Bochs/bochs/bios/rombios32.c
Volker Ruppert 1d27d67ccd Added initial version of the High Precision Event Timer (HPET) ported from Qemu.
- Created framework based on our I/O APIC code and ported HPET core from Qemu
  with some required changes for the Bochs timer and IRQ handling.
- Enabled HPET-specific code in the ACPI and rombios32 sources and generated
  new ACPI table with iasl.
- The HPET device plugin is now always loaded if the i440FX chipset is selected
  (same as ACPI). We have to rethink this when we have implemented a more
  modern chipset.
- TODO: Rewrite of the virtual timer code for nanosecond support to make the
  realtime synchronization possible with HPET.
2017-04-17 07:26:00 +00:00

2400 lines
70 KiB
C

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// 32 bit Bochs BIOS init code
// Copyright (C) 2006 Fabrice Bellard
// Copyright (C) 2001-2017 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#include <stdarg.h>
#include <stddef.h>
#include "rombios.h"
typedef signed char int8_t;
typedef short int16_t;
typedef int int32_t;
typedef long long int64_t;
typedef unsigned char uint8_t;
typedef unsigned short uint16_t;
typedef unsigned int uint32_t;
typedef unsigned long long uint64_t;
#define cpuid(index, eax, ebx, ecx, edx) \
asm volatile ("cpuid" \
: "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
: "0" (index))
#define wbinvd() asm volatile("wbinvd")
static inline void outl(int addr, int val)
{
asm volatile ("outl %1, %w0" : : "d" (addr), "a" (val));
}
static inline void outw(int addr, int val)
{
asm volatile ("outw %w1, %w0" : : "d" (addr), "a" (val));
}
static inline void outb(int addr, int val)
{
asm volatile ("outb %b1, %w0" : : "d" (addr), "a" (val));
}
static inline uint32_t inl(int addr)
{
uint32_t val;
asm volatile ("inl %w1, %0" : "=a" (val) : "d" (addr));
return val;
}
static inline uint16_t inw(int addr)
{
uint16_t val;
asm volatile ("inw %w1, %w0" : "=a" (val) : "d" (addr));
return val;
}
static inline uint8_t inb(int addr)
{
uint8_t val;
asm volatile ("inb %w1, %b0" : "=a" (val) : "d" (addr));
return val;
}
static inline void writel(void *addr, uint32_t val)
{
*(volatile uint32_t *)addr = val;
}
static inline void writew(void *addr, uint16_t val)
{
*(volatile uint16_t *)addr = val;
}
static inline void writeb(void *addr, uint8_t val)
{
*(volatile uint8_t *)addr = val;
}
static inline uint32_t readl(const void *addr)
{
return *(volatile const uint32_t *)addr;
}
static inline uint16_t readw(const void *addr)
{
return *(volatile const uint16_t *)addr;
}
static inline uint8_t readb(const void *addr)
{
return *(volatile const uint8_t *)addr;
}
static inline void putch(int c)
{
outb(INFO_PORT, c);
}
static uint64_t rdmsr(unsigned index)
{
unsigned long long ret;
asm ("rdmsr" : "=A"(ret) : "c"(index));
return ret;
}
static void wrmsr(unsigned index, uint64_t val)
{
asm volatile ("wrmsr" : : "c"(index), "A"(val));
}
static inline int isdigit(int c)
{
return c >= '0' && c <= '9';
}
void *memset(void *d1, int val, size_t len)
{
uint8_t *d = d1;
while (len--) {
*d++ = val;
}
return d1;
}
void *memcpy(void *d1, const void *s1, size_t len)
{
uint8_t *d = d1;
const uint8_t *s = s1;
while (len--) {
*d++ = *s++;
}
return d1;
}
void *memmove(void *d1, const void *s1, size_t len)
{
uint8_t *d = d1;
const uint8_t *s = s1;
if (d <= s) {
while (len--) {
*d++ = *s++;
}
} else {
d += len;
s += len;
while (len--) {
*--d = *--s;
}
}
return d1;
}
int memcmp(const void *s1, const void *s2, size_t len)
{
const int8_t *p1 = s1;
const int8_t *p2 = s2;
while (len--) {
int r = *p1++ - *p2++;
if(r)
return r;
}
return 0;
}
size_t strlen(const char *s)
{
const char *s1;
for(s1 = s; *s1 != '\0'; s1++);
return s1 - s;
}
/* from BSD ppp sources */
int vsnprintf(char *buf, int buflen, const char *fmt, va_list args)
{
int c, i, n;
int width, prec, fillch;
int base, len, neg;
unsigned long val = 0;
const char *f;
char *str, *buf0;
char num[32];
static const char hexchars[] = "0123456789abcdef";
buf0 = buf;
--buflen;
while (buflen > 0) {
for (f = fmt; *f != '%' && *f != 0; ++f)
;
if (f > fmt) {
len = f - fmt;
if (len > buflen)
len = buflen;
memcpy(buf, fmt, len);
buf += len;
buflen -= len;
fmt = f;
}
if (*fmt == 0)
break;
c = *++fmt;
width = prec = 0;
fillch = ' ';
if (c == '0') {
fillch = '0';
c = *++fmt;
}
if (c == '*') {
width = va_arg(args, int);
c = *++fmt;
} else {
while (isdigit(c)) {
width = width * 10 + c - '0';
c = *++fmt;
}
}
if (c == '.') {
c = *++fmt;
if (c == '*') {
prec = va_arg(args, int);
c = *++fmt;
} else {
while (isdigit(c)) {
prec = prec * 10 + c - '0';
c = *++fmt;
}
}
}
/* modifiers */
switch(c) {
case 'l':
c = *++fmt;
break;
default:
break;
}
str = 0;
base = 0;
neg = 0;
++fmt;
switch (c) {
case 'd':
i = va_arg(args, int);
if (i < 0) {
neg = 1;
val = -i;
} else
val = i;
base = 10;
break;
case 'o':
val = va_arg(args, unsigned int);
base = 8;
break;
case 'x':
case 'X':
val = va_arg(args, unsigned int);
base = 16;
break;
case 'p':
val = (unsigned long) va_arg(args, void *);
base = 16;
neg = 2;
break;
case 's':
str = va_arg(args, char *);
break;
case 'c':
num[0] = va_arg(args, int);
num[1] = 0;
str = num;
break;
default:
*buf++ = '%';
if (c != '%')
--fmt; /* so %z outputs %z etc. */
--buflen;
continue;
}
if (base != 0) {
str = num + sizeof(num);
*--str = 0;
while (str > num + neg) {
*--str = hexchars[val % base];
val = val / base;
if (--prec <= 0 && val == 0)
break;
}
switch (neg) {
case 1:
*--str = '-';
break;
case 2:
*--str = 'x';
*--str = '0';
break;
}
len = num + sizeof(num) - 1 - str;
} else {
len = strlen(str);
if (prec > 0 && len > prec)
len = prec;
}
if (width > 0) {
if (width > buflen)
width = buflen;
if ((n = width - len) > 0) {
buflen -= n;
for (; n > 0; --n)
*buf++ = fillch;
}
}
if (len > buflen)
len = buflen;
memcpy(buf, str, len);
buf += len;
buflen -= len;
}
*buf = 0;
return buf - buf0;
}
int snprintf(char * buf, size_t size, const char *fmt, ...)
{
va_list args;
int i;
va_start(args, fmt);
i = vsnprintf(buf, size, fmt, args);
va_end(args);
return i;
}
void bios_printf(int flags, const char *fmt, ...)
{
va_list ap;
char buf[1024];
const char *s;
if ((flags & BIOS_PRINTF_DEBHALT) == BIOS_PRINTF_DEBHALT)
outb(PANIC_PORT2, 0x00);
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
s = buf;
while (*s)
putch(*s++);
va_end(ap);
}
void delay_ms(int n)
{
int i, j;
for(i = 0; i < n; i++) {
#ifdef BX_QEMU
volatile int k = 0;
/* approximative ! */
for(j = 0; j < 1000000; j++) {
k++;
}
#else
{
int r1, r2;
j = 66;
r1 = inb(0x61) & 0x10;
do {
r2 = inb(0x61) & 0x10;
if (r1 != r2) {
j--;
r1 = r2;
}
} while (j > 0);
}
#endif
}
}
uint16_t smp_cpus;
uint32_t cpuid_signature;
uint32_t cpuid_features;
uint32_t cpuid_ext_features;
unsigned long ram_size;
uint64_t ram_end;
uint8_t bios_uuid[16];
#ifdef BX_USE_EBDA_TABLES
unsigned long ebda_cur_addr;
#endif
int acpi_enabled;
uint32_t pm_io_base, smb_io_base;
int pm_sci_int;
unsigned long bios_table_cur_addr;
unsigned long bios_table_end_addr;
void wrmsr_smp(uint32_t index, uint64_t val)
{
static struct { uint32_t ecx, eax, edx; } *p = (void *)SMP_MSR_ADDR;
wrmsr(index, val);
p->ecx = index;
p->eax = val;
p->edx = val >> 32;
++p;
p->ecx = 0;
}
#ifdef BX_QEMU
int qemu_cfg_port;
void qemu_cfg_select(int f)
{
outw(QEMU_CFG_CTL_PORT, f);
}
int qemu_cfg_port_probe()
{
char *sig = "QEMU";
int i;
qemu_cfg_select(QEMU_CFG_SIGNATURE);
for (i = 0; i < 4; i++)
if (inb(QEMU_CFG_DATA_PORT) != sig[i])
return 0;
return 1;
}
void qemu_cfg_read(uint8_t *buf, int len)
{
while (len--)
*(buf++) = inb(QEMU_CFG_DATA_PORT);
}
#endif
void uuid_probe(void)
{
#ifdef BX_QEMU
if(qemu_cfg_port) {
qemu_cfg_select(QEMU_CFG_UUID);
qemu_cfg_read(bios_uuid, 16);
return;
}
#endif
memset(bios_uuid, 0, 16);
}
void cpu_probe(void)
{
uint32_t eax, ebx, ecx, edx;
cpuid(1, eax, ebx, ecx, edx);
cpuid_signature = eax;
cpuid_features = edx;
cpuid_ext_features = ecx;
}
static int cmos_readb(int addr)
{
outb(0x70, addr);
return inb(0x71);
}
void setup_mtrr(void)
{
int i, vcnt, fix, wc;
uint32_t mtrr_cap;
union {
uint8_t valb[8];
uint64_t val;
} u;
*(uint32_t *)SMP_MSR_ADDR = 0;
if (!(cpuid_features & CPUID_MTRR))
return;
if (!(cpuid_features & CPUID_MSR))
return;
mtrr_cap = rdmsr(MSR_MTRRcap);
vcnt = mtrr_cap & 0xff;
fix = mtrr_cap & 0x100;
wc = mtrr_cap & 0x400;
if (!vcnt || !fix)
return;
u.val = 0;
for (i = 0; i < 8; ++i)
if (ram_size >= 65536 * (i + 1))
u.valb[i] = 6;
wrmsr_smp(MSR_MTRRfix64K_00000, u.val);
u.val = 0;
for (i = 0; i < 8; ++i)
if (ram_size >= 65536 * 8 + 16384 * (i + 1))
u.valb[i] = 6;
wrmsr_smp(MSR_MTRRfix16K_80000, u.val);
wrmsr_smp(MSR_MTRRfix16K_A0000, 0);
wrmsr_smp(MSR_MTRRfix4K_C0000, 0);
wrmsr_smp(MSR_MTRRfix4K_C8000, 0);
wrmsr_smp(MSR_MTRRfix4K_D0000, 0);
wrmsr_smp(MSR_MTRRfix4K_D8000, 0);
wrmsr_smp(MSR_MTRRfix4K_E0000, 0);
wrmsr_smp(MSR_MTRRfix4K_E8000, 0);
wrmsr_smp(MSR_MTRRfix4K_F0000, 0);
wrmsr_smp(MSR_MTRRfix4K_F8000, 0);
int phys_bits = 32;
uint32_t eax, ebx, ecx, edx;
cpuid(0x80000000u, eax, ebx, ecx, edx);
if (eax >= 0x80000008) {
/* Get physical bits from leaf 0x80000008 (if available) */
cpuid(0x80000008u, eax, ebx, ecx, edx);
phys_bits = eax & 0xff;
}
uint64_t phys_mask = ((1ull << phys_bits) - 1);
/* Mark 3-4GB as UC, anything not specified defaults to WB */
wrmsr_smp(MTRRphysBase_MSR(0), 0xc0000000 | MTRR_MEMTYPE_UC);
/* Make sure no reserved bit set to '1 in MTRRphysMask_MSR */
wrmsr_smp(MTRRphysMask_MSR(0), (~(0x40000000 - 1) & phys_mask) | 0x800);
wrmsr_smp(MSR_MTRRdefType, 0xc00 | MTRR_MEMTYPE_WB);
}
void ram_probe(void)
{
if (cmos_readb(0x34) | cmos_readb(0x35))
ram_size = (cmos_readb(0x34) | (cmos_readb(0x35) << 8)) * 65536 +
16 * 1024 * 1024;
else
ram_size = (cmos_readb(0x30) | (cmos_readb(0x31) << 8)) * 1024 +
1 * 1024 * 1024;
BX_INFO("ram_size=0x%08lx\n", ram_size);
if (cmos_readb(0x5b) | cmos_readb(0x5c) | cmos_readb(0x5d))
ram_end = (((uint64_t)cmos_readb(0x5b) << 16) |
((uint64_t)cmos_readb(0x5c) << 24) |
((uint64_t)cmos_readb(0x5d) << 32)) + (1ull << 32);
else
ram_end = ram_size;
BX_INFO("ram_end=%ldMB\n", ram_end >> 20);
#ifdef BX_USE_EBDA_TABLES
ebda_cur_addr = ((*(uint16_t *)(0x40e)) << 4) + 0x386;
BX_INFO("ebda_cur_addr: 0x%08lx\n", ebda_cur_addr);
#endif
}
/****************************************************/
/* SMP probe */
extern uint8_t smp_ap_boot_code_start;
extern uint8_t smp_ap_boot_code_end;
/* find the number of CPUs by launching a SIPI to them */
void smp_probe(void)
{
uint32_t val, sipi_vector;
writew(&smp_cpus, 1);
if (cpuid_features & CPUID_APIC) {
/* enable local APIC */
val = readl(APIC_BASE + APIC_SVR);
val |= APIC_ENABLED;
writel(APIC_BASE + APIC_SVR, val);
/* copy AP boot code */
memcpy((void *)AP_BOOT_ADDR, &smp_ap_boot_code_start,
&smp_ap_boot_code_end - &smp_ap_boot_code_start);
/* broadcast SIPI */
writel(APIC_BASE + APIC_ICR_LOW, 0x000C4500);
sipi_vector = AP_BOOT_ADDR >> 12;
writel(APIC_BASE + APIC_ICR_LOW, 0x000C4600 | sipi_vector);
#ifndef BX_QEMU
delay_ms(10);
#else
while (cmos_readb(0x5f) + 1 != readw(&smp_cpus))
;
#endif
}
BX_INFO("Found %d cpu(s)\n", readw(&smp_cpus));
}
/****************************************************/
/* PCI init */
typedef struct PCIDevice {
int bus;
int devfn;
} PCIDevice;
static uint32_t pci_bios_io_addr;
static uint32_t pci_bios_mem_addr;
static uint32_t pci_bios_rom_start;
/* host irqs corresponding to PCI irqs A-D */
static uint8_t pci_irqs[4] = { 11, 9, 11, 9 };
static PCIDevice i440_pcidev = {-1, -1};
static void pci_config_writel(PCIDevice *d, uint32_t addr, uint32_t val)
{
outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
outl(0xcfc, val);
}
static void pci_config_writew(PCIDevice *d, uint32_t addr, uint32_t val)
{
outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
outw(0xcfc + (addr & 2), val);
}
static void pci_config_writeb(PCIDevice *d, uint32_t addr, uint32_t val)
{
outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
outb(0xcfc + (addr & 3), val);
}
static uint32_t pci_config_readl(PCIDevice *d, uint32_t addr)
{
outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
return inl(0xcfc);
}
static uint32_t pci_config_readw(PCIDevice *d, uint32_t addr)
{
outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
return inw(0xcfc + (addr & 2));
}
static uint32_t pci_config_readb(PCIDevice *d, uint32_t addr)
{
outl(0xcf8, 0x80000000 | (d->bus << 16) | (d->devfn << 8) | (addr & 0xfc));
return inb(0xcfc + (addr & 3));
}
static void pci_set_io_region_addr(PCIDevice *d, int region_num, uint32_t addr)
{
uint16_t cmd;
uint32_t ofs, old_addr;
if ( region_num == PCI_ROM_SLOT ) {
ofs = PCI_ROM_ADDRESS;
addr |= PCI_ROM_ADDRESS_ENABLE;
}else{
ofs = PCI_BASE_ADDRESS_0 + region_num * 4;
}
old_addr = pci_config_readl(d, ofs);
pci_config_writel(d, ofs, addr);
BX_INFO("region %d: 0x%08x\n", region_num, addr & ~0x01);
/* enable memory mappings */
cmd = pci_config_readw(d, PCI_COMMAND);
if ( region_num == PCI_ROM_SLOT )
cmd |= PCI_COMMAND_MEMORY;
else if (old_addr & PCI_ADDRESS_SPACE_IO)
cmd |= PCI_COMMAND_IO;
else
cmd |= PCI_COMMAND_MEMORY;
pci_config_writew(d, PCI_COMMAND, cmd);
}
/* return the global irq number corresponding to a given device irq
pin. We could also use the bus number to have a more precise
mapping. */
static int pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
{
int slot_addend;
slot_addend = (pci_dev->devfn >> 3) - 1;
return (irq_num + slot_addend) & 3;
}
static void find_bios_table_area(void)
{
unsigned long addr;
for(addr = 0xf0000; addr < 0x100000; addr += 16) {
if (*(uint32_t *)addr == 0xaafb4442) {
bios_table_cur_addr = addr + 8;
bios_table_end_addr = bios_table_cur_addr + *(uint32_t *)(addr + 4);
BX_INFO("bios_table_addr: 0x%08lx end=0x%08lx\n",
bios_table_cur_addr, bios_table_end_addr);
return;
}
}
return;
}
static void bios_shadow_init(PCIDevice *d)
{
int v;
if (bios_table_cur_addr == 0)
return;
/* remap the BIOS to shadow RAM an keep it read/write while we
are writing tables */
v = pci_config_readb(d, 0x59);
v &= 0xcf;
pci_config_writeb(d, 0x59, v);
memcpy((void *)BIOS_TMP_STORAGE, (void *)0x000f0000, 0x10000);
v |= 0x30;
pci_config_writeb(d, 0x59, v);
memcpy((void *)0x000f0000, (void *)BIOS_TMP_STORAGE, 0x10000);
i440_pcidev = *d;
}
static void bios_lock_shadow_ram(void)
{
PCIDevice *d = &i440_pcidev;
int v;
wbinvd();
v = pci_config_readb(d, 0x59);
v = (v & 0x0f) | (0x10);
pci_config_writeb(d, 0x59, v);
}
static void pci_bios_init_bridges(PCIDevice *d)
{
uint16_t vendor_id, device_id;
vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
device_id = pci_config_readw(d, PCI_DEVICE_ID);
if (vendor_id == PCI_VENDOR_ID_INTEL &&
(device_id == PCI_DEVICE_ID_INTEL_82371FB_0 ||
device_id == PCI_DEVICE_ID_INTEL_82371SB_0 ||
device_id == PCI_DEVICE_ID_INTEL_82371AB_0)) {
int i, irq;
uint8_t elcr[2];
/* PIIX/PIIX3/PIIX4 PCI to ISA bridge */
elcr[0] = 0x00;
elcr[1] = 0x00;
for(i = 0; i < 4; i++) {
irq = pci_irqs[i];
/* set to trigger level */
elcr[irq >> 3] |= (1 << (irq & 7));
/* activate irq remapping in PIIX */
pci_config_writeb(d, 0x60 + i, irq);
}
outb(0x4d0, elcr[0]);
outb(0x4d1, elcr[1]);
BX_INFO("PIIX3/PIIX4 init: elcr=%02x %02x\n",
elcr[0], elcr[1]);
} else if (vendor_id == PCI_VENDOR_ID_INTEL &&
(device_id == PCI_DEVICE_ID_INTEL_82441 || device_id == PCI_DEVICE_ID_INTEL_82437)) {
/* i440FX / i430FX PCI bridge */
bios_shadow_init(d);
}
}
extern uint8_t smm_relocation_start, smm_relocation_end;
extern uint8_t smm_code_start, smm_code_end;
#ifdef BX_USE_SMM
static void smm_init(PCIDevice *d)
{
uint32_t value;
/* check if SMM init is already done */
value = pci_config_readl(d, 0x58);
if ((value & (1 << 25)) == 0) {
/* enable the SMM memory window */
pci_config_writeb(&i440_pcidev, 0x72, 0x02 | 0x48);
/* save original memory content */
memcpy((void *)0xa8000, (void *)0x38000, 0x8000);
/* copy the SMM relocation code */
memcpy((void *)0x38000, &smm_relocation_start,
&smm_relocation_end - &smm_relocation_start);
/* enable SMI generation when writing to the APMC register */
pci_config_writel(d, 0x58, value | (1 << 25));
/* init APM status port */
outb(0xb3, 0x01);
/* raise an SMI interrupt */
outb(0xb2, 0x00);
/* wait until SMM code executed */
while (inb(0xb3) != 0x00);
/* restore original memory content */
memcpy((void *)0x38000, (void *)0xa8000, 0x8000);
/* copy the SMM code */
memcpy((void *)0xa8000, &smm_code_start,
&smm_code_end - &smm_code_start);
wbinvd();
/* close the SMM memory window and enable normal SMM */
pci_config_writeb(&i440_pcidev, 0x72, 0x02 | 0x08);
}
}
#endif
static void piix4_pm_enable(PCIDevice *d)
{
/* PIIX4 Power Management device (for ACPI) */
pci_config_writel(d, 0x40, PM_IO_BASE | 1);
pci_config_writeb(d, 0x80, 0x01); /* enable PM io space */
pci_config_writel(d, 0x90, SMB_IO_BASE | 1);
pci_config_writeb(d, 0xd2, 0x09); /* enable SMBus io space */
#ifdef BX_USE_SMM
smm_init(d);
#endif
}
static void pci_bios_init_pcirom(PCIDevice *d, uint32_t paddr)
{
PCIDevice d1, *i440fx = &d1;
uint32_t tmpaddr, size;
uint8_t reg, v;
int copied, shift, tmpsize;
i440fx->bus = 0;
i440fx->devfn = 0;
if (paddr != 0) {
size = readb((void *)(paddr + 2));
if (size & 0x03) {
size &= 0xfc;
size += 0x04;
}
size <<= 9;
if ((pci_bios_rom_start + size) > 0xe0000)
return;
tmpaddr = pci_bios_rom_start;
copied = 0;
do {
tmpsize = 0x4000 - (tmpaddr & 0x3fff);
if ((size - copied) < tmpsize) {
tmpsize = size - copied;
}
reg = 0x5a + (uint8_t)((tmpaddr >> 15) & 0x07);
if (tmpaddr & 0x4000) {
shift = 4;
} else {
shift = 0;
}
v = pci_config_readb(i440fx, reg);
v = (v & (~(0x03 << shift))) | (0x02 << shift);
pci_config_writeb(i440fx, reg, v);
memcpy((void *)tmpaddr, (void *)(paddr + copied), tmpsize);
v = (v & (~(0x03 << shift))) | (0x01 << shift);
pci_config_writeb(i440fx, reg, v);
tmpaddr += tmpsize;
copied += tmpsize;
} while (copied < size);
BX_INFO("PCI ROM copied to 0x%05x (size=0x%05x)\n", pci_bios_rom_start, size);
pci_bios_rom_start += size;
pci_config_writeb(d, PCI_ROM_ADDRESS, 0x00);
}
}
static void pci_bios_init_device(PCIDevice *d)
{
PCIDevice d1, *i440fx = &d1;
uint16_t class;
uint32_t *paddr;
int i, pin, pic_irq, vendor_id, device_id;
i440fx->bus = 0;
i440fx->devfn = 0;
class = pci_config_readw(d, PCI_CLASS_DEVICE);
vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
device_id = pci_config_readw(d, PCI_DEVICE_ID);
BX_INFO("PCI: bus=%d devfn=0x%02x: vendor_id=0x%04x device_id=0x%04x class=0x%04x\n",
d->bus, d->devfn, vendor_id, device_id, class);
switch(class) {
case PCI_CLASS_STORAGE_IDE:
if (vendor_id == PCI_VENDOR_ID_INTEL &&
(device_id == PCI_DEVICE_ID_INTEL_82371FB_1 ||
device_id == PCI_DEVICE_ID_INTEL_82371SB_1 ||
device_id == PCI_DEVICE_ID_INTEL_82371AB)) {
/* PIIX3/PIIX4 IDE */
pci_config_writew(d, 0x40, 0x8000); // enable IDE0
pci_config_writew(d, 0x42, 0x8000); // enable IDE1
goto default_map;
} else {
/* IDE: we map it as in ISA mode */
pci_set_io_region_addr(d, 0, 0x1f0);
pci_set_io_region_addr(d, 1, 0x3f4);
pci_set_io_region_addr(d, 2, 0x170);
pci_set_io_region_addr(d, 3, 0x374);
}
break;
case PCI_CLASS_SYSTEM_PIC:
if (vendor_id == PCI_VENDOR_ID_IBM) {
/* IBM */
if (device_id == 0x0046 || device_id == 0xFFFF) {
/* MPIC & MPIC2 */
pci_set_io_region_addr(d, 0, 0x80800000 + 0x00040000);
}
}
break;
case 0xff00:
if (vendor_id == PCI_VENDOR_ID_APPLE &&
(device_id == 0x0017 || device_id == 0x0022)) {
/* macio bridge */
pci_set_io_region_addr(d, 0, 0x80800000);
}
break;
default:
default_map:
/* default memory mappings */
for(i = 0; i < PCI_NUM_REGIONS; i++) {
int ofs;
uint32_t val, size, align;
if (i == PCI_ROM_SLOT) {
ofs = PCI_ROM_ADDRESS;
pci_config_writel(d, ofs, 0xfffffffe);
} else {
ofs = PCI_BASE_ADDRESS_0 + i * 4;
pci_config_writel(d, ofs, 0xffffffff);
}
val = pci_config_readl(d, ofs);
if (val != 0) {
size = (~(val & ~0xf)) + 1;
if (val & PCI_ADDRESS_SPACE_IO) {
paddr = &pci_bios_io_addr;
align = 0x10;
} else {
paddr = &pci_bios_mem_addr;
align = 0x10000;
}
*paddr = (*paddr + size - 1) & ~(size - 1);
pci_set_io_region_addr(d, i, *paddr);
if ((i == PCI_ROM_SLOT) && (class == PCI_CLASS_DISPLAY_VGA)) {
pci_bios_init_pcirom(d, *paddr);
}
if (size < align) {
*paddr += align;
} else {
*paddr += size;
}
}
}
break;
}
/* map the interrupt */
pin = pci_config_readb(d, PCI_INTERRUPT_PIN);
if (pin != 0) {
pin = pci_slot_get_pirq(d, pin - 1);
pic_irq = pci_irqs[pin];
pci_config_writeb(d, PCI_INTERRUPT_LINE, pic_irq);
}
if (vendor_id == PCI_VENDOR_ID_INTEL && device_id == PCI_DEVICE_ID_INTEL_82371AB_3) {
/* PIIX4 Power Management device (for ACPI) */
pm_io_base = PM_IO_BASE;
smb_io_base = SMB_IO_BASE;
// acpi sci is hardwired to 9
pci_config_writeb(d, PCI_INTERRUPT_LINE, 9);
pm_sci_int = pci_config_readb(d, PCI_INTERRUPT_LINE);
piix4_pm_enable(d);
acpi_enabled = 1;
}
}
static void pci_bios_init_optrom(PCIDevice *d)
{
uint32_t paddr;
uint16_t class;
class = pci_config_readw(d, PCI_CLASS_DEVICE);
if (class != PCI_CLASS_DISPLAY_VGA) {
paddr = pci_config_readl(d, PCI_ROM_ADDRESS) & 0xfffffc00;
pci_bios_init_pcirom(d, paddr);
}
}
void pci_for_each_device(void (*init_func)(PCIDevice *d))
{
PCIDevice d1, *d = &d1;
int bus, devfn;
uint16_t vendor_id, device_id;
for(bus = 0; bus < 1; bus++) {
for(devfn = 0; devfn < 256; devfn++) {
d->bus = bus;
d->devfn = devfn;
vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
device_id = pci_config_readw(d, PCI_DEVICE_ID);
if (vendor_id != 0xffff || device_id != 0xffff) {
init_func(d);
}
}
}
}
void pci_bios_init(void)
{
pci_bios_io_addr = 0xc000;
pci_bios_mem_addr = 0xc0000000;
pci_bios_rom_start = 0xc0000;
pci_for_each_device(pci_bios_init_bridges);
pci_for_each_device(pci_bios_init_device);
pci_for_each_device(pci_bios_init_optrom);
}
/****************************************************/
/* Multi Processor table init */
static void putb(uint8_t **pp, int val)
{
uint8_t *q;
q = *pp;
*q++ = val;
*pp = q;
}
static void putstr(uint8_t **pp, const char *str)
{
uint8_t *q;
q = *pp;
while (*str)
*q++ = *str++;
*pp = q;
}
static void putle16(uint8_t **pp, int val)
{
uint8_t *q;
q = *pp;
*q++ = val;
*q++ = val >> 8;
*pp = q;
}
static void putle32(uint8_t **pp, int val)
{
uint8_t *q;
q = *pp;
*q++ = val;
*q++ = val >> 8;
*q++ = val >> 16;
*q++ = val >> 24;
*pp = q;
}
static int mpf_checksum(const uint8_t *data, int len)
{
int sum, i;
sum = 0;
for(i = 0; i < len; i++)
sum += data[i];
return sum & 0xff;
}
static unsigned long align(unsigned long addr, unsigned long v)
{
return (addr + v - 1) & ~(v - 1);
}
static void mptable_init(void)
{
uint8_t *mp_config_table, *q, *float_pointer_struct;
int ioapic_id, i, len;
int mp_config_table_size;
#ifdef BX_USE_EBDA_TABLES
if (ram_size - ACPI_DATA_SIZE - MPTABLE_MAX_SIZE < 0x100000) {
BX_INFO("Not enough memory for MPC table\n");
return;
}
mp_config_table = (uint8_t *)(ram_size - ACPI_DATA_SIZE - MPTABLE_MAX_SIZE);
#else
bios_table_cur_addr = align(bios_table_cur_addr, 16);
mp_config_table = (uint8_t *)bios_table_cur_addr;
#endif
q = mp_config_table;
putstr(&q, "PCMP"); /* "PCMP signature */
putle16(&q, 0); /* table length (patched later) */
putb(&q, 4); /* spec rev */
putb(&q, 0); /* checksum (patched later) */
#ifdef BX_QEMU
putstr(&q, "QEMUCPU "); /* OEM id */
#else
putstr(&q, "BOCHSCPU");
#endif
putstr(&q, "0.1 "); /* vendor id */
putle32(&q, 0); /* OEM table ptr */
putle16(&q, 0); /* OEM table size */
putle16(&q, smp_cpus + 17); /* entry count */
putle32(&q, 0xfee00000); /* local APIC addr */
putle16(&q, 0); /* ext table length */
putb(&q, 0); /* ext table checksum */
putb(&q, 0); /* reserved */
for(i = 0; i < smp_cpus; i++) {
putb(&q, 0); /* entry type = processor */
putb(&q, i); /* APIC id */
putb(&q, 0x11); /* local APIC version number */
if (i == 0)
putb(&q, 3); /* cpu flags: enabled, bootstrap cpu */
else
putb(&q, 1); /* cpu flags: enabled */
if (cpuid_signature) {
putle32(&q, cpuid_signature);
putle32(&q, cpuid_features);
} else {
putb(&q, 0); /* cpu signature */
putb(&q, 6);
putb(&q, 0);
putb(&q, 0);
putle16(&q, 0x201); /* feature flags */
putle16(&q, 0);
}
putle16(&q, 0); /* reserved */
putle16(&q, 0);
putle16(&q, 0);
putle16(&q, 0);
}
/* isa bus */
putb(&q, 1); /* entry type = bus */
putb(&q, 0); /* bus ID */
putstr(&q, "ISA ");
/* ioapic */
ioapic_id = smp_cpus;
putb(&q, 2); /* entry type = I/O APIC */
putb(&q, ioapic_id); /* apic ID */
putb(&q, 0x11); /* I/O APIC version number */
putb(&q, 1); /* enable */
putle32(&q, 0xfec00000); /* I/O APIC addr */
/* irqs */
for(i = 0; i < 16; i++) {
/* One entry per ioapic input. Input 2 is covered by
irq0->inti2 override (i == 0). irq 2 is unused */
if (i == 2)
continue;
putb(&q, 3); /* entry type = I/O interrupt */
putb(&q, 0); /* interrupt type = vectored interrupt */
putb(&q, 0); /* flags: po=0, el=0 */
putb(&q, 0);
putb(&q, 0); /* source bus ID = ISA */
putb(&q, i); /* source bus IRQ */
putb(&q, ioapic_id); /* dest I/O APIC ID */
putb(&q, i == 0 ? 2 : i); /* dest I/O APIC interrupt in */
}
/* patch length */
len = q - mp_config_table;
mp_config_table[4] = len;
mp_config_table[5] = len >> 8;
mp_config_table[7] = -mpf_checksum(mp_config_table, q - mp_config_table);
mp_config_table_size = q - mp_config_table;
#ifndef BX_USE_EBDA_TABLES
bios_table_cur_addr += mp_config_table_size;
#endif
/* floating pointer structure */
#ifdef BX_USE_EBDA_TABLES
ebda_cur_addr = align(ebda_cur_addr, 16);
float_pointer_struct = (uint8_t *)ebda_cur_addr;
#else
bios_table_cur_addr = align(bios_table_cur_addr, 16);
float_pointer_struct = (uint8_t *)bios_table_cur_addr;
#endif
q = float_pointer_struct;
putstr(&q, "_MP_");
/* pointer to MP config table */
putle32(&q, (unsigned long)mp_config_table);
putb(&q, 1); /* length in 16 byte units */
putb(&q, 4); /* MP spec revision */
putb(&q, 0); /* checksum (patched later) */
putb(&q, 0); /* MP feature byte 1: MP configuration table present */
putb(&q, 0); /* MP feature byte 2: no IMCR present */
putb(&q, 0); /* 3 bytes reserved */
putb(&q, 0);
putb(&q, 0);
float_pointer_struct[10] =
-mpf_checksum(float_pointer_struct, q - float_pointer_struct);
#ifdef BX_USE_EBDA_TABLES
ebda_cur_addr += (q - float_pointer_struct);
#else
bios_table_cur_addr += (q - float_pointer_struct);
#endif
BX_INFO("MP table addr=0x%08lx MPC table addr=0x%08lx size=0x%x\n",
(unsigned long)float_pointer_struct,
(unsigned long)mp_config_table,
mp_config_table_size);
}
/****************************************************/
/* ACPI tables init */
/* Table structure from Linux kernel (the ACPI tables are under the
BSD license) */
/*
* All tables must be byte-packed to match the ACPI specification, since
* the tables are provided by the system BIOS.
*/
#define ACPI_TABLE_HEADER_DEF /* ACPI common table header */ \
uint8_t signature [4]; /* ACPI signature (4 ASCII characters) */\
uint32_t length; /* Length of table, in bytes, including header */\
uint8_t revision; /* ACPI Specification minor version # */\
uint8_t checksum; /* To make sum of entire table == 0 */\
uint8_t oem_id [6]; /* OEM identification */\
uint8_t oem_table_id [8]; /* OEM table identification */\
uint32_t oem_revision; /* OEM revision number */\
uint8_t asl_compiler_id [4]; /* ASL compiler vendor ID */\
uint32_t asl_compiler_revision; /* ASL compiler revision number */
struct acpi_table_header /* ACPI common table header */
{
ACPI_TABLE_HEADER_DEF
} __attribute__((__packed__));
struct rsdp_descriptor /* Root System Descriptor Pointer */
{
uint8_t signature [8]; /* ACPI signature, contains "RSD PTR " */
uint8_t checksum; /* To make sum of struct == 0 */
uint8_t oem_id [6]; /* OEM identification */
uint8_t revision; /* Must be 0 for 1.0, 2 for 2.0 */
uint32_t rsdt_physical_address; /* 32-bit physical address of RSDT */
uint32_t length; /* XSDT Length in bytes including hdr */
uint64_t xsdt_physical_address; /* 64-bit physical address of XSDT */
uint8_t extended_checksum; /* Checksum of entire table */
uint8_t reserved [3]; /* Reserved field must be 0 */
} __attribute__((__packed__));
/*
* ACPI 1.0 Root System Description Table (RSDT)
*/
struct rsdt_descriptor_rev1
{
ACPI_TABLE_HEADER_DEF /* ACPI common table header */
uint32_t table_offset_entry [4]; /* Array of pointers to other */
/* ACPI tables */
} __attribute__((__packed__));
/*
* ACPI 1.0 Firmware ACPI Control Structure (FACS)
*/
struct facs_descriptor_rev1
{
uint8_t signature[4]; /* ACPI Signature */
uint32_t length; /* Length of structure, in bytes */
uint32_t hardware_signature; /* Hardware configuration signature */
uint32_t firmware_waking_vector; /* ACPI OS waking vector */
uint32_t global_lock; /* Global Lock */
uint32_t S4bios_f : 1; /* Indicates if S4BIOS support is present */
uint32_t reserved1 : 31; /* Must be 0 */
uint8_t resverved3 [40]; /* Reserved - must be zero */
} __attribute__((__packed__));
/*
* ACPI 1.0 Fixed ACPI Description Table (FADT)
*/
struct fadt_descriptor_rev1
{
ACPI_TABLE_HEADER_DEF /* ACPI common table header */
uint32_t firmware_ctrl; /* Physical address of FACS */
uint32_t dsdt; /* Physical address of DSDT */
uint8_t model; /* System Interrupt Model */
uint8_t reserved1; /* Reserved */
uint16_t sci_int; /* System vector of SCI interrupt */
uint32_t smi_cmd; /* Port address of SMI command port */
uint8_t acpi_enable; /* Value to write to smi_cmd to enable ACPI */
uint8_t acpi_disable; /* Value to write to smi_cmd to disable ACPI */
uint8_t S4bios_req; /* Value to write to SMI CMD to enter S4BIOS state */
uint8_t reserved2; /* Reserved - must be zero */
uint32_t pm1a_evt_blk; /* Port address of Power Mgt 1a acpi_event Reg Blk */
uint32_t pm1b_evt_blk; /* Port address of Power Mgt 1b acpi_event Reg Blk */
uint32_t pm1a_cnt_blk; /* Port address of Power Mgt 1a Control Reg Blk */
uint32_t pm1b_cnt_blk; /* Port address of Power Mgt 1b Control Reg Blk */
uint32_t pm2_cnt_blk; /* Port address of Power Mgt 2 Control Reg Blk */
uint32_t pm_tmr_blk; /* Port address of Power Mgt Timer Ctrl Reg Blk */
uint32_t gpe0_blk; /* Port addr of General Purpose acpi_event 0 Reg Blk */
uint32_t gpe1_blk; /* Port addr of General Purpose acpi_event 1 Reg Blk */
uint8_t pm1_evt_len; /* Byte length of ports at pm1_x_evt_blk */
uint8_t pm1_cnt_len; /* Byte length of ports at pm1_x_cnt_blk */
uint8_t pm2_cnt_len; /* Byte Length of ports at pm2_cnt_blk */
uint8_t pm_tmr_len; /* Byte Length of ports at pm_tm_blk */
uint8_t gpe0_blk_len; /* Byte Length of ports at gpe0_blk */
uint8_t gpe1_blk_len; /* Byte Length of ports at gpe1_blk */
uint8_t gpe1_base; /* Offset in gpe model where gpe1 events start */
uint8_t reserved3; /* Reserved */
uint16_t plvl2_lat; /* Worst case HW latency to enter/exit C2 state */
uint16_t plvl3_lat; /* Worst case HW latency to enter/exit C3 state */
uint16_t flush_size; /* Size of area read to flush caches */
uint16_t flush_stride; /* Stride used in flushing caches */
uint8_t duty_offset; /* Bit location of duty cycle field in p_cnt reg */
uint8_t duty_width; /* Bit width of duty cycle field in p_cnt reg */
uint8_t day_alrm; /* Index to day-of-month alarm in RTC CMOS RAM */
uint8_t mon_alrm; /* Index to month-of-year alarm in RTC CMOS RAM */
uint8_t century; /* Index to century in RTC CMOS RAM */
uint8_t reserved4; /* Reserved */
uint8_t reserved4a; /* Reserved */
uint8_t reserved4b; /* Reserved */
#if 0
uint32_t wb_invd : 1; /* The wbinvd instruction works properly */
uint32_t wb_invd_flush : 1; /* The wbinvd flushes but does not invalidate */
uint32_t proc_c1 : 1; /* All processors support C1 state */
uint32_t plvl2_up : 1; /* C2 state works on MP system */
uint32_t pwr_button : 1; /* Power button is handled as a generic feature */
uint32_t sleep_button : 1; /* Sleep button is handled as a generic feature, or not present */
uint32_t fixed_rTC : 1; /* RTC wakeup stat not in fixed register space */
uint32_t rtcs4 : 1; /* RTC wakeup stat not possible from S4 */
uint32_t tmr_val_ext : 1; /* The tmr_val width is 32 bits (0 = 24 bits) */
uint32_t reserved5 : 23; /* Reserved - must be zero */
#else
uint32_t flags;
#endif
} __attribute__((__packed__));
/*
* MADT values and structures
*/
/* Values for MADT PCATCompat */
#define DUAL_PIC 0
#define MULTIPLE_APIC 1
/* Master MADT */
struct multiple_apic_table
{
ACPI_TABLE_HEADER_DEF /* ACPI common table header */
uint32_t local_apic_address; /* Physical address of local APIC */
#if 0
uint32_t PCATcompat : 1; /* A one indicates system also has dual 8259s */
uint32_t reserved1 : 31;
#else
uint32_t flags;
#endif
} __attribute__((__packed__));
/* Values for Type in APIC_HEADER_DEF */
#define APIC_PROCESSOR 0
#define APIC_IO 1
#define APIC_XRUPT_OVERRIDE 2
#define APIC_NMI 3
#define APIC_LOCAL_NMI 4
#define APIC_ADDRESS_OVERRIDE 5
#define APIC_IO_SAPIC 6
#define APIC_LOCAL_SAPIC 7
#define APIC_XRUPT_SOURCE 8
#define APIC_RESERVED 9 /* 9 and greater are reserved */
/*
* MADT sub-structures (Follow MULTIPLE_APIC_DESCRIPTION_TABLE)
*/
#define APIC_HEADER_DEF /* Common APIC sub-structure header */\
uint8_t type; \
uint8_t length;
/* Sub-structures for MADT */
struct madt_processor_apic
{
APIC_HEADER_DEF
uint8_t processor_id; /* ACPI processor id */
uint8_t local_apic_id; /* Processor's local APIC id */
#if 0
uint32_t processor_enabled: 1; /* Processor is usable if set */
uint32_t reserved2 : 31; /* Reserved, must be zero */
#else
uint32_t flags;
#endif
} __attribute__((__packed__));
/*
* * ACPI 2.0 Generic Address Space definition.
* */
struct acpi_20_generic_address {
uint8_t address_space_id;
uint8_t register_bit_width;
uint8_t register_bit_offset;
uint8_t reserved;
uint64_t address;
} __attribute__((__packed__));
/*
* * HPET Description Table
* */
struct acpi_20_hpet {
ACPI_TABLE_HEADER_DEF /* ACPI common table header */
uint32_t timer_block_id;
struct acpi_20_generic_address addr;
uint8_t hpet_number;
uint16_t min_tick;
uint8_t page_protect;
} __attribute__((__packed__));
#define ACPI_HPET_ADDRESS 0xFED00000UL
struct madt_io_apic
{
APIC_HEADER_DEF
uint8_t io_apic_id; /* I/O APIC ID */
uint8_t reserved; /* Reserved - must be zero */
uint32_t address; /* APIC physical address */
uint32_t interrupt; /* Global system interrupt where INTI
* lines start */
} __attribute__((__packed__));
struct madt_int_override
{
APIC_HEADER_DEF
uint8_t bus; /* Identifies ISA Bus */
uint8_t source; /* Bus-relative interrupt source */
uint32_t gsi; /* GSI that source will signal */
uint16_t flags; /* MPS INTI flags */
} __attribute__((__packed__));
#include "acpi-dsdt.hex"
static inline uint16_t cpu_to_le16(uint16_t x)
{
return x;
}
static inline uint32_t cpu_to_le32(uint32_t x)
{
return x;
}
static int acpi_checksum(const uint8_t *data, int len)
{
int sum, i;
sum = 0;
for(i = 0; i < len; i++)
sum += data[i];
return (-sum) & 0xff;
}
static void acpi_build_table_header(struct acpi_table_header *h,
char *sig, int len, uint8_t rev)
{
memcpy(h->signature, sig, 4);
h->length = cpu_to_le32(len);
h->revision = rev;
#ifdef BX_QEMU
memcpy(h->oem_id, "QEMU ", 6);
memcpy(h->oem_table_id, "QEMU", 4);
#else
memcpy(h->oem_id, "BOCHS ", 6);
memcpy(h->oem_table_id, "BXPC", 4);
#endif
memcpy(h->oem_table_id + 4, sig, 4);
h->oem_revision = cpu_to_le32(1);
#ifdef BX_QEMU
memcpy(h->asl_compiler_id, "QEMU", 4);
#else
memcpy(h->asl_compiler_id, "BXPC", 4);
#endif
h->asl_compiler_revision = cpu_to_le32(1);
h->checksum = acpi_checksum((void *)h, len);
}
int acpi_build_processor_ssdt(uint8_t *ssdt)
{
uint8_t *ssdt_ptr = ssdt;
int i, length;
int acpi_cpus = smp_cpus > 0xff ? 0xff : smp_cpus;
ssdt_ptr[9] = 0; // checksum;
ssdt_ptr += sizeof(struct acpi_table_header);
// caluculate the length of processor block and scope block excluding PkgLength
length = 0x0d * acpi_cpus + 4;
// build processor scope header
*(ssdt_ptr++) = 0x10; // ScopeOp
if (length <= 0x3e) {
/* Handle 1-4 CPUs with one byte encoding */
*(ssdt_ptr++) = length + 1;
} else {
/* Handle 5-314 CPUs with two byte encoding */
*(ssdt_ptr++) = 0x40 | ((length + 2) & 0xf);
*(ssdt_ptr++) = (length + 2) >> 4;
}
*(ssdt_ptr++) = '_'; // Name
*(ssdt_ptr++) = 'P';
*(ssdt_ptr++) = 'R';
*(ssdt_ptr++) = '_';
// build object for each processor
for(i=0;i<acpi_cpus;i++) {
*(ssdt_ptr++) = 0x5B; // ProcessorOp
*(ssdt_ptr++) = 0x83;
*(ssdt_ptr++) = 0x0B; // Length
*(ssdt_ptr++) = 'C'; // Name (CPUxx)
*(ssdt_ptr++) = 'P';
if ((i & 0xf0) != 0)
*(ssdt_ptr++) = (i >> 4) < 0xa ? (i >> 4) + '0' : (i >> 4) + 'A' - 0xa;
else
*(ssdt_ptr++) = 'U';
*(ssdt_ptr++) = (i & 0xf) < 0xa ? (i & 0xf) + '0' : (i & 0xf) + 'A' - 0xa;
*(ssdt_ptr++) = i;
*(ssdt_ptr++) = 0x10; // Processor block address
*(ssdt_ptr++) = 0xb0;
*(ssdt_ptr++) = 0;
*(ssdt_ptr++) = 0;
*(ssdt_ptr++) = 6; // Processor block length
}
acpi_build_table_header((struct acpi_table_header *)ssdt,
"SSDT", ssdt_ptr - ssdt, 1);
return ssdt_ptr - ssdt;
}
/* base_addr must be a multiple of 4KB */
void acpi_bios_init(void)
{
struct rsdp_descriptor *rsdp;
struct rsdt_descriptor_rev1 *rsdt;
struct fadt_descriptor_rev1 *fadt;
struct facs_descriptor_rev1 *facs;
struct multiple_apic_table *madt;
uint8_t *dsdt, *ssdt;
struct acpi_20_hpet *hpet;
uint32_t hpet_addr;
uint32_t base_addr, rsdt_addr, fadt_addr, addr, facs_addr, dsdt_addr, ssdt_addr;
uint32_t acpi_tables_size, madt_addr, madt_size;
int i;
if (ram_size - ACPI_DATA_SIZE < 0x100000) {
BX_INFO("Not enough memory for ACPI tables\n");
return;
}
/* reserve memory space for tables */
#ifdef BX_USE_EBDA_TABLES
ebda_cur_addr = align(ebda_cur_addr, 16);
rsdp = (void *)(ebda_cur_addr);
ebda_cur_addr += sizeof(*rsdp);
#else
bios_table_cur_addr = align(bios_table_cur_addr, 16);
rsdp = (void *)(bios_table_cur_addr);
bios_table_cur_addr += sizeof(*rsdp);
#endif
addr = base_addr = ram_size - ACPI_DATA_SIZE;
rsdt_addr = addr;
rsdt = (void *)(addr);
addr += sizeof(*rsdt);
fadt_addr = addr;
fadt = (void *)(addr);
addr += sizeof(*fadt);
/* XXX: FACS should be in RAM */
addr = (addr + 63) & ~63; /* 64 byte alignment for FACS */
facs_addr = addr;
facs = (void *)(addr);
addr += sizeof(*facs);
dsdt_addr = addr;
dsdt = (void *)(addr);
addr += sizeof(AmlCode);
ssdt_addr = addr;
ssdt = (void *)(addr);
addr += acpi_build_processor_ssdt(ssdt);
addr = (addr + 7) & ~7;
madt_addr = addr;
madt_size = sizeof(*madt) +
sizeof(struct madt_processor_apic) * smp_cpus +
sizeof(struct madt_io_apic) + sizeof(struct madt_int_override);
madt = (void *)(addr);
addr += madt_size;
addr = (addr + 7) & ~7;
hpet_addr = addr;
hpet = (void *)(addr);
addr += sizeof(*hpet);
acpi_tables_size = addr - base_addr;
BX_INFO("ACPI tables: RSDP addr=0x%08lx ACPI DATA addr=0x%08lx size=0x%x\n",
(unsigned long)rsdp,
(unsigned long)rsdt, acpi_tables_size);
/* RSDP */
// Copying "RSD PTR " must be split in two parts. Otherwise a guest OS
// may incorrectly assume it has found the RSDT table within the rombios32
// string table.
memset(rsdp, 0, sizeof(*rsdp));
memcpy(rsdp->signature, "RSD ", 4);
memcpy(rsdp->signature+4, "PTR ", 4);
#ifdef BX_QEMU
memcpy(rsdp->oem_id, "QEMU ", 6);
#else
memcpy(rsdp->oem_id, "BOCHS ", 6);
#endif
rsdp->rsdt_physical_address = cpu_to_le32(rsdt_addr);
rsdp->checksum = acpi_checksum((void *)rsdp, 20);
/* RSDT */
memset(rsdt, 0, sizeof(*rsdt));
rsdt->table_offset_entry[0] = cpu_to_le32(fadt_addr);
rsdt->table_offset_entry[1] = cpu_to_le32(madt_addr);
rsdt->table_offset_entry[2] = cpu_to_le32(ssdt_addr);
rsdt->table_offset_entry[3] = cpu_to_le32(hpet_addr);
acpi_build_table_header((struct acpi_table_header *)rsdt,
"RSDT", sizeof(*rsdt), 1);
/* FADT */
memset(fadt, 0, sizeof(*fadt));
fadt->firmware_ctrl = cpu_to_le32(facs_addr);
fadt->dsdt = cpu_to_le32(dsdt_addr);
fadt->model = 1;
fadt->reserved1 = 0;
fadt->sci_int = cpu_to_le16(pm_sci_int);
fadt->smi_cmd = cpu_to_le32(SMI_CMD_IO_ADDR);
fadt->acpi_enable = 0xf1;
fadt->acpi_disable = 0xf0;
fadt->pm1a_evt_blk = cpu_to_le32(pm_io_base);
fadt->pm1a_cnt_blk = cpu_to_le32(pm_io_base + 0x04);
fadt->pm_tmr_blk = cpu_to_le32(pm_io_base + 0x08);
fadt->pm1_evt_len = 4;
fadt->pm1_cnt_len = 2;
fadt->pm_tmr_len = 4;
fadt->plvl2_lat = cpu_to_le16(0xfff); // C2 state not supported
fadt->plvl3_lat = cpu_to_le16(0xfff); // C3 state not supported
/* WBINVD + PROC_C1 + PWR_BUTTON + SLP_BUTTON + FIX_RTC */
fadt->flags = cpu_to_le32((1 << 0) | (1 << 2) | (1 << 4) | (1 << 5) | (1 << 6));
acpi_build_table_header((struct acpi_table_header *)fadt, "FACP",
sizeof(*fadt), 1);
/* FACS */
memset(facs, 0, sizeof(*facs));
memcpy(facs->signature, "FACS", 4);
facs->length = cpu_to_le32(sizeof(*facs));
BX_INFO("Firmware waking vector %p\n", &facs->firmware_waking_vector);
/* DSDT */
memcpy(dsdt, AmlCode, sizeof(AmlCode));
/* MADT */
{
struct madt_processor_apic *apic;
struct madt_io_apic *io_apic;
struct madt_int_override *int_override;
memset(madt, 0, madt_size);
madt->local_apic_address = cpu_to_le32(0xfee00000);
madt->flags = cpu_to_le32(1);
apic = (void *)(madt + 1);
for(i=0;i<smp_cpus;i++) {
apic->type = APIC_PROCESSOR;
apic->length = sizeof(*apic);
apic->processor_id = i;
apic->local_apic_id = i;
apic->flags = cpu_to_le32(1);
apic++;
}
io_apic = (void *)apic;
io_apic->type = APIC_IO;
io_apic->length = sizeof(*io_apic);
io_apic->io_apic_id = smp_cpus;
io_apic->address = cpu_to_le32(0xfec00000);
io_apic->interrupt = cpu_to_le32(0);
io_apic++;
int_override = (void *)io_apic;
int_override->type = APIC_XRUPT_OVERRIDE;
int_override->length = sizeof(*int_override);
int_override->bus = cpu_to_le32(0);
int_override->source = cpu_to_le32(0);
int_override->gsi = cpu_to_le32(2);
int_override->flags = cpu_to_le32(0);
acpi_build_table_header((struct acpi_table_header *)madt,
"APIC", madt_size, 1);
}
/* HPET */
memset(hpet, 0, sizeof(*hpet));
/* Note timer_block_id value must be kept in sync with value advertised by
* emulated hpet
*/
hpet->timer_block_id = cpu_to_le32(0x8086a201);
hpet->addr.address = cpu_to_le32(ACPI_HPET_ADDRESS);
acpi_build_table_header((struct acpi_table_header *)hpet,
"HPET", sizeof(*hpet), 1);
}
/* SMBIOS entry point -- must be written to a 16-bit aligned address
between 0xf0000 and 0xfffff.
*/
struct smbios_entry_point {
char anchor_string[4];
uint8_t checksum;
uint8_t length;
uint8_t smbios_major_version;
uint8_t smbios_minor_version;
uint16_t max_structure_size;
uint8_t entry_point_revision;
uint8_t formatted_area[5];
char intermediate_anchor_string[5];
uint8_t intermediate_checksum;
uint16_t structure_table_length;
uint32_t structure_table_address;
uint16_t number_of_structures;
uint8_t smbios_bcd_revision;
} __attribute__((__packed__));
/* This goes at the beginning of every SMBIOS structure. */
struct smbios_structure_header {
uint8_t type;
uint8_t length;
uint16_t handle;
} __attribute__((__packed__));
/* SMBIOS type 0 - BIOS Information */
struct smbios_type_0 {
struct smbios_structure_header header;
uint8_t vendor_str;
uint8_t bios_version_str;
uint16_t bios_starting_address_segment;
uint8_t bios_release_date_str;
uint8_t bios_rom_size;
uint8_t bios_characteristics[8];
uint8_t bios_characteristics_extension_bytes[2];
uint8_t system_bios_major_release;
uint8_t system_bios_minor_release;
uint8_t embedded_controller_major_release;
uint8_t embedded_controller_minor_release;
} __attribute__((__packed__));
/* SMBIOS type 1 - System Information */
struct smbios_type_1 {
struct smbios_structure_header header;
uint8_t manufacturer_str;
uint8_t product_name_str;
uint8_t version_str;
uint8_t serial_number_str;
uint8_t uuid[16];
uint8_t wake_up_type;
uint8_t sku_number_str;
uint8_t family_str;
} __attribute__((__packed__));
/* SMBIOS type 3 - System Enclosure (v2.3) */
struct smbios_type_3 {
struct smbios_structure_header header;
uint8_t manufacturer_str;
uint8_t type;
uint8_t version_str;
uint8_t serial_number_str;
uint8_t asset_tag_number_str;
uint8_t boot_up_state;
uint8_t power_supply_state;
uint8_t thermal_state;
uint8_t security_status;
uint32_t oem_defined;
uint8_t height;
uint8_t number_of_power_cords;
uint8_t contained_element_count;
// contained elements follow
} __attribute__((__packed__));
/* SMBIOS type 4 - Processor Information (v2.0) */
struct smbios_type_4 {
struct smbios_structure_header header;
uint8_t socket_designation_str;
uint8_t processor_type;
uint8_t processor_family;
uint8_t processor_manufacturer_str;
uint32_t processor_id[2];
uint8_t processor_version_str;
uint8_t voltage;
uint16_t external_clock;
uint16_t max_speed;
uint16_t current_speed;
uint8_t status;
uint8_t processor_upgrade;
uint16_t l1_cache_handle;
uint16_t l2_cache_handle;
uint16_t l3_cache_handle;
} __attribute__((__packed__));
/* SMBIOS type 16 - Physical Memory Array
* Associated with one type 17 (Memory Device).
*/
struct smbios_type_16 {
struct smbios_structure_header header;
uint8_t location;
uint8_t use;
uint8_t error_correction;
uint32_t maximum_capacity;
uint16_t memory_error_information_handle;
uint16_t number_of_memory_devices;
} __attribute__((__packed__));
/* SMBIOS type 17 - Memory Device
* Associated with one type 19
*/
struct smbios_type_17 {
struct smbios_structure_header header;
uint16_t physical_memory_array_handle;
uint16_t memory_error_information_handle;
uint16_t total_width;
uint16_t data_width;
uint16_t size;
uint8_t form_factor;
uint8_t device_set;
uint8_t device_locator_str;
uint8_t bank_locator_str;
uint8_t memory_type;
uint16_t type_detail;
} __attribute__((__packed__));
/* SMBIOS type 19 - Memory Array Mapped Address */
struct smbios_type_19 {
struct smbios_structure_header header;
uint32_t starting_address;
uint32_t ending_address;
uint16_t memory_array_handle;
uint8_t partition_width;
} __attribute__((__packed__));
/* SMBIOS type 20 - Memory Device Mapped Address */
struct smbios_type_20 {
struct smbios_structure_header header;
uint32_t starting_address;
uint32_t ending_address;
uint16_t memory_device_handle;
uint16_t memory_array_mapped_address_handle;
uint8_t partition_row_position;
uint8_t interleave_position;
uint8_t interleaved_data_depth;
} __attribute__((__packed__));
/* SMBIOS type 32 - System Boot Information */
struct smbios_type_32 {
struct smbios_structure_header header;
uint8_t reserved[6];
uint8_t boot_status;
} __attribute__((__packed__));
/* SMBIOS type 127 -- End-of-table */
struct smbios_type_127 {
struct smbios_structure_header header;
} __attribute__((__packed__));
static void
smbios_entry_point_init(void *start,
uint16_t max_structure_size,
uint16_t structure_table_length,
uint32_t structure_table_address,
uint16_t number_of_structures)
{
uint8_t sum;
int i;
struct smbios_entry_point *ep = (struct smbios_entry_point *)start;
memcpy(ep->anchor_string, "_SM_", 4);
ep->length = 0x1f;
ep->smbios_major_version = 2;
ep->smbios_minor_version = 4;
ep->max_structure_size = max_structure_size;
ep->entry_point_revision = 0;
memset(ep->formatted_area, 0, 5);
memcpy(ep->intermediate_anchor_string, "_DMI_", 5);
ep->structure_table_length = structure_table_length;
ep->structure_table_address = structure_table_address;
ep->number_of_structures = number_of_structures;
ep->smbios_bcd_revision = 0x24;
ep->checksum = 0;
ep->intermediate_checksum = 0;
sum = 0;
for (i = 0; i < 0x10; i++)
sum += ((int8_t *)start)[i];
ep->checksum = -sum;
sum = 0;
for (i = 0x10; i < ep->length; i++)
sum += ((int8_t *)start)[i];
ep->intermediate_checksum = -sum;
}
/* Type 0 -- BIOS Information */
#define RELEASE_DATE_STR "01/01/2007"
static void *
smbios_type_0_init(void *start)
{
struct smbios_type_0 *p = (struct smbios_type_0 *)start;
p->header.type = 0;
p->header.length = sizeof(struct smbios_type_0);
p->header.handle = 0;
p->vendor_str = 1;
p->bios_version_str = 2;
p->bios_starting_address_segment = 0xe000;
p->bios_release_date_str = 3;
p->bios_rom_size = 1; /* 128 kB */
memset(p->bios_characteristics, 0, 8);
p->bios_characteristics[0] |= 1 << 4; /* Bit 4 - ISA is supported */
#if BX_PCIBIOS
p->bios_characteristics[0] |= 1 << 7; /* Bit 7 - PCI is supported */
#endif
#if BX_APM
p->bios_characteristics[1] |= 1 << 2; /* Bit 10 - APM is supported */
#endif
p->bios_characteristics[1] |= 1 << 3; /* Bit 11 - BIOS is Upgradeable (Flash) */
p->bios_characteristics[1] |= 1 << 4; /* Bit 12 - BIOS shadowing is allowed */
#if BX_ELTORITO_BOOT && BX_USE_ATADRV
p->bios_characteristics[1] |= 1 << 7; /* Bit 15 - Boot from CD is supported */
p->bios_characteristics[2] |= 1 << 0; /* Bit 16 - Selectable Boot is supported */
#endif
#if BX_USE_ATADRV
p->bios_characteristics[2] |= 1 << 3; /* Bit 19 - EDD (Enhanced Disk Drive) Specification is supported */
#endif
#if BX_SUPPORT_FLOPPY
p->bios_characteristics[2] |= 1 << 6; /* Bit 22 - Int 13h - 5.25" / 360 KB Floppy Services are supported */
p->bios_characteristics[2] |= 1 << 7; /* Bit 23 - Int 13h - 5.25" / 1.2 MB Floppy Services are supported */
p->bios_characteristics[3] |= 1 << 0; /* Bit 24 - Int 13h - 3.5" / 720 KB Floppy Services are supported */
p->bios_characteristics[3] |= 1 << 1; /* Bit 25 - Int 13h - 3.5" / 2.88 MB Floppy Services are supported */
#endif
p->bios_characteristics[3] |= 1 << 3; /* Bit 27 - Int 9h, 8042 Keyboard services are supported */
p->bios_characteristics[3] |= 1 << 4; /* Bit 28 - Int 14h, Serial Services are supported */
p->bios_characteristics[3] |= 1 << 5; /* Bit 29 - Int 17h, Printer Services are supported */
p->bios_characteristics_extension_bytes[0] = 1; /* Bit 0 - ACPI supported */
p->bios_characteristics_extension_bytes[1] = 0;
p->system_bios_major_release = 1;
p->system_bios_minor_release = 0;
p->embedded_controller_major_release = 0xff;
p->embedded_controller_minor_release = 0xff;
start += sizeof(struct smbios_type_0);
memcpy((char *)start, BX_APPVENDOR, sizeof(BX_APPVENDOR));
start += sizeof(BX_APPVENDOR);
memcpy((char *)start, BX_APPNAME, sizeof(BX_APPNAME));
start += sizeof(BX_APPNAME);
memcpy((char *)start, RELEASE_DATE_STR, sizeof(RELEASE_DATE_STR));
start += sizeof(RELEASE_DATE_STR);
*((uint8_t *)start) = 0;
return start+1;
}
/* Type 1 -- System Information */
static void *
smbios_type_1_init(void *start)
{
struct smbios_type_1 *p = (struct smbios_type_1 *)start;
p->header.type = 1;
p->header.length = sizeof(struct smbios_type_1);
p->header.handle = 0x100;
p->manufacturer_str = 0;
p->product_name_str = 0;
p->version_str = 0;
p->serial_number_str = 0;
memcpy(p->uuid, bios_uuid, 16);
p->wake_up_type = 0x06; /* power switch */
p->sku_number_str = 0;
p->family_str = 0;
start += sizeof(struct smbios_type_1);
*((uint16_t *)start) = 0;
return start+2;
}
/* Type 3 -- System Enclosure */
static void *
smbios_type_3_init(void *start)
{
struct smbios_type_3 *p = (struct smbios_type_3 *)start;
p->header.type = 3;
p->header.length = sizeof(struct smbios_type_3);
p->header.handle = 0x300;
p->manufacturer_str = 0;
p->type = 0x01; /* other */
p->version_str = 0;
p->serial_number_str = 0;
p->asset_tag_number_str = 0;
p->boot_up_state = 0x03; /* safe */
p->power_supply_state = 0x03; /* safe */
p->thermal_state = 0x03; /* safe */
p->security_status = 0x02; /* unknown */
p->oem_defined = 0;
p->height = 0;
p->number_of_power_cords = 0;
p->contained_element_count = 0;
start += sizeof(struct smbios_type_3);
*((uint16_t *)start) = 0;
return start+2;
}
/* Type 4 -- Processor Information */
static void *
smbios_type_4_init(void *start, unsigned int cpu_number)
{
struct smbios_type_4 *p = (struct smbios_type_4 *)start;
p->header.type = 4;
p->header.length = sizeof(struct smbios_type_4);
p->header.handle = 0x400 + cpu_number;
p->socket_designation_str = 1;
p->processor_type = 0x03; /* CPU */
p->processor_family = 0x01; /* other */
p->processor_manufacturer_str = 0;
p->processor_id[0] = cpuid_signature;
p->processor_id[1] = cpuid_features;
p->processor_version_str = 0;
p->voltage = 0;
p->external_clock = 0;
p->max_speed = 0; /* unknown */
p->current_speed = 0; /* unknown */
p->status = 0x41; /* socket populated, CPU enabled */
p->processor_upgrade = 0x01; /* other */
p->l1_cache_handle = 0xffff; /* cache information structure not provided */
p->l2_cache_handle = 0xffff;
p->l3_cache_handle = 0xffff;
start += sizeof(struct smbios_type_4);
memcpy((char *)start, "CPU " "\0" "" "\0" "", 7);
((char *)start)[4] = cpu_number + '0';
return start+7;
}
/* Type 16 -- Physical Memory Array */
static void *
smbios_type_16_init(void *start, uint32_t memsize, int nr_mem_devs)
{
struct smbios_type_16 *p = (struct smbios_type_16*)start;
p->header.type = 16;
p->header.length = sizeof(struct smbios_type_16);
p->header.handle = 0x1000;
p->location = 0x03; /* system board or motherboard */
p->use = 0x03; /* system memory */
p->error_correction = 0x01; /* other */
p->maximum_capacity = memsize * 1024;
p->memory_error_information_handle = 0xfffe; /* none provided */
p->number_of_memory_devices = nr_mem_devs;
start += sizeof(struct smbios_type_16);
*((uint16_t *)start) = 0;
return start + 2;
}
/* Type 17 -- Memory Device */
static void *
smbios_type_17_init(void *start, uint32_t memory_size_mb, int instance)
{
struct smbios_type_17 *p = (struct smbios_type_17 *)start;
p->header.type = 17;
p->header.length = sizeof(struct smbios_type_17);
p->header.handle = 0x1100 + instance;
p->physical_memory_array_handle = 0x1000;
p->memory_error_information_handle = 0xfffe; /* none provided */
p->total_width = 64;
p->data_width = 64;
/* TODO: should assert in case something is wrong ASSERT((memory_size_mb & ~0x7fff) == 0); */
p->size = memory_size_mb;
p->form_factor = 0x09; /* DIMM */
p->device_set = 0;
p->device_locator_str = 1;
p->bank_locator_str = 0;
p->memory_type = 0x07; /* RAM */
p->type_detail = 0;
start += sizeof(struct smbios_type_17);
snprintf(start, 8, "DIMM %d", instance);
start += strlen(start) + 1;
*((uint8_t *)start) = 0;
return start+1;
}
/* Type 19 -- Memory Array Mapped Address */
static void *
smbios_type_19_init(void *start, uint32_t memory_size_mb, int instance)
{
struct smbios_type_19 *p = (struct smbios_type_19 *)start;
p->header.type = 19;
p->header.length = sizeof(struct smbios_type_19);
p->header.handle = 0x1300 + instance;
p->starting_address = instance << 24;
p->ending_address = p->starting_address + (memory_size_mb << 10) - 1;
p->memory_array_handle = 0x1000;
p->partition_width = 1;
start += sizeof(struct smbios_type_19);
*((uint16_t *)start) = 0;
return start + 2;
}
/* Type 20 -- Memory Device Mapped Address */
static void *
smbios_type_20_init(void *start, uint32_t memory_size_mb, int instance)
{
struct smbios_type_20 *p = (struct smbios_type_20 *)start;
p->header.type = 20;
p->header.length = sizeof(struct smbios_type_20);
p->header.handle = 0x1400 + instance;
p->starting_address = instance << 24;
p->ending_address = p->starting_address + (memory_size_mb << 10) - 1;
p->memory_device_handle = 0x1100 + instance;
p->memory_array_mapped_address_handle = 0x1300 + instance;
p->partition_row_position = 1;
p->interleave_position = 0;
p->interleaved_data_depth = 0;
start += sizeof(struct smbios_type_20);
*((uint16_t *)start) = 0;
return start+2;
}
/* Type 32 -- System Boot Information */
static void *
smbios_type_32_init(void *start)
{
struct smbios_type_32 *p = (struct smbios_type_32 *)start;
p->header.type = 32;
p->header.length = sizeof(struct smbios_type_32);
p->header.handle = 0x2000;
memset(p->reserved, 0, 6);
p->boot_status = 0; /* no errors detected */
start += sizeof(struct smbios_type_32);
*((uint16_t *)start) = 0;
return start+2;
}
/* Type 127 -- End of Table */
static void *
smbios_type_127_init(void *start)
{
struct smbios_type_127 *p = (struct smbios_type_127 *)start;
p->header.type = 127;
p->header.length = sizeof(struct smbios_type_127);
p->header.handle = 0x7f00;
start += sizeof(struct smbios_type_127);
*((uint16_t *)start) = 0;
return start + 2;
}
void smbios_init(void)
{
unsigned cpu_num, nr_structs = 0, max_struct_size = 0;
char *start, *p, *q;
int memsize = (ram_end == ram_size) ? ram_size / (1024 * 1024) :
(ram_end - (1ull << 32) + ram_size) / (1024 * 1024);
int i, nr_mem_devs;
bios_table_cur_addr = align(bios_table_cur_addr, 16);
start = (void *)(bios_table_cur_addr);
p = (char *)start + sizeof(struct smbios_entry_point);
#define add_struct(fn) do { \
q = (fn); \
nr_structs++; \
if ((q - p) > max_struct_size) \
max_struct_size = q - p; \
p = q; \
} while (0)
add_struct(smbios_type_0_init(p));
add_struct(smbios_type_1_init(p));
add_struct(smbios_type_3_init(p));
for (cpu_num = 1; cpu_num <= smp_cpus; cpu_num++)
add_struct(smbios_type_4_init(p, cpu_num));
/* Each 'memory device' covers up to 16GB of address space. */
nr_mem_devs = (memsize + 0x3fff) >> 14;
add_struct(smbios_type_16_init(p, memsize, nr_mem_devs));
for ( i = 0; i < nr_mem_devs; i++ )
{
uint32_t dev_memsize = ((i == (nr_mem_devs - 1))
? (((memsize - 1) & 0x3fff) + 1) : 0x4000);
add_struct(smbios_type_17_init(p, dev_memsize, i));
add_struct(smbios_type_19_init(p, dev_memsize, i));
add_struct(smbios_type_20_init(p, dev_memsize, i));
}
add_struct(smbios_type_32_init(p));
add_struct(smbios_type_127_init(p));
#undef add_struct
smbios_entry_point_init(
start, max_struct_size,
(p - (char *)start) - sizeof(struct smbios_entry_point),
(uint32_t)(start + sizeof(struct smbios_entry_point)),
nr_structs);
bios_table_cur_addr += (p - (char *)start);
BX_INFO("SMBIOS table addr=0x%08lx\n", (unsigned long)start);
}
static uint32_t find_resume_vector(void)
{
unsigned long addr, start, end;
#ifdef BX_USE_EBDA_TABLES
start = align(ebda_cur_addr, 16);
end = 0xa000 << 4;
#else
if (bios_table_cur_addr == 0)
return 0;
start = align(bios_table_cur_addr, 16);
end = bios_table_end_addr;
#endif
for (addr = start; addr < end; addr += 16) {
// The check for "RSD PTR " must be split in two parts. Otherwise a
// guest OS may incorrectly assume it has found the RSDT table within
// the rombios32 string table.
if ((!memcmp((void*)addr, "RSD ", 4)) &&
(!memcmp((void*)addr+4, "PTR ", 4))) {
struct rsdp_descriptor *rsdp = (void*)addr;
struct rsdt_descriptor_rev1 *rsdt = (void*)rsdp->rsdt_physical_address;
struct fadt_descriptor_rev1 *fadt = (void*)rsdt->table_offset_entry[0];
struct facs_descriptor_rev1 *facs = (void*)fadt->firmware_ctrl;
return facs->firmware_waking_vector;
}
}
return 0;
}
static void find_440fx(PCIDevice *d)
{
uint16_t vendor_id, device_id;
vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
device_id = pci_config_readw(d, PCI_DEVICE_ID);
if (vendor_id == PCI_VENDOR_ID_INTEL &&
(device_id == PCI_DEVICE_ID_INTEL_82441 || device_id == PCI_DEVICE_ID_INTEL_82437))
i440_pcidev = *d;
}
static void reinit_piix4_pm(PCIDevice *d)
{
uint16_t vendor_id, device_id;
vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
device_id = pci_config_readw(d, PCI_DEVICE_ID);
if (vendor_id == PCI_VENDOR_ID_INTEL && device_id == PCI_DEVICE_ID_INTEL_82371AB_3)
piix4_pm_enable(d);
}
void rombios32_init(uint32_t *s3_resume_vector, uint8_t *shutdown_flag)
{
BX_INFO("Starting rombios32\n");
BX_INFO("Shutdown flag %x\n", *shutdown_flag);
#ifdef BX_QEMU
qemu_cfg_port = qemu_cfg_port_probe();
#endif
ram_probe();
cpu_probe();
setup_mtrr();
smp_probe();
find_bios_table_area();
if (*shutdown_flag == 0xfe) {
/* redirect bios read access to RAM */
pci_for_each_device(find_440fx);
bios_lock_shadow_ram(); /* bios is already copied */
*s3_resume_vector = find_resume_vector();
if (!*s3_resume_vector) {
BX_INFO("This is S3 resume but wakeup vector is NULL\n");
} else {
BX_INFO("S3 resume vector %p\n", *s3_resume_vector);
pci_for_each_device(reinit_piix4_pm);
}
return;
}
pci_bios_init();
#ifndef BX_USE_EBDA_TABLES
if (bios_table_cur_addr != 0 && i440_pcidev.bus != -1) {
mptable_init();
uuid_probe();
smbios_init();
if (acpi_enabled)
acpi_bios_init();
bios_lock_shadow_ram();
}
#else
mptable_init();
if (bios_table_cur_addr != 0 && i440_pcidev.bus != -1) {
uuid_probe();
smbios_init();
}
if (acpi_enabled)
acpi_bios_init();
BX_INFO("ebda_cur_addr: 0x%08lx\n", ebda_cur_addr);
if (ebda_cur_addr > 0xA0000)
BX_PANIC("ebda_cur_addr overflow!\n");
#endif
BX_INFO("bios_table_cur_addr: 0x%08lx\n", bios_table_cur_addr);
if (bios_table_cur_addr > bios_table_end_addr)
BX_PANIC("bios_table_end_addr overflow!\n");
}