
// every bit switches a 4-op channel-pairing on or off
// 4-op mode is two channels combined into the first one
for (i = 0; i<6; i++)
{
channel1 = i + (i / 3) * 6;
channel2 = channel1 + 3;
if (((new4opmode >> i) & 1) != 0)
{ // enable 4-op mode
opl_keyonoff(channel1, 0);
opl_keyonoff(channel2, 0);
OPL.chan[channel1].nop = 4;
OPL.chan[channel2].nop = 0;
OPL.chan[channel1].needprogch = 1;
}
else
{ // disable 4-op mode
opl_keyonoff(channel1, 0);
OPL.chan[channel1].nop = 2;
OPL.chan[channel2].nop = 2;
OPL.chan[channel1].needprogch = 1;
OPL.chan[channel2].needprogch = 1;
}
}
}
// called for a write to port 4 of either chip
void bx_sb16_c::opl_settimermask(int value, int chipid)
{
if ((value & 0x80) != 0) // reset IRQ and timer flags
{ // all other bits ignored!
writelog(MIDILOG(5), "IRQ Reset called");
OPL.tflag[chipid] = 0;
return;
}
OPL.tmask[chipid] = value & 0x63;
writelog(MIDILOG(5), "New timer mask for chip %d is %02x",
chipid, OPL.tmask[chipid]);
// do we have to activate or deactivate the timer?
if (((value & 0x03) != 0) ^ (OPL.timer_running != 0))
{
if ((value & 0x03) != 0) // yes, it's different. Start or stop?
{
writelog(MIDILOG(5), "Starting timers");
bx_pc_system.activate_timer(OPL.timer_handle, 80, 1);
OPL.timer_running = 1;
}
else
{
writelog(MIDILOG(5), "Stopping timers");
bx_pc_system.deactivate_timer(OPL.timer_handle);
OPL.timer_running = 0;
}
}
}
// called when the modulation mode of a channel changes
void bx_sb16_c::opl_setmodulation(int channel)
{
int opernum = OPL.chan[channel].opnum[0];
if ((OPL.chan[channel].nop == 0) &&
(channel >= 3) &&
(OPL.chan[channel].nop == 4)) channel -= 3;
if (OPL.chan[channel].nop == 2)
{
OPL.chan[channel].ncarr = (OPL.oper[opernum][4] & 1) + 1;
OPL.chan[channel].needprogch = 1;
}
else if (OPL.chan[channel].nop == 4)
{
int opernum2 = OPL.chan[channel].opnum[2];
int modmode = (OPL.oper[opernum][4] & 1) |
((OPL.oper[opernum2][4] & 1) >> 1);
OPL.chan[channel].ncarr = modmode + 1 - (modmode / 2);
OPL.chan[channel].needprogch = 1;
}
}
// called for a write to register 0xbd, the percussion register
void bx_sb16_c::opl_setpercussion(Bit8u value, int chipid)
{
UNUSED(value);
UNUSED(chipid);
}
// called when a channel volume changes
// opnum is which of the channel's operators had the change, not
// the actual operator number. Thus, it's from 0..3.
void bx_sb16_c::opl_setvolume(int channel, int opnum, int outlevel)
{
UNUSED(opnum);
UNUSED(outlevel);
OPL.chan[channel].midivol = 127;
}
// called when a frequency change is complete, to find out the
// corresponding midi key and pitch bender values
void bx_sb16_c::opl_setfreq(int channel)
{
int block,fnum;
// definition:
// low-byte of freq: 8 bit F-Number, LSB's
// high-byte of freq: [2 reserved][KEY-ON][3 block][2 F-Number MSB's]
// [KEY-ON] is ignored by this function
//
// the definition of the F-number is
// F-Number = Frequency * 2**(20-block) / (49716 Hz)
//
// Thus, the frequency can be calculated as
// Frequency = F-Number / 2**(20-block) * 49716 Hz
//
// (But remember that afreq is in 10^-3 Hz!)
//
fnum = OPL.chan[channel].freq & 0x3ff;
block = (OPL.chan[channel].freq >> 10) & 0x07;
writelog(MIDILOG(5), "F-Num is %d, block is %d", fnum, block);
Bit32u realfreq;
const Bit32u freqbase = 49716000; // const is better than #define if type is important
// this is a bit messy to preserve accuracy as much as possible,
// otherwise we might either lose precision, or the higher bits.
realfreq = ((freqbase >> 4) * fnum) >> (16 - block);
OPL.chan[channel].afreq = realfreq;
// now find out what MIDI key this corresponds to, and with what
// pitch bender value... (the latter not implemented yet)
int octave=0; // 0: Octave from 523.2511 Hz; pos=higher, neg=lower
int keynum=0; // 0=C; 1=C#; 2=D; ...; 11=B
if (realfreq > 8175) { // 8.175 is smallest possible frequency
const Bit32u freqC = 523251; // Midi note 72; "C": 523.251 Hz
Bit32u keyfreq; // Frequency scaled to the octave from freqC to 2*freqC
if (realfreq > freqC) {
while ((realfreq >> (++octave)) > freqC);
keyfreq = realfreq >> (--octave);
} else {
while ((realfreq << (++octave)) < freqC);
keyfreq = realfreq << octave;
octave = -octave;
}
// this is a reasonable approximation for keyfreq /= 1.059463
// (that value is 2**(1/12), which is the difference between two keys)
while ((keyfreq -= ((keyfreq * 1000) / 17817)) > freqC)
keynum++;
} else {
octave = -6;
keynum = 0;
}
OPL.chan[channel].midinote = (octave + 6) * 12 + keynum;
writelog(MIDILOG(5), "New frequency %.3f is key %d in octave %d; midi note %d",
(float) realfreq/1000.0, keynum, octave, OPL.chan[channel].midinote);
}
// called when a note is possibly turned on or off
void bx_sb16_c::opl_keyonoff(int channel, bx_bool onoff)
{
int i;
Bit8u commandbytes[3];
if (OPL.mode == fminit)
return;
// first check if there really is a change in the state
if (onoff == OPL.chan[channel].midion)
return;
OPL.chan[channel].midion = onoff;
// check if we have a midi channel, otherwise allocate one if possible
if (OPL.chan[channel].midichan == 0xff) {
for (i=0; i<16; i++)
if (((OPL.midichannels >> i) & 1) != 0) {
OPL.chan[channel].midichan = i;
OPL.midichannels &= ~(1 << i); // mark channel as used
OPL.chan[channel].needprogch = 1;
}
if (OPL.chan[channel].midichan == 0xff)
return;
}
if (OPL.chan[channel].needprogch != 0)
opl_midichannelinit(channel);
commandbytes[0] = OPL.chan[channel].midichan;
commandbytes[1] = OPL.chan[channel].midinote;
commandbytes[2] = 0;
if (onoff == 0) {
commandbytes[0] |= 0x80; // turn it off
} else {
commandbytes[0] |= 0x90; // turn it on
commandbytes[2] = OPL.chan[channel].midivol;
}
writemidicommand(commandbytes[0], 2, & (commandbytes[1]));
}
// setup a midi channel
void bx_sb16_c::opl_midichannelinit(int channel)
{
UNUSED(channel);
}
/* Handlers for the midi commands/midi file output */
// Write the header of the midi file. Track length is 0x7fffffff
// until we know how long it's really going to be
void bx_sb16_c::initmidifile()
{
struct {
Bit8u chunk[4];
Bit32u chunklen; // all values in BIG Endian!
Bit16u smftype;
Bit16u tracknum;
Bit16u timecode; // 0x80 + deltatimesperquarter << 8
} midiheader =
#ifdef BX_LITTLE_ENDIAN
{ "MTh", 0x06000000, 0, 0x0100, 0x8001 };
#else
{ "MTh", 6, 0, 1, 0x180 };
#endif
midiheader.chunk[3] = 'd';
struct {
Bit8u chunk[4];
Bit32u chunklen;
Bit8u data[15];
} trackheader =
#ifdef BX_LITTLE_ENDIAN
{ "MTr", 0xffffff7f,
#else
{ "MTr", 0x7fffffff,
#endif
{ 0x00,0xff,0x51,3,0x07,0xa1,0x20, // set tempo 120 (0x7a120 us per quarter)
0x00,0xff,0x58,4,4,2,0x18,0x08 }}; // time sig 4/4
trackheader.chunk[3] = 'k';
fwrite(&midiheader, 1, 14, MIDIDATA);
fwrite(&trackheader, 1, 23, MIDIDATA);
}
// write the midi command to the midi file
void bx_sb16_c::writemidicommand(int command, int length, Bit8u data[])
{
bx_list_c *base;
/* We need to determine the time elapsed since the last MIDI command */
int deltatime = currentdeltatime();
/* Initialize output device if necessary and not done yet */
if (BX_SB16_THIS midimode == 1) {
if (MPU.outputinit != 1) {
writelog(MIDILOG(4), "Initializing Midi output.");
if (BX_SB16_OUTPUT->openmidioutput(SIM->get_param_string(BXPN_SB16_MIDIFILE)->getptr()) == BX_SOUNDLOW_OK)
MPU.outputinit = 1;
else
MPU.outputinit = 0;
if (MPU.outputinit != 1) {
writelog(MIDILOG(2), "Error: Couldn't open midi output. Midi disabled.");
BX_SB16_THIS midimode = 0;
return;
}
}
BX_SB16_OUTPUT->sendmidicommand(deltatime, command, length, data);
return;
} else if ((BX_SB16_THIS midimode == 2) ||
(BX_SB16_THIS midimode == 3)) {
base = (bx_list_c*) SIM->get_param(BXPN_SOUND_SB16);
MIDIDATA = fopen(SIM->get_param_string("midifile", base)->getptr(),"wb");
if (MIDIDATA == NULL) {
writelog (MIDILOG(2), "Error opening file %s. Midimode disabled.",
SIM->get_param_string("midifile", base)->getptr());
BX_SB16_THIS midimode = 0;
} else if (BX_SB16_THIS midimode == 2) {
initmidifile();
}
}
if (BX_SB16_THIS midimode < 2)
return;
if (BX_SB16_THIS midimode == 2)
writedeltatime(deltatime);
fputc(command, MIDIDATA);
if ((command == 0xf0) ||
(command == 0xf7)) // write event length for sysex/meta events
writedeltatime(length);
fwrite(data, 1, length, MIDIDATA);
}
// determine how many delta times have passed since
// this function was called last
int bx_sb16_c::currentdeltatime()
{
int deltatime;
// counting starts at first access
if (MPU.last_delta_time == 0xffffffff)
MPU.last_delta_time = MPU.current_timer;
deltatime = MPU.current_timer - MPU.last_delta_time;
MPU.last_delta_time = MPU.current_timer;
return deltatime;
}
// process the midi command stored in MPU.midicmd.to the midi driver
void bx_sb16_c::processmidicommand(bx_bool force)
{
int i, channel;
Bit8u value;
bx_bool needremap = 0;
channel = MPU.midicmd.currentcommand() & 0xf;
// we need to log bank changes and program changes
if ((MPU.midicmd.currentcommand() >> 4) == 0xc)
{ // a program change
value = MPU.midicmd.peek(0);
writelog(MIDILOG(1), "* ProgramChange channel %d to %d",
channel, value);
MPU.program[channel] = value;
needremap = 1;
}
else if ((MPU.midicmd.currentcommand() >> 4) == 0xb)
{ // a control change, could be a bank change
if (MPU.midicmd.peek(0) == 0)
{ // bank select MSB
value = MPU.midicmd.peek(1);
writelog(MIDILOG(1), "* BankSelectMSB (%x %x %x) channel %d to %d",
MPU.midicmd.peek(0), MPU.midicmd.peek(1), MPU.midicmd.peek(2),
channel, value);
MPU.bankmsb[channel] = value;
needremap = 1;
}
else if (MPU.midicmd.peek(0) == 32)
{ // bank select LSB
value = MPU.midicmd.peek(1);
writelog(MIDILOG(1), "* BankSelectLSB channel %d to %d",
channel, value);
MPU.banklsb[channel] = value;
needremap = 1;
}
}
Bit8u temparray[256];
i = 0;
while (MPU.midicmd.empty() == 0)
MPU.midicmd.get(&(temparray[i++]));
writemidicommand(MPU.midicmd.currentcommand(), i, temparray);
// if single command, revert to command mode
if (MPU.singlecommand != 0)
{
MPU.singlecommand = 0;
// and trigger IRQ?
// MPU.irqpending = 1;
// BX_SB16_THIS devices->pic->trigger_irq(BX_SB16_IRQMPU);
}
if ((force == 0) && (needremap == 1))
// have to check the remap lists, and remap program change if necessary
midiremapprogram(channel);
}
// check if a program change has to be remapped, and do it if necessary
void bx_sb16_c::midiremapprogram(int channel)
{
int bankmsb,banklsb,program;
Bit8u commandbytes[2];
bankmsb = MPU.bankmsb[channel];
banklsb = MPU.banklsb[channel];
program = MPU.program[channel];
for(int i = 0; i < EMUL.remaps; i++)
{
if (((EMUL.remaplist[i].oldbankmsb == bankmsb) ||
(EMUL.remaplist[i].oldbankmsb == 0xff)) &&
((EMUL.remaplist[i].oldbanklsb == banklsb) ||
(EMUL.remaplist[i].oldbanklsb == 0xff)) &&
((EMUL.remaplist[i].oldprogch == program) ||
(EMUL.remaplist[i].oldprogch == 0xff)))
{
writelog(5, "Remapping instrument for channel %d", channel);
if ((EMUL.remaplist[i].newbankmsb != bankmsb) &&
(EMUL.remaplist[i].newbankmsb != 0xff))
{ // write control change bank msb
MPU.bankmsb[channel] = EMUL.remaplist[i].newbankmsb;
commandbytes[0] = 0;
commandbytes[1] = EMUL.remaplist[i].newbankmsb;
writemidicommand(0xb0 | channel, 2, commandbytes);
}
if ((EMUL.remaplist[i].newbanklsb != banklsb) &&
(EMUL.remaplist[i].newbanklsb != 0xff))
{ // write control change bank lsb
MPU.banklsb[channel] = EMUL.remaplist[i].newbanklsb;
commandbytes[0] = 32;
commandbytes[1] = EMUL.remaplist[i].newbanklsb;
writemidicommand(0xb0 | channel, 2, commandbytes);
}
if ((EMUL.remaplist[i].newprogch != program) &&
(EMUL.remaplist[i].newprogch != 0xff))
{ // write program change
MPU.program[channel] = EMUL.remaplist[i].newprogch;
commandbytes[0] = EMUL.remaplist[i].newprogch;
writemidicommand(0xc0 | channel, 1, commandbytes);
}
}
}
}
// convert a number into a delta time coded value
int bx_sb16_c::converttodeltatime(Bit32u deltatime, Bit8u value[4])
{
int i, count;
Bit8u outbytes[4];
count = 0;
if (deltatime <= 0)
{
count = 1;
value[0] = 0;
}
else
{
while ((deltatime > 0) && (count < 4)) // split into parts
{ // of seven bits
outbytes[count++] = deltatime & 0x7f;
deltatime >>= 7;
}
for (i=0; i<count; i++) // reverse order and
value[i] = outbytes[count - i - 1] | 0x80; // set eighth bit on
value[count - 1] &= 0x7f; // all but last byte
}
return count;
}
// write a delta time coded value to the midi file
void bx_sb16_c::writedeltatime(Bit32u deltatime)
{
Bit8u outbytes[4];
int count = converttodeltatime(deltatime, outbytes);
for (int i=0; i<count; i++)
fputc(outbytes[i], MIDIDATA);
}
// close the midi file, and set the track length accordingly
void bx_sb16_c::finishmidifile()
{
struct {
Bit8u delta, statusbyte, metaevent, length;
} metatrackend = { 0, 0xff, 0x2f, 0 };
// Meta event track end (0xff 0x2f 0x00) plus leading delta time
fwrite(&metatrackend, 1, sizeof metatrackend, MIDIDATA);
Bit32u tracklen = ftell(MIDIDATA);
if (tracklen < 0)
BX_PANIC (("ftell failed in finishmidifile"));
if (tracklen < 22)
BX_PANIC (("finishmidifile with track length too short"));
tracklen -= 22; // subtract the midi file and track header
fseek(MIDIDATA, 22 - 4, SEEK_SET);
// value has to be in big endian
#ifdef BX_LITTLE_ENDIAN
tracklen = (tracklen << 24) | (tracklen >> 24) |
((tracklen & 0x00ff0000) >> 8) |
((tracklen & 0x0000ff00) << 8);
#endif
fwrite(&tracklen, 4, 1, MIDIDATA);
}
/* Handlers for the voc file output */
// Write the header of the voc file.
void bx_sb16_c::initvocfile()
{
struct {
char id[20];
Bit16u headerlen; // All in LITTLE Endian!
Bit16u version;
Bit16u chksum;
} vocheader =
{ "Creative Voice File",
#ifdef BX_LITTLE_ENDIAN
0x1a, 0x0114, 0x111f };
#else
0x1a00, 0x1401, 0x1f11 };
#endif
vocheader.id[19] = 26; // Replace string end with 26
fwrite(&vocheader, 1, sizeof vocheader, WAVEDATA);
}
// write one block to the voc file
void bx_sb16_c::writevocblock(int block,
Bit32u headerlen, Bit8u header[],
Bit32u datalen, Bit8u data[])
{
Bit32u i;
if (block > 9)
{
writelog(WAVELOG(3), "VOC Block %d not recognized, ignored.", block);
return;
}
fputc(block, WAVEDATA);
i = headerlen + datalen;
#ifdef BX_LITTLE_ENDIAN
fwrite(&i, 1, 3, WAVEDATA); // write the length in 24-bit little endian
#else
Bit8u lengthbytes[3];
lengthbytes[0] = i & 0xff; i >>= 8;
lengthbytes[1] = i & 0xff; i >>= 8;
lengthbytes[2] = i & 0xff;
fwrite(lengthbytes, 1, 3, WAVEDATA);
#endif
writelog(WAVELOG(5), "Voc block %d; Headerlen %d; Datalen %d",
block, headerlen, datalen);
if (headerlen > 0)
fwrite(header, 1, headerlen, WAVEDATA);
if (datalen > 0)
fwrite(data, 1, datalen, WAVEDATA);
}
// close the voc file
void bx_sb16_c::finishvocfile()
{
fputc(0, WAVEDATA); // blocktype 0: end block
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u bx_sb16_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_SB16_SMF
bx_sb16_c *class_ptr = (bx_sb16_c *) this_ptr;
return class_ptr->read(address, io_len);
}
Bit32u bx_sb16_c::read(Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_SB16_SMF
switch (address)
{
// 2x0: FM Music Status Port
// 2x8 and 388 are aliases
case BX_SB16_IO + 0x00:
case BX_SB16_IO + 0x08:
case BX_SB16_IOADLIB + 0x00:
return opl_status(0);
// 2x1: reserved (w: FM Music Data Port)
// 2x9 and 389 are aliases
case BX_SB16_IO + 0x01:
case BX_SB16_IO + 0x09:
case BX_SB16_IOADLIB + 0x01:
break;
// 2x2: Advanced Music Status Port
// or (for SBPro1) FM Music Status Port 2
// 38a is an alias
case BX_SB16_IO + 0x02:
case BX_SB16_IOADLIB + 0x02:
return opl_status(1);
// 2x3: reserved (w: Adv. FM Music Data Port)
// or (for SBPro1) FM Music Data Port 2
// 38b is an alias
case BX_SB16_IO + 0x03:
case BX_SB16_IOADLIB + 0x03:
break;
// 2x4: reserved (w: Mixer Register Port)
case BX_SB16_IO + 0x04:
break;
// 2x5: Mixer Data Port
case BX_SB16_IO + 0x05:
return mixer_readdata();
// 2x6: reserved (w: DSP Reset)
case BX_SB16_IO + 0x06:
break;
// 2x7: reserved
case BX_SB16_IO + 0x07:
break;
// 2x8: FM Music Status Port (OPL-2)
// handled above
// 2x9: reserved (w: FM Music Data Port)
// handled above
// 2xa: DSP Read Data Port
case BX_SB16_IO + 0x0a:
return dsp_dataread();
// 2xb: reserved
case BX_SB16_IO + 0x0b:
break;
// 2xc: DSP Buffer Status Port
case BX_SB16_IO + 0x0c:
return dsp_bufferstatus();
// 2xd: reserved
case BX_SB16_IO + 0x0d:
break;
// 2xe: DSP Data Status Port
case BX_SB16_IO + 0x0e:
return dsp_status();
// 2xf: DSP Acknowledge 16bit DMA IRQ
case BX_SB16_IO + 0x0f:
return dsp_irq16ack();
// 3x0: MPU Data Port Read
case BX_SB16_IOMPU + 0x00:
return mpu_dataread();
// 3x1: MPU Status Port
case BX_SB16_IOMPU + 0x01:
return mpu_status();
// 3x2: reserved
case BX_SB16_IOMPU + 0x02:
break;
// 3x3: *Emulator* Port
case BX_SB16_IOMPU + 0x03:
return emul_read();
}
// If we get here, the port wasn't valid
writelog(3, "Read access to 0x%04x: unsupported port!", address);
return(0xff);
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void bx_sb16_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_SB16_SMF
bx_sb16_c *class_ptr = (bx_sb16_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
void bx_sb16_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_SB16_SMF
switch (address)
{
// 2x0: FM Music Register Port
// 2x8 and 388 are aliases
case BX_SB16_IO + 0x00:
case BX_SB16_IO + 0x08:
case BX_SB16_IOADLIB + 0x00:
opl_index(value, 0);
return;
// 2x1: FM Music Data Port
// 2x9 and 389 are aliases
case BX_SB16_IO + 0x01:
case BX_SB16_IO + 0x09:
case BX_SB16_IOADLIB + 0x01:
opl_data(value, 0);
return;
// 2x2: Advanced FM Music Register Port
// or (for SBPro1) FM Music Register Port 2
// 38a is an alias
case BX_SB16_IO + 0x02:
case BX_SB16_IOADLIB + 0x02:
opl_index(value, 1);
return;
// 2x3: Advanced FM Music Data Port
// or (for SBPro1) FM Music Data Port 2
// 38b is an alias
case BX_SB16_IO + 0x03:
case BX_SB16_IOADLIB + 0x03:
opl_data(value, 1);
return;
// 2x4: Mixer Register Port
case BX_SB16_IO + 0x04:
mixer_writeregister(value);
return;
// 2x5: Mixer Data Portr,
case BX_SB16_IO + 0x05:
mixer_writedata(value);
return;
// 2x6: DSP Reset
case BX_SB16_IO + 0x06:
dsp_reset(value);
return;
// 2x7: reserved
case BX_SB16_IO + 0x07:
break;
// 2x8: FM Music Register Port (OPL-2)
// handled above
// 2x9: FM Music Data Port
// handled above
// 2xa: reserved (r: DSP Data Port)
case BX_SB16_IO + 0x0a:
break;
// 2xb: reserved
case BX_SB16_IO + 0x0b:
break;
// 2xc: DSP Write Command/Data
case BX_SB16_IO + 0x0c:
dsp_datawrite(value);
return;
// 2xd: reserved
case BX_SB16_IO + 0x0d:
break;
// 2xe: reserved (r: DSP Buffer Status)
case BX_SB16_IO + 0x0e:
break;
// 2xf: reserved
case BX_SB16_IO + 0x0f:
break;
// 3x0: MPU Command Port
case BX_SB16_IOMPU + 0x00:
mpu_datawrite(value);
return;
// 3x1: MPU Data Port
case BX_SB16_IOMPU + 0x01:
mpu_command(value);
return;
// 3x2: reserved
case BX_SB16_IOMPU + 0x02:
break;
// 3x3: *Emulator* Port
case BX_SB16_IOMPU + 0x03:
emul_write(value);
return;
}
// if we arrive here, the port is unsupported
writelog(3, "Write access to 0x%04x (value = 0x%02x): unsupported port!",
address, value);
}
void bx_sb16_c::writelog(int loglev, const char *str, ...)
{
// append a line to the log file, if desired
if (BX_SB16_THIS loglevel >= loglev)
{
fprintf(LOGFILE, FMT_TICK, bx_pc_system.time_ticks());
fprintf(LOGFILE, " (%d) ", loglev);
va_list ap;
va_start(ap, str);
vfprintf(LOGFILE, str, ap);
va_end(ap);
fprintf(LOGFILE, "\n");
fflush(LOGFILE);
}
}
// the round-robin FIFO buffers of the SB16
bx_sb16_buffer::bx_sb16_buffer()
{
length = 0; // total bytes in buffer
head = 0; // pointer to next slot available for new data
tail = 0; // pointer to next slot to be read from
buffer = NULL; // pointer to the actual data
}
void bx_sb16_buffer::init(int bufferlen)
{
if (buffer != NULL) // Was it initialized before?
delete buffer;
length = bufferlen;
buffer = new Bit8u[length];
if (buffer == NULL)
length = 0; // This will be checked later
reset();
}
void bx_sb16_buffer::reset()
{
head = 0; // Reset the pointers
tail = 0;
clearcommand(); // no current command set
}
bx_sb16_buffer::~bx_sb16_buffer()
{
if (buffer != NULL)
delete [] buffer;
buffer = NULL;
length = 0;
}
// Report how many bytes are available
int bx_sb16_buffer::bytes(void)
{
if (empty() != 0)
return 0; // empty / not initialized
int bytes = head - tail;
if (bytes < 0) bytes += length;
return (bytes);
}
// This puts one byte into the buffer
bx_bool bx_sb16_buffer::put(Bit8u data)
{
if (full() != 0)
return 0; // buffer full
buffer[head++] = data; // Write data, and increase write pointer
head %= length; // wrap it around so it stays inside the data
return 1; // put was successful
}
// This writes a formatted string to the buffer
bx_bool bx_sb16_buffer::puts(const char *data, ...)
{
if (data == NULL)
return 0; // invalid string
//char string[length];
char *string;
int index = 0;
string = (char *) malloc(length);
va_list ap;
va_start(ap, data);
vsprintf(string, data, ap);
va_end(ap);
if ((int) strlen(string) >= length)
BX_PANIC(("bx_sb16_buffer: puts() too long!"));
while (string[index] != 0)
{
if (put((Bit8u) string[index]) == 0)
return 0; // buffer full
index++;
}
return 1;
}
// This returns if the buffer is full, i.e. if a put will fail
bx_bool bx_sb16_buffer::full(void)
{
if (length == 0)
return 1; // not initialized
if (((head + 1) % length) == tail)
return 1; // buffer full
return 0; // buffer has some space left
}
// This reads the next available byte from the buffer
bx_bool bx_sb16_buffer::get(Bit8u *data)
{
if (empty() != 0)
{
// Buffer is empty. Still, if it was initialized, return
// the last byte again.
if (length > 0)
(*data) = buffer[ (tail - 1) % length ];
return 0; // buffer empty
}
(*data) = buffer[tail++]; // read data and increase read pointer
tail %= length; // and wrap it around to stay inside the data
return 1; // get was successful
}
// Read a word in lo/hi order
bx_bool bx_sb16_buffer::getw(Bit16u *data)
{
Bit8u dummy;
if (bytes() < 2)
{
if (bytes() == 1)
{
get(&dummy);
*data = (Bit16u) dummy;
}
else
dummy = 0;
return 0;
}
get(&dummy);
*data = (Bit16u) dummy;
get(&dummy);
*data |= ((Bit16u) dummy) << 8;
return 1;
}
// Read a word in hi/lo order
bx_bool bx_sb16_buffer::getw1(Bit16u *data)
{
Bit8u dummy;
if (bytes() < 2)
{
if (bytes() == 1)
{
get(&dummy);
*data = ((Bit16u) dummy) << 8;
}
else
dummy = 0;
return 0;
}
get(&dummy);
*data = ((Bit16u) dummy) << 8;
get(&dummy);
*data |= (Bit16u) dummy;
return 1;
}
// This returns if the buffer is empty, i.e. if a get will fail
bx_bool bx_sb16_buffer::empty(void)
{
if (length == 0)
return 1; // not inialized
if (head == tail)
return 1; // buffer empty
return 0; // buffer contains data
}
// Flushes the buffer
void bx_sb16_buffer::flush(void)
{
tail = head;
return;
}
// Peeks ahead in the buffer
// Warning: No checking if result is valid. Must call bytes() to check that!
Bit8u bx_sb16_buffer::peek(int offset)
{
return buffer[(tail + offset) % length];
}
// Set a new active command
void bx_sb16_buffer::newcommand(Bit8u newcmd, int bytes)
{
command = newcmd;
havecommand = 1;
bytesneeded = bytes;
}
// Return the currently active command
Bit8u bx_sb16_buffer::currentcommand(void)
{
return command;
}
// Clear the active command
void bx_sb16_buffer::clearcommand(void)
{
command = 0;
havecommand = 0;
bytesneeded = 0;
}
// return if the command has received all necessary bytes
bx_bool bx_sb16_buffer::commanddone(void)
{
if (hascommand() == 0)
return 0; // no command pending - not done then
if (bytes() >= bytesneeded)
return 1; // yes, it's done
return 0; // no, it's not
}
// return if there is a command pending
bx_bool bx_sb16_buffer::hascommand(void)
{
return havecommand;
}
int bx_sb16_buffer::commandbytes(void)
{
return bytesneeded;
}
// runtime parameter handler
Bit64s bx_sb16_c::sb16_param_handler(bx_param_c *param, int set, Bit64s val)
{
if (set) {
char pname[BX_PATHNAME_LEN];
param->get_param_path(pname, BX_PATHNAME_LEN);
if (!strcmp(pname, BXPN_SB16_DMATIMER)) {
BX_SB16_THIS dmatimer = (Bit32u)val;
} else if (!strcmp(pname, BXPN_SB16_LOGLEVEL)) {
BX_SB16_THIS loglevel = (int)val;
} else {
BX_PANIC(("sb16_param_handler called with unexpected parameter '%s'", pname));
}
}
return val;
}
#endif /* if BX_SUPPORT_SB16 */