Bochs/bochs/cpu/cpu.h
Stanislav Shwartsman e51184c8cf Eliminate saving of RSP from heart of cpu_loop
Now save RSP only where it is really required
2007-11-24 14:22:34 +00:00

3784 lines
136 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: cpu.h,v 1.375 2007-11-24 14:22:32 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#ifndef BX_CPU_H
# define BX_CPU_H 1
#include <setjmp.h>
#include "cpu/lazy_flags.h"
#if BX_DISASM
# include "disasm/disasm.h"
#endif
// <TAG-DEFINES-DECODE-START>
// segment register encoding
#define BX_SEG_REG_ES 0
#define BX_SEG_REG_CS 1
#define BX_SEG_REG_SS 2
#define BX_SEG_REG_DS 3
#define BX_SEG_REG_FS 4
#define BX_SEG_REG_GS 5
// NULL now has to fit in 3 bits.
#define BX_SEG_REG_NULL 7
#define BX_NULL_SEG_REG(seg) ((seg) == BX_SEG_REG_NULL)
// <TAG-DEFINES-DECODE-END>
#ifdef BX_LITTLE_ENDIAN
#define BX_REG8L_OFFSET 0
#define BX_REG8H_OFFSET 1
#define BX_REG16_OFFSET 0
#else // BX_BIG_ENDIAN
#define BX_REG8L_OFFSET 3
#define BX_REG8H_OFFSET 2
#define BX_REG16_OFFSET 2
#endif // ifdef BX_LITTLE_ENDIAN
#define BX_16BIT_REG_AX 0
#define BX_16BIT_REG_CX 1
#define BX_16BIT_REG_DX 2
#define BX_16BIT_REG_BX 3
#define BX_16BIT_REG_SP 4
#define BX_16BIT_REG_BP 5
#define BX_16BIT_REG_SI 6
#define BX_16BIT_REG_DI 7
#define BX_32BIT_REG_EAX 0
#define BX_32BIT_REG_ECX 1
#define BX_32BIT_REG_EDX 2
#define BX_32BIT_REG_EBX 3
#define BX_32BIT_REG_ESP 4
#define BX_32BIT_REG_EBP 5
#define BX_32BIT_REG_ESI 6
#define BX_32BIT_REG_EDI 7
#define BX_64BIT_REG_RAX 0
#define BX_64BIT_REG_RCX 1
#define BX_64BIT_REG_RDX 2
#define BX_64BIT_REG_RBX 3
#define BX_64BIT_REG_RSP 4
#define BX_64BIT_REG_RBP 5
#define BX_64BIT_REG_RSI 6
#define BX_64BIT_REG_RDI 7
#define BX_64BIT_REG_R8 8
#define BX_64BIT_REG_R9 9
#define BX_64BIT_REG_R10 10
#define BX_64BIT_REG_R11 11
#define BX_64BIT_REG_R12 12
#define BX_64BIT_REG_R13 13
#define BX_64BIT_REG_R14 14
#define BX_64BIT_REG_R15 15
#if defined(NEED_CPU_REG_SHORTCUTS)
/* WARNING:
Only BX_CPU_C member functions can use these shortcuts safely!
Functions that use the shortcuts outside of BX_CPU_C might work
when BX_USE_CPU_SMF=1 but will fail when BX_USE_CPU_SMF=0
(for example in SMP mode).
*/
// access to 8 bit general registers
#define AL (BX_CPU_THIS_PTR gen_reg[0].word.byte.rl)
#define CL (BX_CPU_THIS_PTR gen_reg[1].word.byte.rl)
#define DL (BX_CPU_THIS_PTR gen_reg[2].word.byte.rl)
#define BL (BX_CPU_THIS_PTR gen_reg[3].word.byte.rl)
#define AH (BX_CPU_THIS_PTR gen_reg[0].word.byte.rh)
#define CH (BX_CPU_THIS_PTR gen_reg[1].word.byte.rh)
#define DH (BX_CPU_THIS_PTR gen_reg[2].word.byte.rh)
#define BH (BX_CPU_THIS_PTR gen_reg[3].word.byte.rh)
// access to 16 bit general registers
#define AX (BX_CPU_THIS_PTR gen_reg[0].word.rx)
#define CX (BX_CPU_THIS_PTR gen_reg[1].word.rx)
#define DX (BX_CPU_THIS_PTR gen_reg[2].word.rx)
#define BX (BX_CPU_THIS_PTR gen_reg[3].word.rx)
#define SP (BX_CPU_THIS_PTR gen_reg[4].word.rx)
#define BP (BX_CPU_THIS_PTR gen_reg[5].word.rx)
#define SI (BX_CPU_THIS_PTR gen_reg[6].word.rx)
#define DI (BX_CPU_THIS_PTR gen_reg[7].word.rx)
// access to 16 bit instruction pointer
#define IP BX_CPU_THIS_PTR eip_reg.word.ip
// accesss to 32 bit general registers
#define EAX BX_CPU_THIS_PTR gen_reg[0].dword.erx
#define ECX BX_CPU_THIS_PTR gen_reg[1].dword.erx
#define EDX BX_CPU_THIS_PTR gen_reg[2].dword.erx
#define EBX BX_CPU_THIS_PTR gen_reg[3].dword.erx
#define ESP BX_CPU_THIS_PTR gen_reg[4].dword.erx
#define EBP BX_CPU_THIS_PTR gen_reg[5].dword.erx
#define ESI BX_CPU_THIS_PTR gen_reg[6].dword.erx
#define EDI BX_CPU_THIS_PTR gen_reg[7].dword.erx
// access to 32 bit instruction pointer
#define EIP BX_CPU_THIS_PTR eip_reg.dword.eip
#if BX_SUPPORT_X86_64
// accesss to 64 bit general registers
#define RAX BX_CPU_THIS_PTR gen_reg[0].rrx
#define RCX BX_CPU_THIS_PTR gen_reg[1].rrx
#define RDX BX_CPU_THIS_PTR gen_reg[2].rrx
#define RBX BX_CPU_THIS_PTR gen_reg[3].rrx
#define RSP BX_CPU_THIS_PTR gen_reg[4].rrx
#define RBP BX_CPU_THIS_PTR gen_reg[5].rrx
#define RSI BX_CPU_THIS_PTR gen_reg[6].rrx
#define RDI BX_CPU_THIS_PTR gen_reg[7].rrx
#define R8 BX_CPU_THIS_PTR gen_reg[8].rrx
#define R9 BX_CPU_THIS_PTR gen_reg[9].rrx
#define R10 BX_CPU_THIS_PTR gen_reg[10].rrx
#define R11 BX_CPU_THIS_PTR gen_reg[11].rrx
#define R12 BX_CPU_THIS_PTR gen_reg[12].rrx
#define R13 BX_CPU_THIS_PTR gen_reg[13].rrx
#define R14 BX_CPU_THIS_PTR gen_reg[14].rrx
#define R15 BX_CPU_THIS_PTR gen_reg[15].rrx
// access to 64 bit instruction pointer
#define RIP BX_CPU_THIS_PTR eip_reg.rip
// access to 64 bit MSR registers
#define MSR_FSBASE (BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base)
#define MSR_GSBASE (BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base)
#define MSR_STAR (BX_CPU_THIS_PTR msr.star)
#define MSR_LSTAR (BX_CPU_THIS_PTR msr.lstar)
#define MSR_CSTAR (BX_CPU_THIS_PTR msr.cstar)
#define MSR_FMASK (BX_CPU_THIS_PTR msr.fmask)
#define MSR_KERNELGSBASE (BX_CPU_THIS_PTR msr.kernelgsbase)
#define MSR_TSC_AUX (BX_CPU_THIS_PTR msr.tsc_aux)
#endif
#if BX_SUPPORT_X86_64
#define BX_READ_8BIT_REGx(index,extended) ((((index) < 4) || (extended)) ? \
(BX_CPU_THIS_PTR gen_reg[index].word.byte.rl) : \
(BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh))
#define BX_READ_64BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].rrx)
#else
#define BX_READ_8BIT_REG(index) (((index) < 4) ? \
(BX_CPU_THIS_PTR gen_reg[index].word.byte.rl) : \
(BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh))
#define BX_READ_8BIT_REGx(index,ext) BX_READ_8BIT_REG(index)
#endif
#define BX_READ_16BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].word.rx)
#define BX_READ_32BIT_REG(index) (BX_CPU_THIS_PTR gen_reg[index].dword.erx)
#define BX_WRITE_16BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].word.rx = val; \
}
/*
#define BX_WRITE_32BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].dword.erx = val; \
}
*/
#if BX_SUPPORT_X86_64
#define BX_WRITE_8BIT_REGx(index, extended, val) {\
if (((index) < 4) || (extended)) \
BX_CPU_THIS_PTR gen_reg[index].word.byte.rl = val; \
else \
BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh = val; \
}
#define BX_WRITE_32BIT_REGZ(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].rrx = (Bit32u) val; \
}
#define BX_WRITE_64BIT_REG(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].rrx = val; \
}
#define BX_CLEAR_64BIT_HIGH(index) {\
BX_CPU_THIS_PTR gen_reg[index].dword.hrx = 0; \
}
#else
#define BX_WRITE_8BIT_REG(index, val) {\
if ((index) < 4) \
BX_CPU_THIS_PTR gen_reg[index].word.byte.rl = val; \
else \
BX_CPU_THIS_PTR gen_reg[(index)-4].word.byte.rh = val; \
}
#define BX_WRITE_8BIT_REGx(index, ext, val) BX_WRITE_8BIT_REG(index, val)
// For x86-32, I just pretend this one is like the macro above,
// so common code can be used.
#define BX_WRITE_32BIT_REGZ(index, val) {\
BX_CPU_THIS_PTR gen_reg[index].dword.erx = (Bit32u) val; \
}
#define BX_CLEAR_64BIT_HIGH(index)
#endif
#define CPL (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl)
#if BX_SUPPORT_SMP
#define BX_CPU_ID (BX_CPU_THIS_PTR bx_cpuid)
#else
#define BX_CPU_ID (0)
#endif
#endif // defined(NEED_CPU_REG_SHORTCUTS)
#define BX_DE_EXCEPTION 0 // Divide Error (fault)
#define BX_DB_EXCEPTION 1 // Debug (fault/trap)
#define BX_BP_EXCEPTION 3 // Breakpoint (trap)
#define BX_OF_EXCEPTION 4 // Overflow (trap)
#define BX_BR_EXCEPTION 5 // BOUND (fault)
#define BX_UD_EXCEPTION 6
#define BX_NM_EXCEPTION 7
#define BX_DF_EXCEPTION 8
#define BX_TS_EXCEPTION 10
#define BX_NP_EXCEPTION 11
#define BX_SS_EXCEPTION 12
#define BX_GP_EXCEPTION 13
#define BX_PF_EXCEPTION 14
#define BX_MF_EXCEPTION 16
#define BX_AC_EXCEPTION 17
#define BX_MC_EXCEPTION 18
#define BX_XM_EXCEPTION 19
/* MSR registers */
#define BX_MSR_P5_MC_ADDR 0x0000
#define BX_MSR_MC_TYPE 0x0001
#define BX_MSR_TSC 0x0010
#define BX_MSR_CESR 0x0011
#define BX_MSR_CTR0 0x0012
#define BX_MSR_CTR1 0x0013
#define BX_MSR_APICBASE 0x001b
#if BX_SUPPORT_SEP
# define BX_MSR_SYSENTER_CS 0x0174
# define BX_MSR_SYSENTER_ESP 0x0175
# define BX_MSR_SYSENTER_EIP 0x0176
#endif
#define BX_MSR_DEBUGCTLMSR 0x01d9
#define BX_MSR_LASTBRANCHFROMIP 0x01db
#define BX_MSR_LASTBRANCHTOIP 0x01dc
#define BX_MSR_LASTINTOIP 0x01dd
#if BX_SUPPORT_MTRR
#define BX_MSR_MTRRCAP 0x00fe
#define BX_MSR_MTRRPHYSBASE0 0x0200
#define BX_MSR_MTRRPHYSMASK0 0x0201
#define BX_MSR_MTRRPHYSBASE1 0x0202
#define BX_MSR_MTRRPHYSMASK1 0x0203
#define BX_MSR_MTRRPHYSBASE2 0x0204
#define BX_MSR_MTRRPHYSMASK2 0x0205
#define BX_MSR_MTRRPHYSBASE3 0x0206
#define BX_MSR_MTRRPHYSMASK3 0x0207
#define BX_MSR_MTRRPHYSBASE4 0x0208
#define BX_MSR_MTRRPHYSMASK4 0x0209
#define BX_MSR_MTRRPHYSBASE5 0x020a
#define BX_MSR_MTRRPHYSMASK5 0x020b
#define BX_MSR_MTRRPHYSBASE6 0x020c
#define BX_MSR_MTRRPHYSMASK6 0x020d
#define BX_MSR_MTRRPHYSBASE7 0x020e
#define BX_MSR_MTRRPHYSMASK7 0x020f
#define BX_MSR_MTRRFIX64K_00000 0x0250
#define BX_MSR_MTRRFIX16K_80000 0x0258
#define BX_MSR_MTRRFIX16K_A0000 0x0259
#define BX_MSR_MTRRFIX4K_C0000 0x0268
#define BX_MSR_MTRRFIX4K_C8000 0x0269
#define BX_MSR_MTRRFIX4K_D0000 0x026a
#define BX_MSR_MTRRFIX4K_D8000 0x026b
#define BX_MSR_MTRRFIX4K_E0000 0x026c
#define BX_MSR_MTRRFIX4K_E8000 0x026d
#define BX_MSR_MTRRFIX4K_F0000 0x026e
#define BX_MSR_MTRRFIX4K_F8000 0x026f
#define BX_MSR_PAT 0x0277
#define BX_MSR_MTRR_DEFTYPE 0x02ff
#endif
#if BX_SUPPORT_X86_64
#define BX_MSR_EFER 0xc0000080
#define BX_MSR_STAR 0xc0000081
#define BX_MSR_LSTAR 0xc0000082
#define BX_MSR_CSTAR 0xc0000083
#define BX_MSR_FMASK 0xc0000084
#define BX_MSR_FSBASE 0xc0000100
#define BX_MSR_GSBASE 0xc0000101
#define BX_MSR_KERNELGSBASE 0xc0000102
#define BX_MSR_TSC_AUX 0xc0000103
#endif
#define BX_MODE_IA32_REAL 0x0 // CR0.PE=0 |
#define BX_MODE_IA32_V8086 0x1 // CR0.PE=1, EFLAGS.VM=1 | EFER.LMA=0
#define BX_MODE_IA32_PROTECTED 0x2 // CR0.PE=1, EFLAGS.VM=0 |
#define BX_MODE_LONG_COMPAT 0x3 // EFER.LMA = 1, CR0.PE=1, CS.L=0
#define BX_MODE_LONG_64 0x4 // EFER.LMA = 1, CR0.PE=1, CS.L=1
extern const char* cpu_mode_string(unsigned cpu_mode);
extern const char* cpu_state_string(Bit32u debug_trap);
#if BX_SUPPORT_X86_64
#define IsCanonical(offset) ((Bit64u)((((Bit64s)(offset)) >> (BX_LIN_ADDRESS_WIDTH-1)) + 1) < 2)
#endif
#if BX_SUPPORT_X86_64
#define Is64BitMode() (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
#else
#define Is64BitMode() (0)
#endif
#define StackAddrSize64() Is64BitMode()
#if BX_SUPPORT_APIC
#define BX_CPU_INTR (BX_CPU_THIS_PTR INTR || BX_CPU_THIS_PTR local_apic.INTR)
#else
#define BX_CPU_INTR (BX_CPU_THIS_PTR INTR)
#endif
#define CACHE_LINE_SIZE 64
class BX_CPU_C;
class BX_MEM_C;
#if BX_USE_CPU_SMF == 0
// normal member functions. This can ONLY be used within BX_CPU_C classes.
// Anyone on the outside should use the BX_CPU macro (defined in bochs.h)
// instead.
# define BX_CPU_THIS_PTR this->
# define BX_CPU_THIS this
# define BX_SMF
# define BX_CPU_C_PREFIX BX_CPU_C::
// with normal member functions, calling a member fn pointer looks like
// object->*(fnptr)(arg, ...);
// Since this is different from when SMF=1, encapsulate it in a macro.
# define BX_CPU_CALL_METHOD(func, args) \
(this->*((BxExecutePtr_t) (func))) args
# define BX_CPU_CALL_METHODR(func, args) \
(this->*((BxExecutePtr_tR) (func))) args
#else
// static member functions. With SMF, there is only one CPU by definition.
# define BX_CPU_THIS_PTR BX_CPU(0)->
# define BX_CPU_THIS BX_CPU(0)
# define BX_SMF static
# define BX_CPU_C_PREFIX
# define BX_CPU_CALL_METHOD(func, args) \
((BxExecutePtr_t) (func)) args
# define BX_CPU_CALL_METHODR(func, args) \
((BxExecutePtr_tR) (func)) args
#endif
#if BX_SUPPORT_SMP
// multiprocessor simulation, we need an array of cpus and memories
BOCHSAPI extern BX_CPU_C **bx_cpu_array;
#else
// single processor simulation, so there's one of everything
BOCHSAPI extern BX_CPU_C bx_cpu;
#endif
typedef struct {
/* 31|30|29|28| 27|26|25|24| 23|22|21|20| 19|18|17|16
* ==|==|=====| ==|==|==|==| ==|==|==|==| ==|==|==|==
* 0| 0| 0| 0| 0| 0| 0| 0| 0| 0|ID|VP| VF|AC|VM|RF
*
* 15|14|13|12| 11|10| 9| 8| 7| 6| 5| 4| 3| 2| 1| 0
* ==|==|=====| ==|==|==|==| ==|==|==|==| ==|==|==|==
* 0|NT| IOPL| OF|DF|IF|TF| SF|ZF| 0|AF| 0|PF| 1|CF
*/
Bit32u val32; // Raw 32-bit value in x86 bit position. Used to store
// some eflags which are not cached in separate fields.
Bit32u VM_cached;
// accessors for all eflags in bx_flags_reg_t
// The macro is used once for each flag bit
// Do not use for arithmetic flags !
#define DECLARE_EFLAG_ACCESSOR(name,bitnum) \
BX_CPP_INLINE void assert_##name (); \
BX_CPP_INLINE void clear_##name (); \
BX_CPP_INLINE Bit32u get_##name (); \
BX_CPP_INLINE bx_bool getB_##name (); \
BX_CPP_INLINE void set_##name (Bit8u val); \
#define IMPLEMENT_EFLAG_ACCESSOR(name,bitnum) \
BX_CPP_INLINE void BX_CPU_C::assert_##name () { \
BX_CPU_THIS_PTR eflags.val32 |= (1<<bitnum); \
} \
BX_CPP_INLINE void BX_CPU_C::clear_##name () { \
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<bitnum); \
} \
BX_CPP_INLINE bx_bool BX_CPU_C::getB_##name () { \
return 1 & (BX_CPU_THIS_PTR eflags.val32 >> bitnum); \
} \
BX_CPP_INLINE Bit32u BX_CPU_C::get_##name () { \
return BX_CPU_THIS_PTR eflags.val32 & (1 << bitnum); \
} \
BX_CPP_INLINE void BX_CPU_C::set_##name (Bit8u val) { \
BX_CPU_THIS_PTR eflags.val32 = \
(BX_CPU_THIS_PTR eflags.val32&~(1<<bitnum))|((val)<<bitnum); \
}
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
#define DECLARE_EFLAG_ACCESSOR_AC(bitnum) \
BX_CPP_INLINE void clear_AC(); \
BX_CPP_INLINE Bit32u get_AC(); \
BX_CPP_INLINE bx_bool getB_AC(); \
BX_CPP_INLINE void set_AC(bx_bool val); \
#define IMPLEMENT_EFLAG_ACCESSOR_AC(bitnum) \
BX_CPP_INLINE void BX_CPU_C::clear_AC () { \
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<bitnum); \
BX_CPU_THIS_PTR alignment_check = 0; \
} \
BX_CPP_INLINE Bit32u BX_CPU_C::get_AC() { \
return BX_CPU_THIS_PTR eflags.val32 & (1 << bitnum); \
} \
BX_CPP_INLINE Bit32u BX_CPU_C::getB_AC() { \
return 1 & (BX_CPU_THIS_PTR eflags.val32 >> bitnum); \
} \
BX_CPP_INLINE void BX_CPU_C::set_AC(bx_bool val) { \
BX_CPU_THIS_PTR eflags.val32 = \
(BX_CPU_THIS_PTR eflags.val32&~(1<<bitnum))|((val)<<bitnum); \
handleAlignmentCheck(); \
}
#endif
#define DECLARE_EFLAG_ACCESSOR_VM(bitnum) \
BX_CPP_INLINE void assert_VM(); \
BX_CPP_INLINE void clear_VM(); \
BX_CPP_INLINE Bit32u get_VM(); \
BX_CPP_INLINE bx_bool getB_VM(); \
BX_CPP_INLINE void set_VM(Bit32u val);
#define IMPLEMENT_EFLAG_ACCESSOR_VM(bitnum) \
BX_CPP_INLINE Bit32u BX_CPU_C::get_VM() { \
return BX_CPU_THIS_PTR eflags.VM_cached; \
} \
BX_CPP_INLINE Bit32u BX_CPU_C::getB_VM() { \
return BX_CPU_THIS_PTR eflags.VM_cached > 0; \
} \
BX_CPP_INLINE void BX_CPU_C::assert_VM() { \
set_VM(1); \
} \
BX_CPP_INLINE void BX_CPU_C::clear_VM() { \
set_VM(0); \
} \
BX_CPP_INLINE void BX_CPU_C::set_VM(Bit32u val) { \
if (long_mode()) return; \
if (val) { \
BX_CPU_THIS_PTR eflags.val32 |= (1<<bitnum); \
BX_CPU_THIS_PTR eflags.VM_cached = 1; \
if (BX_CPU_THIS_PTR cr0.get_PE()) \
BX_CPU_THIS_PTR cpu_mode = BX_MODE_IA32_V8086; \
} else { \
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<bitnum); \
BX_CPU_THIS_PTR eflags.VM_cached = 0; \
if (BX_CPU_THIS_PTR cr0.get_PE()) \
BX_CPU_THIS_PTR cpu_mode = BX_MODE_IA32_PROTECTED; \
} \
}
#define DECLARE_EFLAG_ACCESSOR_IOPL(bitnum) \
BX_CPP_INLINE void set_IOPL(Bit32u val); \
BX_CPP_INLINE Bit32u get_IOPL(void);
#define IMPLEMENT_EFLAG_ACCESSOR_IOPL(bitnum) \
BX_CPP_INLINE void BX_CPU_C::set_IOPL(Bit32u val) { \
BX_CPU_THIS_PTR eflags.val32 &= ~(3<<12); \
BX_CPU_THIS_PTR eflags.val32 |= ((3&val) << 12); \
} \
BX_CPP_INLINE Bit32u BX_CPU_C::get_IOPL() { \
return 3 & (BX_CPU_THIS_PTR eflags.val32 >> 12); \
}
#define EFlagsCFMask (1 << 0)
#define EFlagsPFMask (1 << 2)
#define EFlagsAFMask (1 << 4)
#define EFlagsZFMask (1 << 6)
#define EFlagsSFMask (1 << 7)
#define EFlagsTFMask (1 << 8)
#define EFlagsIFMask (1 << 9)
#define EFlagsDFMask (1 << 10)
#define EFlagsOFMask (1 << 11)
#define EFlagsIOPLMask (3 << 12)
#define EFlagsNTMask (1 << 14)
#define EFlagsRFMask (1 << 16)
#define EFlagsVMMask (1 << 17)
#define EFlagsACMask (1 << 18)
#define EFlagsVIFMask (1 << 19)
#define EFlagsVIPMask (1 << 20)
#define EFlagsIDMask (1 << 21)
#define EFlagsOSZAPCMask \
(EFlagsCFMask | EFlagsPFMask | EFlagsAFMask | EFlagsZFMask | EFlagsSFMask | EFlagsOFMask)
#define EFlagsOSZAPMask \
(EFlagsPFMask | EFlagsAFMask | EFlagsZFMask | EFlagsSFMask | EFlagsOFMask)
#define EFlagsValidMask 0x003f7fd5 // only supported bits for EFLAGS
} bx_flags_reg_t;
#if BX_CPU_LEVEL >= 5
typedef struct
{
#if BX_SUPPORT_APIC
bx_phy_address apicbase;
#endif
#if BX_SUPPORT_X86_64
Bit64u star;
Bit64u lstar;
Bit64u cstar;
Bit64u fmask;
Bit64u kernelgsbase;
Bit32u tsc_aux;
#endif
// TSC: Time Stamp Counter
// Instead of storing a counter and incrementing it every instruction, we
// remember the time in ticks that it was reset to zero. With a little
// algebra, we can also support setting it to something other than zero.
// Don't read this directly; use get_TSC and set_TSC to access the TSC.
Bit64u tsc_last_reset;
// SYSENTER/SYSEXIT instruction msr's
#if BX_SUPPORT_SEP
Bit32u sysenter_cs_msr;
Bit32u sysenter_esp_msr;
Bit32u sysenter_eip_msr;
#endif
#if BX_SUPPORT_MTRR
Bit64u mtrrphys[16];
Bit64u mtrrfix64k_00000;
Bit64u mtrrfix16k_80000;
Bit64u mtrrfix16k_a0000;
Bit64u mtrrfix4k[8];
Bit16u mtrr_deftype;
Bit64u pat;
#endif
/* TODO finish of the others */
} bx_regs_msr_t;
#endif
#define MAX_STD_CPUID_FUNCTION 8
#define MAX_EXT_CPUID_FUNCTION 8
struct cpuid_function_t {
Bit32u eax;
Bit32u ebx;
Bit32u ecx;
Bit32u edx;
};
#include "crregs.h"
#include "descriptor.h"
// <TAG-CLASS-INSTRUCTION-START>
class bxInstruction_c {
public:
// Function pointers; a function to resolve the modRM address
// given the current state of the CPU and the instruction data,
// and a function to execute the instruction after resolving
// the memory address (if any).
#if BX_USE_CPU_SMF
void (BX_CPP_AttrRegparmN(1) *ResolveModrm)(bxInstruction_c *);
void (*execute)(bxInstruction_c *);
#else
void (BX_CPU_C::*ResolveModrm)(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
void (BX_CPU_C::*execute)(bxInstruction_c *);
#endif
// 31..28 (unused)
// 27..19 b1 (9bits of opcode; 1byte-op=0..255, 2byte-op=256..511
// (leave this one on top so no mask is needed)
// 18..18 mod==c0 (modrm)
// 17..16 repUsed (0=none, 2=0xF2, 3=0xF3).
Bit16u metaInfo3;
// 15..12 (unused)
// 11...8 ilen (0..15)
Bit8u metaInfo2;
// 7...7 extend8bit
// 6...6 as64
// 5...5 os64
// 4...4 as32
// 3...3 os32
// 2...0 seg
Bit8u metaInfo1;
union {
// Form (longest case): [opcode+modrm+sib/displacement32/immediate32]
struct {
// 31..28 (unused)
// 27..24 nnn (modrm)
Bit8u modRMData4;
// 23..20 (unused)
// 19..16 base (sib)
Bit8u modRMData3;
// 15..14 mod (modrm)
// 13..12 scale (sib)
// 11...8 index (sib)
Bit8u modRMData2;
// 7...4 (unused)
// 3...0 rm (modrm)
Bit8u modRMData1;
union {
Bit32u Id;
Bit16u Iw;
Bit8u Ib;
};
union {
Bit16u displ16u; // for 16-bit modrm forms
Bit32u displ32u; // for 32-bit modrm forms
};
} modRMForm;
struct {
Bit32u dummy;
union {
Bit32u Id;
Bit16u Iw;
Bit8u Ib;
};
union {
Bit32u Id2; // Not used (for alignment)
Bit16u Iw2;
Bit8u Ib2;
};
} IxIxForm;
struct {
// For opcodes which don't use modRM, but which encode the
// register in the low 3 bits of the opcode, extended by the
// REX.B bit on x86-64, the register value is cached in opcodeReg.
Bit32u opcodeReg;
union {
Bit32u Id;
Bit16u Iw;
Bit8u Ib;
};
Bit32u dummy;
} IxForm;
#if BX_SUPPORT_X86_64
// Form: [opcode/Iq]. These opcode never use a modrm sequence.
struct {
Bit32u opcodeReg;
Bit64u Iq; // for MOV Rx,imm64
} IqForm;
#endif
};
BX_CPP_INLINE unsigned opcodeReg() {
// The opcodeReg form (low 3 bits of the opcode byte (extended
// by REX.B on x86-64) can be accessed by IxForm or IqForm. They
// are aligned in the same place, so it doesn't matter.
return IxForm.opcodeReg;
}
// used in FPU only
BX_CPP_INLINE unsigned modrm() {
#if BX_SUPPORT_X86_64
return mod() | (rm() & 7) | ((nnn() & 7) << 3);
#else
return mod() | rm() | (nnn() << 3);
#endif
}
BX_CPP_INLINE unsigned mod() { return modRMForm.modRMData2 & 0xc0; }
BX_CPP_INLINE unsigned modC0()
{
// This is a cheaper way to test for modRM instructions where
// the mod field is 0xc0. FetchDecode flags this condition since
// it is quite common to be tested for.
return metaInfo3 & (1<<2);
}
BX_CPP_INLINE unsigned assertModC0()
{
return metaInfo3 |= (1<<2);
}
BX_CPP_INLINE unsigned nnn() {
return modRMForm.modRMData4;
}
BX_CPP_INLINE unsigned rm() {
return modRMForm.modRMData1;
}
BX_CPP_INLINE unsigned sibScale() {
return (modRMForm.modRMData2 >> 4) & 0x3;
}
BX_CPP_INLINE unsigned sibIndex() {
return (modRMForm.modRMData2) & 0xf;
}
BX_CPP_INLINE unsigned sibBase() {
return modRMForm.modRMData3;
}
BX_CPP_INLINE Bit32u displ32u() { return modRMForm.displ32u; }
BX_CPP_INLINE Bit16u displ16u() { return modRMForm.displ16u; }
BX_CPP_INLINE Bit32u Id() { return modRMForm.Id; }
BX_CPP_INLINE Bit16u Iw() { return modRMForm.Iw; }
BX_CPP_INLINE Bit8u Ib() { return modRMForm.Ib; }
BX_CPP_INLINE Bit16u Iw2() { return IxIxForm.Iw2; } // Legacy
BX_CPP_INLINE Bit8u Ib2() { return IxIxForm.Ib2; } // Legacy
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit64u Iq() { return IqForm.Iq; }
#endif
// Info in the metaInfo field.
// Note: the 'L' at the end of certain flags, means the value returned
// is for Logical comparisons, eg if (i->os32L() && i->as32L()). If you
// want a bx_bool value, use os32B() etc. This makes for smaller
// code, when a strict 0 or 1 is not necessary.
BX_CPP_INLINE void initMetaInfo(unsigned os32, unsigned as32,
unsigned os64, unsigned as64)
{
metaInfo1 = BX_SEG_REG_NULL | (os32<<3) | (as32<<4) | (os64<<5) | (as64<<6);
metaInfo2 = metaInfo3 = 0;
}
BX_CPP_INLINE unsigned seg(void) {
return metaInfo1 & 7;
}
BX_CPP_INLINE void setSeg(unsigned val) {
metaInfo1 = (metaInfo1 & ~7) | val;
}
BX_CPP_INLINE unsigned os32L(void) {
return metaInfo1 & (1<<3);
}
BX_CPP_INLINE unsigned os32B(void) {
return (metaInfo1 >> 3) & 1;
}
BX_CPP_INLINE void setOs32B(unsigned bit) {
metaInfo1 = (metaInfo1 & ~(1<<3)) | (bit<<3);
}
BX_CPP_INLINE void assertOs32(void) {
metaInfo1 |= (1<<3);
}
BX_CPP_INLINE unsigned as32L(void) {
return metaInfo1 & (1<<4);
}
BX_CPP_INLINE unsigned as32B(void) {
return (metaInfo1 >> 4) & 1;
}
BX_CPP_INLINE void setAs32B(unsigned bit) {
metaInfo1 = (metaInfo1 & ~(1<<4)) | (bit<<4);
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned os64L(void) {
return metaInfo1 & (1<<5);
}
BX_CPP_INLINE void assertOs64(void) {
metaInfo1 |= (1<<5);
}
#else
BX_CPP_INLINE unsigned os64L(void) { return 0; }
#endif
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned as64L(void) {
return metaInfo1 & (1<<6);
}
BX_CPP_INLINE void setAs64B(unsigned bit) {
metaInfo1 = (metaInfo1 & ~(1<<6)) | (bit<<6);
}
#else
BX_CPP_INLINE unsigned as64L(void) { return 0; }
#endif
#if BX_SUPPORT_X86_64
BX_CPP_INLINE unsigned extend8bitL(void) {
return metaInfo1 & (1<<7);
}
BX_CPP_INLINE void assertExtend8bit(void) {
metaInfo1 |= (1<<7);
}
#endif
BX_CPP_INLINE unsigned ilen(void) {
return metaInfo2;
}
BX_CPP_INLINE void setILen(unsigned ilen) {
metaInfo2 = ilen;
}
BX_CPP_INLINE unsigned repUsedL(void) {
return metaInfo3 & 3;
}
BX_CPP_INLINE unsigned repUsedValue(void) {
return metaInfo3 & 3;
}
BX_CPP_INLINE void setRepUsed(unsigned value) {
metaInfo3 = (metaInfo3 & ~3) | (value);
}
// Note this is the highest field, and thus needs no masking.
// DON'T PUT ANY FIELDS HIGHER THAN THIS ONE WITHOUT ADDING A MASK.
BX_CPP_INLINE unsigned b1(void) {
return metaInfo3 >> 3;
}
BX_CPP_INLINE void setB1(unsigned b1) {
metaInfo3 = (metaInfo3 & ~(0x1ff << 3)) | ((b1 & 0x1ff) << 3);
}
};
// <TAG-CLASS-INSTRUCTION-END>
// <TAG-TYPE-EXECUTEPTR-START>
#if BX_USE_CPU_SMF
typedef void (*BxExecutePtr_t)(bxInstruction_c *);
typedef void (BX_CPP_AttrRegparmN(1) *BxExecutePtr_tR)(bxInstruction_c *);
#else
typedef void (BX_CPU_C::*BxExecutePtr_t)(bxInstruction_c *);
typedef void (BX_CPU_C::*BxExecutePtr_tR)(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
#endif
// <TAG-TYPE-EXECUTEPTR-END>
// ========== iCache =============================================
#if BX_SUPPORT_ICACHE
#include "icache.h"
#endif
#if BX_USE_TLB
typedef bx_ptr_equiv_t bx_hostpageaddr_t;
typedef struct {
bx_address lpf; // linear page frame
bx_phy_address ppf; // physical page frame
Bit32u accessBits; // Page Table Address for updating A & D bits
bx_hostpageaddr_t hostPageAddr;
} bx_TLB_entry;
#endif
// general purpose register
#if BX_SUPPORT_X86_64
#ifdef BX_BIG_ENDIAN
typedef struct {
union {
struct {
Bit32u dword_filler;
Bit16u word_filler;
union {
Bit16u rx;
struct {
Bit8u rh;
Bit8u rl;
} byte;
};
} word;
Bit64u rrx;
struct {
Bit32u hrx; // hi 32 bits
Bit32u erx; // lo 32 bits
} dword;
};
} bx_gen_reg_t;
#else
typedef struct {
union {
struct {
union {
Bit16u rx;
struct {
Bit8u rl;
Bit8u rh;
} byte;
};
Bit16u word_filler;
Bit32u dword_filler;
} word;
Bit64u rrx;
struct {
Bit32u erx; // lo 32 bits
Bit32u hrx; // hi 32 bits
} dword;
};
} bx_gen_reg_t;
#endif
#else // #if BX_SUPPORT_X86_64
#ifdef BX_BIG_ENDIAN
typedef struct {
union {
struct {
Bit32u erx;
} dword;
struct {
Bit16u word_filler;
union {
Bit16u rx;
struct {
Bit8u rh;
Bit8u rl;
} byte;
};
} word;
};
} bx_gen_reg_t;
#else
typedef struct {
union {
struct {
Bit32u erx;
} dword;
struct {
union {
Bit16u rx;
struct {
Bit8u rl;
Bit8u rh;
} byte;
};
Bit16u word_filler;
} word;
};
} bx_gen_reg_t;
#endif
#endif // #if BX_SUPPORT_X86_64
// instruction pointer register
#if BX_SUPPORT_X86_64
#ifdef BX_BIG_ENDIAN
typedef struct {
union {
struct {
Bit32u rip_upper;
Bit16u word_filler;
Bit16u ip;
} word;
Bit64u rip;
struct {
Bit32u rip_upper; // hi 32 bits
Bit32u eip; // lo 32 bits
} dword;
};
} bx_eip_reg_t;
#else
typedef struct {
union {
struct {
Bit16u ip;
Bit16u word_filler;
Bit32u rip_upper;
} word;
Bit64u rip;
struct {
Bit32u eip; // lo 32 bits
Bit32u rip_upper; // hi 32 bits
} dword;
};
} bx_eip_reg_t;
#endif
#else // #if BX_SUPPORT_X86_64
#ifdef BX_BIG_ENDIAN
typedef struct {
union {
struct {
Bit32u eip;
} dword;
struct {
Bit16u word_filler;
Bit16u ip;
} word;
};
} bx_eip_reg_t;
#else
typedef struct {
union {
struct {
Bit32u eip;
} dword;
struct {
Bit16u ip;
Bit16u word_filler;
} word;
};
} bx_eip_reg_t;
#endif
#endif // #if BX_SUPPORT_X86_64
#if BX_SUPPORT_APIC
#define BX_INCLUDE_LOCAL_APIC 1
#include "apic.h"
#endif
class BX_MEM_C;
#if BX_SUPPORT_X86_64
# define BX_GENERAL_REGISTERS 16
#else
# define BX_GENERAL_REGISTERS 8
#endif
#if BX_SUPPORT_FPU
#include "cpu/i387.h"
#include "cpu/xmm.h"
#endif
#if BX_SUPPORT_MONITOR_MWAIT
struct monitor_addr_t {
bx_phy_address monitor_begin;
bx_phy_address monitor_end;
// avoid false trigger when MONITOR was not set up properly
monitor_addr_t():
monitor_begin(0xffffffff), monitor_end(0xffffffff) {}
monitor_addr_t(bx_phy_address addr, unsigned len):
monitor_begin(addr), monitor_end(addr+len) {}
};
#endif
class BOCHSAPI BX_CPU_C : public logfunctions {
public: // for now...
char name[64];
unsigned bx_cpuid;
// cpuid
cpuid_function_t cpuid_std_function[MAX_STD_CPUID_FUNCTION];
cpuid_function_t cpuid_ext_function[MAX_EXT_CPUID_FUNCTION];
// General register set
// eax: accumulator
// ebx: base
// ecx: count
// edx: data
// ebp: base pointer
// esi: source index
// edi: destination index
// esp: stack pointer
bx_gen_reg_t gen_reg[BX_GENERAL_REGISTERS];
// instruction pointer
bx_eip_reg_t eip_reg;
// status and control flags register set
Bit32u lf_flags_status;
bx_flags_reg_t eflags;
bx_lf_flags_entry oszapc;
bx_lf_flags_entry oszap;
// so that we can back up when handling faults, exceptions, etc.
// we need to store the value of the instruction pointer, before
// each fetch/execute cycle.
bx_address prev_rip;
bx_address prev_rsp;
bx_bool speculative_rsp;
#define BX_INHIBIT_INTERRUPTS 0x01
#define BX_INHIBIT_DEBUG 0x02
// What events to inhibit at any given time. Certain instructions
// inhibit interrupts, some debug exceptions and single-step traps.
unsigned inhibit_mask;
/* user segment register set */
bx_segment_reg_t sregs[6];
/* system segment registers */
#if BX_CPU_LEVEL >= 2
bx_global_segment_reg_t gdtr; /* global descriptor table register */
bx_global_segment_reg_t idtr; /* interrupt descriptor table register */
#endif
bx_segment_reg_t ldtr; /* local descriptor table register */
bx_segment_reg_t tr; /* task register */
/* debug registers DR0-DR7 */
#if BX_CPU_LEVEL >= 3
bx_address dr0;
bx_address dr1;
bx_address dr2;
bx_address dr3;
Bit32u dr6;
Bit32u dr7;
#endif
/* TR3 - TR7 (Test Register 3-7), unimplemented */
/* Control registers */
#if BX_CPU_LEVEL >= 2
bx_cr0_t cr0;
Bit32u cr1;
bx_address cr2;
bx_phy_address cr3, cr3_masked;
#if BX_CPU_LEVEL >= 4
bx_cr4_t cr4;
#endif
#endif
#if BX_SUPPORT_X86_64
bx_efer_t efer;
#endif
/* SMM base register */
Bit32u smbase;
#if BX_CPU_LEVEL >= 5
bx_regs_msr_t msr;
#endif
#if BX_SUPPORT_FPU || BX_SUPPORT_MMX
i387_t the_i387;
#endif
#if BX_SUPPORT_SSE
bx_xmm_reg_t xmm[BX_XMM_REGISTERS];
bx_mxcsr_t mxcsr;
#endif
#if BX_SUPPORT_MONITOR_MWAIT
monitor_addr_t monitor;
#endif
// pointer to the address space that this processor uses.
BX_MEM_C *mem;
#if BX_SUPPORT_APIC
bx_local_apic_c local_apic;
#endif
bx_bool EXT; /* 1 if processing external interrupt or exception
* or if not related to current instruction,
* 0 if current CS:IP caused exception */
unsigned errorno; /* signal exception during instruction emulation */
#define BX_DEBUG_TRAP_HALT (0x80000000)
#define BX_DEBUG_TRAP_SHUTDOWN (0x40000000)
#define BX_DEBUG_TRAP_WAIT_FOR_SIPI (0x20000000)
#define BX_DEBUG_TRAP_MWAIT (0x10000000)
#define BX_DEBUG_TRAP_MWAIT_IF (0x18000000)
// combine all possible states
#define BX_DEBUG_TRAP_SPECIAL (0xf8000000)
Bit32u debug_trap; // holds DR6 value (16bit) to be set as well
volatile bx_bool async_event;
volatile bx_bool INTR;
volatile bx_bool smi_pending;
volatile bx_bool nmi_pending;
// for exceptions
jmp_buf jmp_buf_env;
Bit8u curr_exception[2];
bx_segment_reg_t save_cs;
bx_segment_reg_t save_ss;
bx_address save_eip;
bx_address save_esp;
// Boundaries of current page, based on EIP
bx_address eipPageBias;
bx_address eipPageWindowSize;
Bit8u *eipFetchPtr;
bx_phy_address pAddrA20Page; // Guest physical address of current instruction
// page with A20() already applied.
#if BX_SUPPORT_ICACHE
const Bit32u *currPageWriteStampPtr;
#endif
unsigned cpu_mode;
bx_bool in_smm;
bx_bool nmi_disable;
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
bx_bool alignment_check;
#endif
#if BX_DEBUGGER
bx_phy_address watchpoint;
Bit8u break_point;
#if BX_MAGIC_BREAKPOINT
Bit8u magic_break;
#endif
Bit8u stop_reason;
Bit8u trace_reg;
Bit8u mode_break;
bx_bool dbg_cpu_mode; /* contains current mode */
unsigned show_flag;
bx_guard_found_t guard_found;
#endif
Bit8u trace;
// for paging
#if BX_USE_TLB
struct {
bx_TLB_entry entry[BX_TLB_SIZE] BX_CPP_AlignN(16);
} TLB;
#if BX_SUPPORT_X86_64
#define LPFOf(laddr) ((laddr) & BX_CONST64(0xfffffffffffff000))
#else
#define LPFOf(laddr) ((laddr) & 0xfffff000)
#endif
#endif // #if BX_USE_TLB
// An instruction cache. Each entry should be exactly 32 bytes, and
// this structure should be aligned on a 32-byte boundary to be friendly
// with the host cache lines.
#if BX_SUPPORT_ICACHE
bxICache_c iCache BX_CPP_AlignN(32);
Bit32u fetchModeMask;
void updateFetchModeMask(void);
#endif
struct {
bx_address rm_addr; // The address offset after resolution.
bx_phy_address paddress1; // physical address after translation of 1st len1 bytes of data
bx_phy_address paddress2; // physical address after translation of 2nd len2 bytes of data
Bit32u len1; // Number of bytes in page 1
Bit32u len2; // Number of bytes in page 2
bx_ptr_equiv_t pages; // Number of pages access spans (1 or 2). Also used
// for the case when a native host pointer is
// available for the R-M-W instructions. The host
// pointer is stuffed here. Since this field has
// to be checked anyways (and thus cached), if it
// is greated than 2 (the maximum possible for
// normal cases) it is a native pointer and is used
// for a direct write access.
} address_xlation;
#if BX_EXTERNAL_DEBUGGER
virtual void ask(int level, const char *prefix, const char *fmt, va_list ap);
#endif
BX_SMF void setEFlags(Bit32u val) BX_CPP_AttrRegparmN(1);
#define lfMaskCF 0x0000000f
#define lfMaskPF 0x000000f0
#define lfMaskAF 0x00000f00
#define lfMaskZF 0x0000f000
#define lfMaskSF 0x000f0000
#define lfMaskOF 0x00f00000
#define ArithmeticalFlag(flag, lfMask, eflagsBitShift) \
BX_SMF bx_bool get_##flag##Lazy(void); \
BX_SMF bx_bool getB_##flag(void) { \
if ( (BX_CPU_THIS_PTR lf_flags_status & (lfMask)) == 0) \
return (BX_CPU_THIS_PTR eflags.val32 >> eflagsBitShift) & 1; \
else \
return get_##flag##Lazy(); \
} \
BX_SMF bx_bool get_##flag(void) { \
if ( (BX_CPU_THIS_PTR lf_flags_status & (lfMask)) == 0) \
return BX_CPU_THIS_PTR eflags.val32 & (1<<eflagsBitShift); \
else \
return get_##flag##Lazy(); \
} \
BX_SMF void set_##flag(bx_bool val) { \
BX_CPU_THIS_PTR lf_flags_status &= ~(lfMask); \
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<eflagsBitShift); \
BX_CPU_THIS_PTR eflags.val32 |= ((val)<<eflagsBitShift); \
} \
BX_SMF void clear_##flag(void) { \
BX_CPU_THIS_PTR lf_flags_status &= ~(lfMask); \
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<eflagsBitShift); \
} \
BX_SMF void assert_##flag(void) { \
BX_CPU_THIS_PTR lf_flags_status &= ~(lfMask); \
BX_CPU_THIS_PTR eflags.val32 |= (1<<eflagsBitShift); \
}
ArithmeticalFlag(OF, lfMaskOF, 11);
ArithmeticalFlag(SF, lfMaskSF, 7);
ArithmeticalFlag(ZF, lfMaskZF, 6);
ArithmeticalFlag(AF, lfMaskAF, 4);
ArithmeticalFlag(PF, lfMaskPF, 2);
ArithmeticalFlag(CF, lfMaskCF, 0);
BX_SMF BX_CPP_INLINE void set_PF_base(Bit8u val);
// constructors & destructors...
BX_CPU_C(unsigned id = 0);
#if BX_EXTERNAL_DEBUGGER
virtual ~BX_CPU_C();
#else
~BX_CPU_C();
#endif
void initialize(BX_MEM_C *addrspace);
void after_restore_state(void);
void register_state(void);
#if BX_WITH_WX
void register_wx_state(void);
#endif
static Bit64s param_save_handler(void *devptr, bx_param_c *param, Bit64s val);
static Bit64s param_restore_handler(void *devptr, bx_param_c *param, Bit64s val);
#if !BX_USE_CPU_SMF
Bit64s param_save(bx_param_c *param, Bit64s val);
Bit64s param_restore(bx_param_c *param, Bit64s val);
#endif
// <TAG-CLASS-CPU-START>
// prototypes for CPU instructions...
BX_SMF void ADD_ALIb(bxInstruction_c *);
BX_SMF void OR_ALIb(bxInstruction_c *);
BX_SMF void ADC_ALIb(bxInstruction_c *);
BX_SMF void SBB_ALIb(bxInstruction_c *);
BX_SMF void AND_ALIb(bxInstruction_c *);
BX_SMF void SUB_ALIb(bxInstruction_c *);
BX_SMF void XOR_ALIb(bxInstruction_c *);
BX_SMF void CMP_ALIb(bxInstruction_c *);
BX_SMF void ADD_AXIw(bxInstruction_c *);
BX_SMF void OR_AXIw(bxInstruction_c *);
BX_SMF void ADC_AXIw(bxInstruction_c *);
BX_SMF void SBB_AXIw(bxInstruction_c *);
BX_SMF void AND_AXIw(bxInstruction_c *);
BX_SMF void SUB_AXIw(bxInstruction_c *);
BX_SMF void XOR_AXIw(bxInstruction_c *);
BX_SMF void CMP_AXIw(bxInstruction_c *);
BX_SMF void ADD_EAXId(bxInstruction_c *);
BX_SMF void OR_EAXId(bxInstruction_c *);
BX_SMF void ADC_EAXId(bxInstruction_c *);
BX_SMF void SBB_EAXId(bxInstruction_c *);
BX_SMF void AND_EAXId(bxInstruction_c *);
BX_SMF void SUB_EAXId(bxInstruction_c *);
BX_SMF void XOR_EAXId(bxInstruction_c *);
BX_SMF void CMP_EAXId(bxInstruction_c *);
BX_SMF void PUSH16_CS(bxInstruction_c *);
BX_SMF void PUSH16_DS(bxInstruction_c *);
BX_SMF void POP16_DS(bxInstruction_c *);
BX_SMF void PUSH16_ES(bxInstruction_c *);
BX_SMF void POP16_ES(bxInstruction_c *);
BX_SMF void PUSH16_FS(bxInstruction_c *);
BX_SMF void POP16_FS(bxInstruction_c *);
BX_SMF void PUSH16_GS(bxInstruction_c *);
BX_SMF void POP16_GS(bxInstruction_c *);
BX_SMF void PUSH16_SS(bxInstruction_c *);
BX_SMF void POP16_SS(bxInstruction_c *);
BX_SMF void PUSH32_CS(bxInstruction_c *);
BX_SMF void PUSH32_DS(bxInstruction_c *);
BX_SMF void POP32_DS(bxInstruction_c *);
BX_SMF void PUSH32_ES(bxInstruction_c *);
BX_SMF void POP32_ES(bxInstruction_c *);
BX_SMF void PUSH32_FS(bxInstruction_c *);
BX_SMF void POP32_FS(bxInstruction_c *);
BX_SMF void PUSH32_GS(bxInstruction_c *);
BX_SMF void POP32_GS(bxInstruction_c *);
BX_SMF void PUSH32_SS(bxInstruction_c *);
BX_SMF void POP32_SS(bxInstruction_c *);
BX_SMF void DAA(bxInstruction_c *);
BX_SMF void DAS(bxInstruction_c *);
BX_SMF void AAA(bxInstruction_c *);
BX_SMF void AAS(bxInstruction_c *);
BX_SMF void AAM(bxInstruction_c *);
BX_SMF void AAD(bxInstruction_c *);
BX_SMF void PUSHAD32(bxInstruction_c *);
BX_SMF void PUSHAD16(bxInstruction_c *);
BX_SMF void POPAD32(bxInstruction_c *);
BX_SMF void POPAD16(bxInstruction_c *);
BX_SMF void ARPL_EwGw(bxInstruction_c *);
BX_SMF void PUSH_Id(bxInstruction_c *);
BX_SMF void PUSH_Iw(bxInstruction_c *);
BX_SMF void INSB_YbDX(bxInstruction_c *);
BX_SMF void INSW_YwDX(bxInstruction_c *);
BX_SMF void INSD_YdDX(bxInstruction_c *);
BX_SMF void OUTSB_DXXb(bxInstruction_c *);
BX_SMF void OUTSW_DXXw(bxInstruction_c *);
BX_SMF void OUTSD_DXXd(bxInstruction_c *);
BX_SMF void REP_INSB_YbDX(bxInstruction_c *);
BX_SMF void REP_INSW_YwDX(bxInstruction_c *);
BX_SMF void REP_INSD_YdDX(bxInstruction_c *);
BX_SMF void REP_OUTSB_DXXb(bxInstruction_c *);
BX_SMF void REP_OUTSW_DXXw(bxInstruction_c *);
BX_SMF void REP_OUTSD_DXXd(bxInstruction_c *);
BX_SMF void BOUND_GwMa(bxInstruction_c *);
BX_SMF void BOUND_GdMa(bxInstruction_c *);
BX_SMF void TEST_EbGbR(bxInstruction_c *);
BX_SMF void TEST_EwGwR(bxInstruction_c *);
BX_SMF void TEST_EdGdR(bxInstruction_c *);
BX_SMF void TEST_EbGbM(bxInstruction_c *);
BX_SMF void TEST_EwGwM(bxInstruction_c *);
BX_SMF void TEST_EdGdM(bxInstruction_c *);
BX_SMF void XCHG_EbGbR(bxInstruction_c *);
BX_SMF void XCHG_EwGwR(bxInstruction_c *);
BX_SMF void XCHG_EdGdR(bxInstruction_c *);
BX_SMF void XCHG_EbGbM(bxInstruction_c *);
BX_SMF void XCHG_EwGwM(bxInstruction_c *);
BX_SMF void XCHG_EdGdM(bxInstruction_c *);
BX_SMF void MOV_EbGbM(bxInstruction_c *);
BX_SMF void MOV_EbGbR(bxInstruction_c *);
BX_SMF void MOV_EdGdM(bxInstruction_c *);
BX_SMF void MOV_EdGdR(bxInstruction_c *);
BX_SMF void MOV_EwGwM(bxInstruction_c *);
BX_SMF void MOV_EwGwR(bxInstruction_c *);
BX_SMF void MOV_GbEbM(bxInstruction_c *);
BX_SMF void MOV_GbEbR(bxInstruction_c *);
BX_SMF void MOV_GdEdM(bxInstruction_c *);
BX_SMF void MOV_GdEdR(bxInstruction_c *);
BX_SMF void MOV_GwEwM(bxInstruction_c *);
BX_SMF void MOV_GwEwR(bxInstruction_c *);
BX_SMF void MOV_EwSw(bxInstruction_c *);
BX_SMF void MOV_SwEw(bxInstruction_c *);
BX_SMF void LEA_GdM(bxInstruction_c *);
BX_SMF void LEA_GwM(bxInstruction_c *);
BX_SMF void CBW(bxInstruction_c *);
BX_SMF void CWD(bxInstruction_c *);
BX_SMF void CALL32_Ap(bxInstruction_c *);
BX_SMF void CALL16_Ap(bxInstruction_c *);
BX_SMF void PUSHF_Fw(bxInstruction_c *);
BX_SMF void POPF_Fw(bxInstruction_c *);
BX_SMF void PUSHF_Fd(bxInstruction_c *);
BX_SMF void POPF_Fd(bxInstruction_c *);
BX_SMF void SAHF(bxInstruction_c *);
BX_SMF void LAHF(bxInstruction_c *);
BX_SMF void MOV_ALOd(bxInstruction_c *);
BX_SMF void MOV_EAXOd(bxInstruction_c *);
BX_SMF void MOV_AXOd(bxInstruction_c *);
BX_SMF void MOV_OdAL(bxInstruction_c *);
BX_SMF void MOV_OdEAX(bxInstruction_c *);
BX_SMF void MOV_OdAX(bxInstruction_c *);
BX_SMF void TEST_ALIb(bxInstruction_c *);
BX_SMF void TEST_EAXId(bxInstruction_c *);
BX_SMF void TEST_AXIw(bxInstruction_c *);
// repeatable instructions
BX_SMF void MOVSB_XbYb(bxInstruction_c *);
BX_SMF void MOVSW_XwYw(bxInstruction_c *);
BX_SMF void MOVSD_XdYd(bxInstruction_c *);
BX_SMF void CMPSB_XbYb(bxInstruction_c *);
BX_SMF void CMPSW_XwYw(bxInstruction_c *);
BX_SMF void CMPSD_XdYd(bxInstruction_c *);
BX_SMF void STOSB_YbAL(bxInstruction_c *);
BX_SMF void LODSB_ALXb(bxInstruction_c *);
BX_SMF void SCASB_ALXb(bxInstruction_c *);
BX_SMF void STOSW_YwAX(bxInstruction_c *);
BX_SMF void LODSW_AXXw(bxInstruction_c *);
BX_SMF void SCASW_AXXw(bxInstruction_c *);
BX_SMF void STOSD_YdEAX(bxInstruction_c *);
BX_SMF void LODSD_EAXXd(bxInstruction_c *);
BX_SMF void SCASD_EAXXd(bxInstruction_c *);
BX_SMF void REP_MOVSB_XbYb(bxInstruction_c *);
BX_SMF void REP_MOVSW_XwYw(bxInstruction_c *);
BX_SMF void REP_MOVSD_XdYd(bxInstruction_c *);
BX_SMF void REP_CMPSB_XbYb(bxInstruction_c *);
BX_SMF void REP_CMPSW_XwYw(bxInstruction_c *);
BX_SMF void REP_CMPSD_XdYd(bxInstruction_c *);
BX_SMF void REP_STOSB_YbAL(bxInstruction_c *);
BX_SMF void REP_LODSB_ALXb(bxInstruction_c *);
BX_SMF void REP_SCASB_ALXb(bxInstruction_c *);
BX_SMF void REP_STOSW_YwAX(bxInstruction_c *);
BX_SMF void REP_LODSW_AXXw(bxInstruction_c *);
BX_SMF void REP_SCASW_AXXw(bxInstruction_c *);
BX_SMF void REP_STOSD_YdEAX(bxInstruction_c *);
BX_SMF void REP_LODSD_EAXXd(bxInstruction_c *);
BX_SMF void REP_SCASD_EAXXd(bxInstruction_c *);
BX_SMF void MOV_EdIdM(bxInstruction_c *);
BX_SMF void MOV_EwIwM(bxInstruction_c *);
BX_SMF void MOV_EbIbM(bxInstruction_c *);
BX_SMF void MOV_EdIdR(bxInstruction_c *);
BX_SMF void MOV_EwIwR(bxInstruction_c *);
BX_SMF void MOV_EbIbR(bxInstruction_c *);
BX_SMF void RETnear32(bxInstruction_c *);
BX_SMF void RETnear16(bxInstruction_c *);
BX_SMF void ENTER16_IwIb(bxInstruction_c *);
BX_SMF void ENTER32_IwIb(bxInstruction_c *);
BX_SMF void LEAVE(bxInstruction_c *);
BX_SMF void RETfar32(bxInstruction_c *);
BX_SMF void RETfar16(bxInstruction_c *);
BX_SMF void INT1(bxInstruction_c *);
BX_SMF void INT3(bxInstruction_c *);
BX_SMF void INT_Ib(bxInstruction_c *);
BX_SMF void INTO(bxInstruction_c *);
BX_SMF void IRET32(bxInstruction_c *);
BX_SMF void IRET16(bxInstruction_c *);
BX_SMF void SALC(bxInstruction_c *);
BX_SMF void XLAT(bxInstruction_c *);
BX_SMF void LOOPNE_Jb(bxInstruction_c *);
BX_SMF void LOOPE_Jb(bxInstruction_c *);
BX_SMF void LOOP_Jb(bxInstruction_c *);
BX_SMF void JCXZ_Jb(bxInstruction_c *);
BX_SMF void IN_ALIb(bxInstruction_c *);
BX_SMF void IN_AXIb(bxInstruction_c *);
BX_SMF void IN_EAXIb(bxInstruction_c *);
BX_SMF void OUT_IbAL(bxInstruction_c *);
BX_SMF void OUT_IbAX(bxInstruction_c *);
BX_SMF void OUT_IbEAX(bxInstruction_c *);
BX_SMF void CALL_Jw(bxInstruction_c *);
BX_SMF void CALL_Jd(bxInstruction_c *);
BX_SMF void JMP_Jd(bxInstruction_c *);
BX_SMF void JMP_Jw(bxInstruction_c *);
BX_SMF void JMP_Ap(bxInstruction_c *);
BX_SMF void IN_ALDX(bxInstruction_c *);
BX_SMF void IN_AXDX(bxInstruction_c *);
BX_SMF void IN_EAXDX(bxInstruction_c *);
BX_SMF void OUT_DXAL(bxInstruction_c *);
BX_SMF void OUT_DXAX(bxInstruction_c *);
BX_SMF void OUT_DXEAX(bxInstruction_c *);
BX_SMF void HLT(bxInstruction_c *);
BX_SMF void CMC(bxInstruction_c *);
BX_SMF void CLC(bxInstruction_c *);
BX_SMF void STC(bxInstruction_c *);
BX_SMF void CLI(bxInstruction_c *);
BX_SMF void STI(bxInstruction_c *);
BX_SMF void CLD(bxInstruction_c *);
BX_SMF void STD(bxInstruction_c *);
BX_SMF void LAR_GvEw(bxInstruction_c *);
BX_SMF void LSL_GvEw(bxInstruction_c *);
BX_SMF void CLTS(bxInstruction_c *);
BX_SMF void INVD(bxInstruction_c *);
BX_SMF void WBINVD(bxInstruction_c *);
BX_SMF void CLFLUSH(bxInstruction_c *);
BX_SMF void MOV_CdRd(bxInstruction_c *);
BX_SMF void MOV_DdRd(bxInstruction_c *);
BX_SMF void MOV_RdCd(bxInstruction_c *);
BX_SMF void MOV_RdDd(bxInstruction_c *);
BX_SMF void MOV_TdRd(bxInstruction_c *);
BX_SMF void MOV_RdTd(bxInstruction_c *);
BX_SMF void JO_Jw(bxInstruction_c *);
BX_SMF void JNO_Jw(bxInstruction_c *);
BX_SMF void JB_Jw(bxInstruction_c *);
BX_SMF void JNB_Jw(bxInstruction_c *);
BX_SMF void JZ_Jw(bxInstruction_c *);
BX_SMF void JNZ_Jw(bxInstruction_c *);
BX_SMF void JBE_Jw(bxInstruction_c *);
BX_SMF void JNBE_Jw(bxInstruction_c *);
BX_SMF void JS_Jw(bxInstruction_c *);
BX_SMF void JNS_Jw(bxInstruction_c *);
BX_SMF void JP_Jw(bxInstruction_c *);
BX_SMF void JNP_Jw(bxInstruction_c *);
BX_SMF void JL_Jw(bxInstruction_c *);
BX_SMF void JNL_Jw(bxInstruction_c *);
BX_SMF void JLE_Jw(bxInstruction_c *);
BX_SMF void JNLE_Jw(bxInstruction_c *);
BX_SMF void JO_Jd(bxInstruction_c *);
BX_SMF void JNO_Jd(bxInstruction_c *);
BX_SMF void JB_Jd(bxInstruction_c *);
BX_SMF void JNB_Jd(bxInstruction_c *);
BX_SMF void JZ_Jd(bxInstruction_c *);
BX_SMF void JNZ_Jd(bxInstruction_c *);
BX_SMF void JBE_Jd(bxInstruction_c *);
BX_SMF void JNBE_Jd(bxInstruction_c *);
BX_SMF void JS_Jd(bxInstruction_c *);
BX_SMF void JNS_Jd(bxInstruction_c *);
BX_SMF void JP_Jd(bxInstruction_c *);
BX_SMF void JNP_Jd(bxInstruction_c *);
BX_SMF void JL_Jd(bxInstruction_c *);
BX_SMF void JNL_Jd(bxInstruction_c *);
BX_SMF void JLE_Jd(bxInstruction_c *);
BX_SMF void JNLE_Jd(bxInstruction_c *);
BX_SMF void SETO_Eb(bxInstruction_c *);
BX_SMF void SETNO_Eb(bxInstruction_c *);
BX_SMF void SETB_Eb(bxInstruction_c *);
BX_SMF void SETNB_Eb(bxInstruction_c *);
BX_SMF void SETZ_Eb(bxInstruction_c *);
BX_SMF void SETNZ_Eb(bxInstruction_c *);
BX_SMF void SETBE_Eb(bxInstruction_c *);
BX_SMF void SETNBE_Eb(bxInstruction_c *);
BX_SMF void SETS_Eb(bxInstruction_c *);
BX_SMF void SETNS_Eb(bxInstruction_c *);
BX_SMF void SETP_Eb(bxInstruction_c *);
BX_SMF void SETNP_Eb(bxInstruction_c *);
BX_SMF void SETL_Eb(bxInstruction_c *);
BX_SMF void SETNL_Eb(bxInstruction_c *);
BX_SMF void SETLE_Eb(bxInstruction_c *);
BX_SMF void SETNLE_Eb(bxInstruction_c *);
BX_SMF void CPUID(bxInstruction_c *);
BX_SMF void SHRD_EwGw(bxInstruction_c *);
BX_SMF void SHRD_EdGd(bxInstruction_c *);
BX_SMF void SHLD_EdGd(bxInstruction_c *);
BX_SMF void SHLD_EwGw(bxInstruction_c *);
BX_SMF void BSF_GwEw(bxInstruction_c *);
BX_SMF void BSF_GdEd(bxInstruction_c *);
BX_SMF void BSR_GwEw(bxInstruction_c *);
BX_SMF void BSR_GdEd(bxInstruction_c *);
BX_SMF void BT_EwGwM(bxInstruction_c *);
BX_SMF void BT_EdGdM(bxInstruction_c *);
BX_SMF void BTS_EwGwM(bxInstruction_c *);
BX_SMF void BTS_EdGdM(bxInstruction_c *);
BX_SMF void BTR_EwGwM(bxInstruction_c *);
BX_SMF void BTR_EdGdM(bxInstruction_c *);
BX_SMF void BTC_EwGwM(bxInstruction_c *);
BX_SMF void BTC_EdGdM(bxInstruction_c *);
BX_SMF void BT_EwGwR(bxInstruction_c *);
BX_SMF void BT_EdGdR(bxInstruction_c *);
BX_SMF void BTS_EwGwR(bxInstruction_c *);
BX_SMF void BTS_EdGdR(bxInstruction_c *);
BX_SMF void BTR_EwGwR(bxInstruction_c *);
BX_SMF void BTR_EdGdR(bxInstruction_c *);
BX_SMF void BTC_EwGwR(bxInstruction_c *);
BX_SMF void BTC_EdGdR(bxInstruction_c *);
BX_SMF void BT_EwIb(bxInstruction_c *);
BX_SMF void BT_EdIb(bxInstruction_c *);
BX_SMF void BTS_EwIb(bxInstruction_c *);
BX_SMF void BTS_EdIb(bxInstruction_c *);
BX_SMF void BTR_EwIb(bxInstruction_c *);
BX_SMF void BTR_EdIb(bxInstruction_c *);
BX_SMF void BTC_EwIb(bxInstruction_c *);
BX_SMF void BTC_EdIb(bxInstruction_c *);
BX_SMF void LES_GwMp(bxInstruction_c *);
BX_SMF void LDS_GwMp(bxInstruction_c *);
BX_SMF void LSS_GwMp(bxInstruction_c *);
BX_SMF void LFS_GwMp(bxInstruction_c *);
BX_SMF void LGS_GwMp(bxInstruction_c *);
BX_SMF void LES_GdMp(bxInstruction_c *);
BX_SMF void LDS_GdMp(bxInstruction_c *);
BX_SMF void LSS_GdMp(bxInstruction_c *);
BX_SMF void LFS_GdMp(bxInstruction_c *);
BX_SMF void LGS_GdMp(bxInstruction_c *);
BX_SMF void MOVZX_GwEbM(bxInstruction_c *);
BX_SMF void MOVZX_GdEbM(bxInstruction_c *);
BX_SMF void MOVZX_GdEwM(bxInstruction_c *);
BX_SMF void MOVSX_GwEbM(bxInstruction_c *);
BX_SMF void MOVSX_GdEbM(bxInstruction_c *);
BX_SMF void MOVSX_GdEwM(bxInstruction_c *);
BX_SMF void MOVZX_GwEbR(bxInstruction_c *);
BX_SMF void MOVZX_GdEbR(bxInstruction_c *);
BX_SMF void MOVZX_GdEwR(bxInstruction_c *);
BX_SMF void MOVSX_GwEbR(bxInstruction_c *);
BX_SMF void MOVSX_GdEbR(bxInstruction_c *);
BX_SMF void MOVSX_GdEwR(bxInstruction_c *);
BX_SMF void BSWAP_ERX(bxInstruction_c *);
BX_SMF void ADD_GbEbM(bxInstruction_c *);
BX_SMF void OR_GbEbM(bxInstruction_c *);
BX_SMF void ADC_GbEbM(bxInstruction_c *);
BX_SMF void SBB_GbEbM(bxInstruction_c *);
BX_SMF void AND_GbEbM(bxInstruction_c *);
BX_SMF void SUB_GbEbM(bxInstruction_c *);
BX_SMF void XOR_GbEbM(bxInstruction_c *);
BX_SMF void CMP_GbEbM(bxInstruction_c *);
BX_SMF void ADD_GbEbR(bxInstruction_c *);
BX_SMF void OR_GbEbR(bxInstruction_c *);
BX_SMF void ADC_GbEbR(bxInstruction_c *);
BX_SMF void SBB_GbEbR(bxInstruction_c *);
BX_SMF void AND_GbEbR(bxInstruction_c *);
BX_SMF void SUB_GbEbR(bxInstruction_c *);
BX_SMF void XOR_GbEbR(bxInstruction_c *);
BX_SMF void CMP_GbEbR(bxInstruction_c *);
BX_SMF void ADD_EbIbM(bxInstruction_c *);
BX_SMF void OR_EbIbM(bxInstruction_c *);
BX_SMF void ADC_EbIbM(bxInstruction_c *);
BX_SMF void SBB_EbIbM(bxInstruction_c *);
BX_SMF void AND_EbIbM(bxInstruction_c *);
BX_SMF void SUB_EbIbM(bxInstruction_c *);
BX_SMF void XOR_EbIbM(bxInstruction_c *);
BX_SMF void CMP_EbIbM(bxInstruction_c *);
BX_SMF void ADD_EbIbR(bxInstruction_c *);
BX_SMF void OR_EbIbR(bxInstruction_c *);
BX_SMF void ADC_EbIbR(bxInstruction_c *);
BX_SMF void SBB_EbIbR(bxInstruction_c *);
BX_SMF void AND_EbIbR(bxInstruction_c *);
BX_SMF void SUB_EbIbR(bxInstruction_c *);
BX_SMF void XOR_EbIbR(bxInstruction_c *);
BX_SMF void CMP_EbIbR(bxInstruction_c *);
BX_SMF void ADD_EbGbM(bxInstruction_c *);
BX_SMF void OR_EbGbM(bxInstruction_c *);
BX_SMF void ADC_EbGbM(bxInstruction_c *);
BX_SMF void SBB_EbGbM(bxInstruction_c *);
BX_SMF void AND_EbGbM(bxInstruction_c *);
BX_SMF void SUB_EbGbM(bxInstruction_c *);
BX_SMF void XOR_EbGbM(bxInstruction_c *);
BX_SMF void CMP_EbGbM(bxInstruction_c *);
BX_SMF void ADD_EbGbR(bxInstruction_c *);
BX_SMF void OR_EbGbR(bxInstruction_c *);
BX_SMF void ADC_EbGbR(bxInstruction_c *);
BX_SMF void SBB_EbGbR(bxInstruction_c *);
BX_SMF void AND_EbGbR(bxInstruction_c *);
BX_SMF void SUB_EbGbR(bxInstruction_c *);
BX_SMF void XOR_EbGbR(bxInstruction_c *);
BX_SMF void CMP_EbGbR(bxInstruction_c *);
BX_SMF void ADD_EwIwM(bxInstruction_c *);
BX_SMF void OR_EwIwM(bxInstruction_c *);
BX_SMF void ADC_EwIwM(bxInstruction_c *);
BX_SMF void SBB_EwIwM(bxInstruction_c *);
BX_SMF void AND_EwIwM(bxInstruction_c *);
BX_SMF void SUB_EwIwM(bxInstruction_c *);
BX_SMF void XOR_EwIwM(bxInstruction_c *);
BX_SMF void CMP_EwIwM(bxInstruction_c *);
BX_SMF void ADD_EwIwR(bxInstruction_c *);
BX_SMF void OR_EwIwR(bxInstruction_c *);
BX_SMF void ADC_EwIwR(bxInstruction_c *);
BX_SMF void SBB_EwIwR(bxInstruction_c *);
BX_SMF void AND_EwIwR(bxInstruction_c *);
BX_SMF void SUB_EwIwR(bxInstruction_c *);
BX_SMF void XOR_EwIwR(bxInstruction_c *);
BX_SMF void CMP_EwIwR(bxInstruction_c *);
BX_SMF void ADD_EdIdM(bxInstruction_c *);
BX_SMF void OR_EdIdM(bxInstruction_c *);
BX_SMF void ADC_EdIdM(bxInstruction_c *);
BX_SMF void SBB_EdIdM(bxInstruction_c *);
BX_SMF void AND_EdIdM(bxInstruction_c *);
BX_SMF void SUB_EdIdM(bxInstruction_c *);
BX_SMF void XOR_EdIdM(bxInstruction_c *);
BX_SMF void CMP_EdIdM(bxInstruction_c *);
BX_SMF void ADD_EdIdR(bxInstruction_c *);
BX_SMF void OR_EdIdR(bxInstruction_c *);
BX_SMF void ADC_EdIdR(bxInstruction_c *);
BX_SMF void SBB_EdIdR(bxInstruction_c *);
BX_SMF void AND_EdIdR(bxInstruction_c *);
BX_SMF void SUB_EdIdR(bxInstruction_c *);
BX_SMF void XOR_EdIdR(bxInstruction_c *);
BX_SMF void CMP_EdIdR(bxInstruction_c *);
BX_SMF void ADD_EwGwM(bxInstruction_c *);
BX_SMF void OR_EwGwM(bxInstruction_c *);
BX_SMF void ADC_EwGwM(bxInstruction_c *);
BX_SMF void SBB_EwGwM(bxInstruction_c *);
BX_SMF void AND_EwGwM(bxInstruction_c *);
BX_SMF void SUB_EwGwM(bxInstruction_c *);
BX_SMF void XOR_EwGwM(bxInstruction_c *);
BX_SMF void CMP_EwGwM(bxInstruction_c *);
BX_SMF void ADD_EwGwR(bxInstruction_c *);
BX_SMF void OR_EwGwR(bxInstruction_c *);
BX_SMF void ADC_EwGwR(bxInstruction_c *);
BX_SMF void SBB_EwGwR(bxInstruction_c *);
BX_SMF void AND_EwGwR(bxInstruction_c *);
BX_SMF void SUB_EwGwR(bxInstruction_c *);
BX_SMF void XOR_EwGwR(bxInstruction_c *);
BX_SMF void CMP_EwGwR(bxInstruction_c *);
BX_SMF void ADD_EdGdM(bxInstruction_c *);
BX_SMF void OR_EdGdM(bxInstruction_c *);
BX_SMF void ADC_EdGdM(bxInstruction_c *);
BX_SMF void SBB_EdGdM(bxInstruction_c *);
BX_SMF void AND_EdGdM(bxInstruction_c *);
BX_SMF void SUB_EdGdM(bxInstruction_c *);
BX_SMF void XOR_EdGdM(bxInstruction_c *);
BX_SMF void CMP_EdGdM(bxInstruction_c *);
BX_SMF void ADD_EdGdR(bxInstruction_c *);
BX_SMF void OR_EdGdR(bxInstruction_c *);
BX_SMF void ADC_EdGdR(bxInstruction_c *);
BX_SMF void SBB_EdGdR(bxInstruction_c *);
BX_SMF void AND_EdGdR(bxInstruction_c *);
BX_SMF void SUB_EdGdR(bxInstruction_c *);
BX_SMF void XOR_EdGdR(bxInstruction_c *);
BX_SMF void CMP_EdGdR(bxInstruction_c *);
BX_SMF void ADD_GwEwM(bxInstruction_c *);
BX_SMF void OR_GwEwM(bxInstruction_c *);
BX_SMF void ADC_GwEwM(bxInstruction_c *);
BX_SMF void SBB_GwEwM(bxInstruction_c *);
BX_SMF void AND_GwEwM(bxInstruction_c *);
BX_SMF void SUB_GwEwM(bxInstruction_c *);
BX_SMF void XOR_GwEwM(bxInstruction_c *);
BX_SMF void CMP_GwEwM(bxInstruction_c *);
BX_SMF void ADD_GwEwR(bxInstruction_c *);
BX_SMF void OR_GwEwR(bxInstruction_c *);
BX_SMF void ADC_GwEwR(bxInstruction_c *);
BX_SMF void SBB_GwEwR(bxInstruction_c *);
BX_SMF void AND_GwEwR(bxInstruction_c *);
BX_SMF void SUB_GwEwR(bxInstruction_c *);
BX_SMF void XOR_GwEwR(bxInstruction_c *);
BX_SMF void CMP_GwEwR(bxInstruction_c *);
BX_SMF void ADD_GdEdM(bxInstruction_c *);
BX_SMF void OR_GdEdM(bxInstruction_c *);
BX_SMF void ADC_GdEdM(bxInstruction_c *);
BX_SMF void SBB_GdEdM(bxInstruction_c *);
BX_SMF void AND_GdEdM(bxInstruction_c *);
BX_SMF void SUB_GdEdM(bxInstruction_c *);
BX_SMF void CMP_GdEdM(bxInstruction_c *);
BX_SMF void XOR_GdEdM(bxInstruction_c *);
BX_SMF void ADD_GdEdR(bxInstruction_c *);
BX_SMF void OR_GdEdR(bxInstruction_c *);
BX_SMF void ADC_GdEdR(bxInstruction_c *);
BX_SMF void SBB_GdEdR(bxInstruction_c *);
BX_SMF void AND_GdEdR(bxInstruction_c *);
BX_SMF void SUB_GdEdR(bxInstruction_c *);
BX_SMF void CMP_GdEdR(bxInstruction_c *);
BX_SMF void XOR_GdEdR(bxInstruction_c *);
BX_SMF void NOT_EbM(bxInstruction_c *);
BX_SMF void NOT_EwM(bxInstruction_c *);
BX_SMF void NOT_EdM(bxInstruction_c *);
BX_SMF void NOT_EbR(bxInstruction_c *);
BX_SMF void NOT_EwR(bxInstruction_c *);
BX_SMF void NOT_EdR(bxInstruction_c *);
BX_SMF void NEG_EbM(bxInstruction_c *);
BX_SMF void NEG_EwM(bxInstruction_c *);
BX_SMF void NEG_EdM(bxInstruction_c *);
BX_SMF void NEG_EbR(bxInstruction_c *);
BX_SMF void NEG_EwR(bxInstruction_c *);
BX_SMF void NEG_EdR(bxInstruction_c *);
BX_SMF void ROL_Eb(bxInstruction_c *);
BX_SMF void ROR_Eb(bxInstruction_c *);
BX_SMF void RCL_Eb(bxInstruction_c *);
BX_SMF void RCR_Eb(bxInstruction_c *);
BX_SMF void SHL_Eb(bxInstruction_c *);
BX_SMF void SHR_Eb(bxInstruction_c *);
BX_SMF void SAR_Eb(bxInstruction_c *);
BX_SMF void ROL_Ed(bxInstruction_c *);
BX_SMF void ROL_Ew(bxInstruction_c *);
BX_SMF void ROR_Ed(bxInstruction_c *);
BX_SMF void ROR_Ew(bxInstruction_c *);
BX_SMF void RCL_Ed(bxInstruction_c *);
BX_SMF void RCL_Ew(bxInstruction_c *);
BX_SMF void RCR_Ed(bxInstruction_c *);
BX_SMF void RCR_Ew(bxInstruction_c *);
BX_SMF void SHL_Ed(bxInstruction_c *);
BX_SMF void SHL_Ew(bxInstruction_c *);
BX_SMF void SHR_Ed(bxInstruction_c *);
BX_SMF void SHR_Ew(bxInstruction_c *);
BX_SMF void SAR_Ed(bxInstruction_c *);
BX_SMF void SAR_Ew(bxInstruction_c *);
BX_SMF void TEST_EbIbM(bxInstruction_c *);
BX_SMF void TEST_EwIwM(bxInstruction_c *);
BX_SMF void TEST_EdIdM(bxInstruction_c *);
BX_SMF void TEST_EbIbR(bxInstruction_c *);
BX_SMF void TEST_EwIwR(bxInstruction_c *);
BX_SMF void TEST_EdIdR(bxInstruction_c *);
BX_SMF void MUL_ALEb(bxInstruction_c *);
BX_SMF void IMUL_GdEd(bxInstruction_c *);
BX_SMF void IMUL_ALEb(bxInstruction_c *);
BX_SMF void IMUL_GdEdId(bxInstruction_c *);
BX_SMF void DIV_ALEb(bxInstruction_c *);
BX_SMF void IDIV_ALEb(bxInstruction_c *);
BX_SMF void MUL_EAXEd(bxInstruction_c *);
BX_SMF void IMUL_EAXEd(bxInstruction_c *);
BX_SMF void DIV_EAXEd(bxInstruction_c *);
BX_SMF void IDIV_EAXEd(bxInstruction_c *);
BX_SMF void INC_EbR(bxInstruction_c *);
BX_SMF void INC_EwR(bxInstruction_c *);
BX_SMF void INC_EdR(bxInstruction_c *);
BX_SMF void DEC_EbR(bxInstruction_c *);
BX_SMF void DEC_EwR(bxInstruction_c *);
BX_SMF void DEC_EdR(bxInstruction_c *);
BX_SMF void INC_EbM(bxInstruction_c *);
BX_SMF void INC_EwM(bxInstruction_c *);
BX_SMF void INC_EdM(bxInstruction_c *);
BX_SMF void DEC_EbM(bxInstruction_c *);
BX_SMF void DEC_EwM(bxInstruction_c *);
BX_SMF void DEC_EdM(bxInstruction_c *);
BX_SMF void CALL_Ed(bxInstruction_c *);
BX_SMF void CALL_Ew(bxInstruction_c *);
BX_SMF void CALL32_Ep(bxInstruction_c *);
BX_SMF void CALL16_Ep(bxInstruction_c *);
BX_SMF void JMP_Ed(bxInstruction_c *);
BX_SMF void JMP_Ew(bxInstruction_c *);
BX_SMF void JMP32_Ep(bxInstruction_c *);
BX_SMF void JMP16_Ep(bxInstruction_c *);
BX_SMF void PUSH_EwR(bxInstruction_c *);
BX_SMF void PUSH_EdR(bxInstruction_c *);
BX_SMF void PUSH_EwM(bxInstruction_c *);
BX_SMF void PUSH_EdM(bxInstruction_c *);
BX_SMF void SLDT_Ew(bxInstruction_c *);
BX_SMF void STR_Ew(bxInstruction_c *);
BX_SMF void LLDT_Ew(bxInstruction_c *);
BX_SMF void LTR_Ew(bxInstruction_c *);
BX_SMF void VERR_Ew(bxInstruction_c *);
BX_SMF void VERW_Ew(bxInstruction_c *);
BX_SMF void SGDT_Ms(bxInstruction_c *);
BX_SMF void SIDT_Ms(bxInstruction_c *);
BX_SMF void LGDT_Ms(bxInstruction_c *);
BX_SMF void LIDT_Ms(bxInstruction_c *);
BX_SMF void SMSW_Ew(bxInstruction_c *);
BX_SMF void LMSW_Ew(bxInstruction_c *);
#if BX_SUPPORT_FPU == 0 // if FPU is disabled
BX_SMF void FPU_ESC(bxInstruction_c *);
#endif
BX_SMF void FWAIT(bxInstruction_c *);
#if BX_SUPPORT_FPU
// load/store
BX_SMF void FLD_STi(bxInstruction_c *);
BX_SMF void FLD_SINGLE_REAL(bxInstruction_c *);
BX_SMF void FLD_DOUBLE_REAL(bxInstruction_c *);
BX_SMF void FLD_EXTENDED_REAL(bxInstruction_c *);
BX_SMF void FILD_WORD_INTEGER(bxInstruction_c *);
BX_SMF void FILD_DWORD_INTEGER(bxInstruction_c *);
BX_SMF void FILD_QWORD_INTEGER(bxInstruction_c *);
BX_SMF void FBLD_PACKED_BCD(bxInstruction_c *);
BX_SMF void FST_STi(bxInstruction_c *);
BX_SMF void FST_SINGLE_REAL(bxInstruction_c *);
BX_SMF void FST_DOUBLE_REAL(bxInstruction_c *);
BX_SMF void FSTP_EXTENDED_REAL(bxInstruction_c *);
BX_SMF void FIST_WORD_INTEGER(bxInstruction_c *);
BX_SMF void FIST_DWORD_INTEGER(bxInstruction_c *);
BX_SMF void FISTP_QWORD_INTEGER(bxInstruction_c *);
BX_SMF void FBSTP_PACKED_BCD(bxInstruction_c *);
BX_SMF void FISTTP16(bxInstruction_c *); // SSE3
BX_SMF void FISTTP32(bxInstruction_c *);
BX_SMF void FISTTP64(bxInstruction_c *);
// control
BX_SMF void FNINIT(bxInstruction_c *);
BX_SMF void FNCLEX(bxInstruction_c *);
BX_SMF void FRSTOR(bxInstruction_c *);
BX_SMF void FNSAVE(bxInstruction_c *);
BX_SMF void FLDENV(bxInstruction_c *);
BX_SMF void FNSTENV(bxInstruction_c *);
BX_SMF void FLDCW(bxInstruction_c *);
BX_SMF void FNSTCW(bxInstruction_c *);
BX_SMF void FNSTSW(bxInstruction_c *);
BX_SMF void FNSTSW_AX(bxInstruction_c *);
// const
BX_SMF void FLD1(bxInstruction_c *);
BX_SMF void FLDL2T(bxInstruction_c *);
BX_SMF void FLDL2E(bxInstruction_c *);
BX_SMF void FLDPI(bxInstruction_c *);
BX_SMF void FLDLG2(bxInstruction_c *);
BX_SMF void FLDLN2(bxInstruction_c *);
BX_SMF void FLDZ(bxInstruction_c *);
// add
BX_SMF void FADD_ST0_STj(bxInstruction_c *);
BX_SMF void FADD_STi_ST0(bxInstruction_c *);
BX_SMF void FADD_SINGLE_REAL(bxInstruction_c *);
BX_SMF void FADD_DOUBLE_REAL(bxInstruction_c *);
BX_SMF void FIADD_WORD_INTEGER(bxInstruction_c *);
BX_SMF void FIADD_DWORD_INTEGER(bxInstruction_c *);
// mul
BX_SMF void FMUL_ST0_STj(bxInstruction_c *);
BX_SMF void FMUL_STi_ST0(bxInstruction_c *);
BX_SMF void FMUL_SINGLE_REAL(bxInstruction_c *);
BX_SMF void FMUL_DOUBLE_REAL(bxInstruction_c *);
BX_SMF void FIMUL_WORD_INTEGER (bxInstruction_c *);
BX_SMF void FIMUL_DWORD_INTEGER(bxInstruction_c *);
// sub
BX_SMF void FSUB_ST0_STj(bxInstruction_c *);
BX_SMF void FSUBR_ST0_STj(bxInstruction_c *);
BX_SMF void FSUB_STi_ST0(bxInstruction_c *);
BX_SMF void FSUBR_STi_ST0(bxInstruction_c *);
BX_SMF void FSUB_SINGLE_REAL(bxInstruction_c *);
BX_SMF void FSUBR_SINGLE_REAL(bxInstruction_c *);
BX_SMF void FSUB_DOUBLE_REAL(bxInstruction_c *);
BX_SMF void FSUBR_DOUBLE_REAL(bxInstruction_c *);
BX_SMF void FISUB_WORD_INTEGER(bxInstruction_c *);
BX_SMF void FISUBR_WORD_INTEGER(bxInstruction_c *);
BX_SMF void FISUB_DWORD_INTEGER(bxInstruction_c *);
BX_SMF void FISUBR_DWORD_INTEGER(bxInstruction_c *);
// div
BX_SMF void FDIV_ST0_STj(bxInstruction_c *);
BX_SMF void FDIVR_ST0_STj(bxInstruction_c *);
BX_SMF void FDIV_STi_ST0(bxInstruction_c *);
BX_SMF void FDIVR_STi_ST0(bxInstruction_c *);
BX_SMF void FDIV_SINGLE_REAL(bxInstruction_c *);
BX_SMF void FDIVR_SINGLE_REAL(bxInstruction_c *);
BX_SMF void FDIV_DOUBLE_REAL(bxInstruction_c *);
BX_SMF void FDIVR_DOUBLE_REAL(bxInstruction_c *);
BX_SMF void FIDIV_WORD_INTEGER(bxInstruction_c *);
BX_SMF void FIDIVR_WORD_INTEGER(bxInstruction_c *);
BX_SMF void FIDIV_DWORD_INTEGER(bxInstruction_c *);
BX_SMF void FIDIVR_DWORD_INTEGER(bxInstruction_c *);
// compare
BX_SMF void FCOM_STi(bxInstruction_c *);
BX_SMF void FUCOM_STi(bxInstruction_c *);
BX_SMF void FCOMI_ST0_STj(bxInstruction_c *);
BX_SMF void FUCOMI_ST0_STj(bxInstruction_c *);
BX_SMF void FCOM_SINGLE_REAL(bxInstruction_c *);
BX_SMF void FCOM_DOUBLE_REAL(bxInstruction_c *);
BX_SMF void FICOM_WORD_INTEGER(bxInstruction_c *);
BX_SMF void FICOM_DWORD_INTEGER(bxInstruction_c *);
BX_SMF void FCMOV_ST0_STj(bxInstruction_c *);
BX_SMF void FCOMPP(bxInstruction_c *);
BX_SMF void FUCOMPP(bxInstruction_c *);
// misc
BX_SMF void FXCH_STi(bxInstruction_c *);
BX_SMF void FNOP(bxInstruction_c *);
BX_SMF void FPLEGACY(bxInstruction_c *);
BX_SMF void FCHS(bxInstruction_c *);
BX_SMF void FABS(bxInstruction_c *);
BX_SMF void FTST(bxInstruction_c *);
BX_SMF void FXAM(bxInstruction_c *);
BX_SMF void FDECSTP(bxInstruction_c *);
BX_SMF void FINCSTP(bxInstruction_c *);
BX_SMF void FFREE_STi(bxInstruction_c *);
BX_SMF void FFREEP_STi(bxInstruction_c *);
BX_SMF void F2XM1(bxInstruction_c *);
BX_SMF void FYL2X(bxInstruction_c *);
BX_SMF void FPTAN(bxInstruction_c *);
BX_SMF void FPATAN(bxInstruction_c *);
BX_SMF void FXTRACT(bxInstruction_c *);
BX_SMF void FPREM1(bxInstruction_c *);
BX_SMF void FPREM(bxInstruction_c *);
BX_SMF void FYL2XP1(bxInstruction_c *);
BX_SMF void FSQRT(bxInstruction_c *);
BX_SMF void FSINCOS(bxInstruction_c *);
BX_SMF void FRNDINT(bxInstruction_c *);
#undef FSCALE // <sys/param.h> is #included on Mac OS X from bochs.h
BX_SMF void FSCALE(bxInstruction_c *);
BX_SMF void FSIN(bxInstruction_c *);
BX_SMF void FCOS(bxInstruction_c *);
#endif
/* MMX */
BX_SMF void PUNPCKLBW_PqQd(bxInstruction_c *i);
BX_SMF void PUNPCKLWD_PqQd(bxInstruction_c *i);
BX_SMF void PUNPCKLDQ_PqQd(bxInstruction_c *i);
BX_SMF void PACKSSWB_PqQq(bxInstruction_c *i);
BX_SMF void PCMPGTB_PqQq(bxInstruction_c *i);
BX_SMF void PCMPGTW_PqQq(bxInstruction_c *i);
BX_SMF void PCMPGTD_PqQq(bxInstruction_c *i);
BX_SMF void PACKUSWB_PqQq(bxInstruction_c *i);
BX_SMF void PUNPCKHBW_PqQq(bxInstruction_c *i);
BX_SMF void PUNPCKHWD_PqQq(bxInstruction_c *i);
BX_SMF void PUNPCKHDQ_PqQq(bxInstruction_c *i);
BX_SMF void PACKSSDW_PqQq(bxInstruction_c *i);
BX_SMF void MOVD_PqEd(bxInstruction_c *i);
BX_SMF void MOVQ_PqQq(bxInstruction_c *i);
BX_SMF void PCMPEQB_PqQq(bxInstruction_c *i);
BX_SMF void PCMPEQW_PqQq(bxInstruction_c *i);
BX_SMF void PCMPEQD_PqQq(bxInstruction_c *i);
BX_SMF void EMMS(bxInstruction_c *i);
BX_SMF void MOVD_EdPd(bxInstruction_c *i);
BX_SMF void MOVQ_QqPq(bxInstruction_c *i);
BX_SMF void PSRLW_PqQq(bxInstruction_c *i);
BX_SMF void PSRLD_PqQq(bxInstruction_c *i);
BX_SMF void PSRLQ_PqQq(bxInstruction_c *i);
BX_SMF void PMULLW_PqQq(bxInstruction_c *i);
BX_SMF void PSUBUSB_PqQq(bxInstruction_c *i);
BX_SMF void PSUBUSW_PqQq(bxInstruction_c *i);
BX_SMF void PAND_PqQq(bxInstruction_c *i);
BX_SMF void PADDUSB_PqQq(bxInstruction_c *i);
BX_SMF void PADDUSW_PqQq(bxInstruction_c *i);
BX_SMF void PANDN_PqQq(bxInstruction_c *i);
BX_SMF void PSRAW_PqQq(bxInstruction_c *i);
BX_SMF void PSRAD_PqQq(bxInstruction_c *i);
BX_SMF void PMULHW_PqQq(bxInstruction_c *i);
BX_SMF void PSUBSB_PqQq(bxInstruction_c *i);
BX_SMF void PSUBSW_PqQq(bxInstruction_c *i);
BX_SMF void POR_PqQq(bxInstruction_c *i);
BX_SMF void PADDSB_PqQq(bxInstruction_c *i);
BX_SMF void PADDSW_PqQq(bxInstruction_c *i);
BX_SMF void PXOR_PqQq(bxInstruction_c *i);
BX_SMF void PSLLW_PqQq(bxInstruction_c *i);
BX_SMF void PSLLD_PqQq(bxInstruction_c *i);
BX_SMF void PSLLQ_PqQq(bxInstruction_c *i);
BX_SMF void PMADDWD_PqQq(bxInstruction_c *i);
BX_SMF void PSUBB_PqQq(bxInstruction_c *i);
BX_SMF void PSUBW_PqQq(bxInstruction_c *i);
BX_SMF void PSUBD_PqQq(bxInstruction_c *i);
BX_SMF void PADDB_PqQq(bxInstruction_c *i);
BX_SMF void PADDW_PqQq(bxInstruction_c *i);
BX_SMF void PADDD_PqQq(bxInstruction_c *i);
BX_SMF void PSRLW_PqIb(bxInstruction_c *i);
BX_SMF void PSRAW_PqIb(bxInstruction_c *i);
BX_SMF void PSLLW_PqIb(bxInstruction_c *i);
BX_SMF void PSRLD_PqIb(bxInstruction_c *i);
BX_SMF void PSRAD_PqIb(bxInstruction_c *i);
BX_SMF void PSLLD_PqIb(bxInstruction_c *i);
BX_SMF void PSRLQ_PqIb(bxInstruction_c *i);
BX_SMF void PSLLQ_PqIb(bxInstruction_c *i);
/* MMX */
#if BX_SUPPORT_3DNOW
BX_SMF void PFPNACC_PqQq(bxInstruction_c *i);
BX_SMF void PI2FW_PqQq(bxInstruction_c *i);
BX_SMF void PI2FD_PqQq(bxInstruction_c *i);
BX_SMF void PF2IW_PqQq(bxInstruction_c *i);
BX_SMF void PF2ID_PqQq(bxInstruction_c *i);
BX_SMF void PFNACC_PqQq(bxInstruction_c *i);
BX_SMF void PFCMPGE_PqQq(bxInstruction_c *i);
BX_SMF void PFMIN_PqQq(bxInstruction_c *i);
BX_SMF void PFRCP_PqQq(bxInstruction_c *i);
BX_SMF void PFRSQRT_PqQq(bxInstruction_c *i);
BX_SMF void PFSUB_PqQq(bxInstruction_c *i);
BX_SMF void PFADD_PqQq(bxInstruction_c *i);
BX_SMF void PFCMPGT_PqQq(bxInstruction_c *i);
BX_SMF void PFMAX_PqQq(bxInstruction_c *i);
BX_SMF void PFRCPIT1_PqQq(bxInstruction_c *i);
BX_SMF void PFRSQIT1_PqQq(bxInstruction_c *i);
BX_SMF void PFSUBR_PqQq(bxInstruction_c *i);
BX_SMF void PFACC_PqQq(bxInstruction_c *i);
BX_SMF void PFCMPEQ_PqQq(bxInstruction_c *i);
BX_SMF void PFMUL_PqQq(bxInstruction_c *i);
BX_SMF void PFRCPIT2_PqQq(bxInstruction_c *i);
BX_SMF void PMULHRW_PqQq(bxInstruction_c *i);
BX_SMF void PSWAPD_PqQq(bxInstruction_c *i);
#endif
/* SSE */
BX_SMF void FXSAVE(bxInstruction_c *i);
BX_SMF void FXRSTOR(bxInstruction_c *i);
BX_SMF void LDMXCSR(bxInstruction_c *i);
BX_SMF void STMXCSR(bxInstruction_c *i);
BX_SMF void PREFETCH(bxInstruction_c *i);
/* SSE */
/* SSE */
BX_SMF void MOVUPS_VpsWps(bxInstruction_c *i);
BX_SMF void MOVSS_VssWss(bxInstruction_c *i);
BX_SMF void MOVUPS_WpsVps(bxInstruction_c *i);
BX_SMF void MOVSS_WssVss(bxInstruction_c *i);
BX_SMF void MOVLPS_VpsMq(bxInstruction_c *i);
BX_SMF void MOVLPS_MqVps(bxInstruction_c *i);
BX_SMF void MOVHPS_VpsMq(bxInstruction_c *i);
BX_SMF void MOVHPS_MqVps(bxInstruction_c *i);
BX_SMF void MOVAPS_VpsWps(bxInstruction_c *i);
BX_SMF void MOVAPS_WpsVps(bxInstruction_c *i);
BX_SMF void CVTPI2PS_VpsQq(bxInstruction_c *i);
BX_SMF void CVTSI2SS_VssEd(bxInstruction_c *i);
BX_SMF void MOVNTPS_MpsVps(bxInstruction_c *i);
BX_SMF void CVTTPS2PI_PqWps(bxInstruction_c *i);
BX_SMF void CVTTSS2SI_GdWss(bxInstruction_c *i);
BX_SMF void CVTPS2PI_PqWps(bxInstruction_c *i);
BX_SMF void CVTSS2SI_GdWss(bxInstruction_c *i);
BX_SMF void UCOMISS_VssWss(bxInstruction_c *i);
BX_SMF void COMISS_VpsWps(bxInstruction_c *i);
BX_SMF void MOVMSKPS_GdVRps(bxInstruction_c *i);
BX_SMF void SQRTPS_VpsWps(bxInstruction_c *i);
BX_SMF void SQRTSS_VssWss(bxInstruction_c *i);
BX_SMF void RSQRTPS_VpsWps(bxInstruction_c *i);
BX_SMF void RSQRTSS_VssWss(bxInstruction_c *i);
BX_SMF void RCPPS_VpsWps(bxInstruction_c *i);
BX_SMF void RCPSS_VssWss(bxInstruction_c *i);
BX_SMF void ADDPS_VpsWps(bxInstruction_c *i);
BX_SMF void ADDSS_VssWss(bxInstruction_c *i);
BX_SMF void MULPS_VpsWps(bxInstruction_c *i);
BX_SMF void MULSS_VssWss(bxInstruction_c *i);
BX_SMF void SUBPS_VpsWps(bxInstruction_c *i);
BX_SMF void SUBSS_VssWss(bxInstruction_c *i);
BX_SMF void MINPS_VpsWps(bxInstruction_c *i);
BX_SMF void MINSS_VssWss(bxInstruction_c *i);
BX_SMF void DIVPS_VpsWps(bxInstruction_c *i);
BX_SMF void DIVSS_VssWss(bxInstruction_c *i);
BX_SMF void MAXPS_VpsWps(bxInstruction_c *i);
BX_SMF void MAXSS_VssWss(bxInstruction_c *i);
BX_SMF void PSHUFW_PqQqIb(bxInstruction_c *i);
BX_SMF void PSHUFLW_VdqWdqIb(bxInstruction_c *i);
BX_SMF void CMPPS_VpsWpsIb(bxInstruction_c *i);
BX_SMF void CMPSS_VssWssIb(bxInstruction_c *i);
BX_SMF void PINSRW_PqEwIb(bxInstruction_c *i);
BX_SMF void PEXTRW_GdPqIb(bxInstruction_c *i);
BX_SMF void SHUFPS_VpsWpsIb(bxInstruction_c *i);
BX_SMF void PMOVMSKB_GdPRq(bxInstruction_c *i);
BX_SMF void PMINUB_PqQq(bxInstruction_c *i);
BX_SMF void PMAXUB_PqQq(bxInstruction_c *i);
BX_SMF void PAVGB_PqQq(bxInstruction_c *i);
BX_SMF void PAVGW_PqQq(bxInstruction_c *i);
BX_SMF void PMULHUW_PqQq(bxInstruction_c *i);
BX_SMF void MOVNTQ_MqPq(bxInstruction_c *i);
BX_SMF void PMINSW_PqQq(bxInstruction_c *i);
BX_SMF void PMAXSW_PqQq(bxInstruction_c *i);
BX_SMF void PSADBW_PqQq(bxInstruction_c *i);
BX_SMF void MASKMOVQ_PqPRq(bxInstruction_c *i);
/* SSE */
/* SSE2 */
BX_SMF void MOVSD_VsdWsd(bxInstruction_c *i);
BX_SMF void MOVSD_WsdVsd(bxInstruction_c *i);
BX_SMF void CVTPI2PD_VpdQq(bxInstruction_c *i);
BX_SMF void CVTSI2SD_VsdEd(bxInstruction_c *i);
BX_SMF void CVTTPD2PI_PqWpd(bxInstruction_c *i);
BX_SMF void CVTTSD2SI_GdWsd(bxInstruction_c *i);
BX_SMF void CVTPD2PI_PqWpd(bxInstruction_c *i);
BX_SMF void CVTSD2SI_GdWsd(bxInstruction_c *i);
BX_SMF void UCOMISD_VsdWsd(bxInstruction_c *i);
BX_SMF void COMISD_VpdWpd(bxInstruction_c *i);
BX_SMF void MOVMSKPD_GdVRpd(bxInstruction_c *i);
BX_SMF void SQRTPD_VpdWpd(bxInstruction_c *i);
BX_SMF void SQRTSD_VsdWsd(bxInstruction_c *i);
BX_SMF void ADDPD_VpdWpd(bxInstruction_c *i);
BX_SMF void ADDSD_VsdWsd(bxInstruction_c *i);
BX_SMF void MULPD_VpdWpd(bxInstruction_c *i);
BX_SMF void MULSD_VsdWsd(bxInstruction_c *i);
BX_SMF void CVTPS2PD_VpsWps(bxInstruction_c *i);
BX_SMF void CVTPD2PS_VpdWpd(bxInstruction_c *i);
BX_SMF void CVTSD2SS_VsdWsd(bxInstruction_c *i);
BX_SMF void CVTSS2SD_VssWss(bxInstruction_c *i);
BX_SMF void CVTDQ2PS_VpsWdq(bxInstruction_c *i);
BX_SMF void CVTPS2DQ_VdqWps(bxInstruction_c *i);
BX_SMF void CVTTPS2DQ_VdqWps(bxInstruction_c *i);
BX_SMF void SUBPD_VpdWpd(bxInstruction_c *i);
BX_SMF void SUBSD_VsdWsd(bxInstruction_c *i);
BX_SMF void MINPD_VpdWpd(bxInstruction_c *i);
BX_SMF void MINSD_VsdWsd(bxInstruction_c *i);
BX_SMF void DIVPD_VpdWpd(bxInstruction_c *i);
BX_SMF void DIVSD_VsdWsd(bxInstruction_c *i);
BX_SMF void MAXPD_VpdWpd(bxInstruction_c *i);
BX_SMF void MAXSD_VsdWsd(bxInstruction_c *i);
BX_SMF void PUNPCKLBW_VdqWdq(bxInstruction_c *i);
BX_SMF void PUNPCKLWD_VdqWdq(bxInstruction_c *i);
BX_SMF void UNPCKLPS_VpsWdq(bxInstruction_c *i);
BX_SMF void PACKSSWB_VdqWdq(bxInstruction_c *i);
BX_SMF void PCMPGTB_VdqWdq(bxInstruction_c *i);
BX_SMF void PCMPGTW_VdqWdq(bxInstruction_c *i);
BX_SMF void PCMPGTD_VdqWdq(bxInstruction_c *i);
BX_SMF void PACKUSWB_VdqWdq(bxInstruction_c *i);
BX_SMF void PUNPCKHBW_VdqWdq(bxInstruction_c *i);
BX_SMF void PUNPCKHWD_VdqWdq(bxInstruction_c *i);
BX_SMF void UNPCKHPS_VpsWdq(bxInstruction_c *i);
BX_SMF void PACKSSDW_VdqWdq(bxInstruction_c *i);
BX_SMF void PUNPCKLQDQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PUNPCKHQDQ_VdqWdq(bxInstruction_c *i);
BX_SMF void MOVD_VdqEd(bxInstruction_c *i);
BX_SMF void PSHUFD_VdqWdqIb(bxInstruction_c *i);
BX_SMF void PSHUFHW_VdqWdqIb(bxInstruction_c *i);
BX_SMF void PCMPEQB_VdqWdq(bxInstruction_c *i);
BX_SMF void PCMPEQW_VdqWdq(bxInstruction_c *i);
BX_SMF void PCMPEQD_VdqWdq(bxInstruction_c *i);
BX_SMF void MOVD_EdVd(bxInstruction_c *i);
BX_SMF void MOVQ_VqWq(bxInstruction_c *i);
BX_SMF void CMPPD_VpdWpdIb(bxInstruction_c *i);
BX_SMF void CMPSD_VsdWsdIb(bxInstruction_c *i);
BX_SMF void MOVNTI_MdGd(bxInstruction_c *i);
BX_SMF void PINSRW_VdqEwIb(bxInstruction_c *i);
BX_SMF void PEXTRW_GdUdqIb(bxInstruction_c *i);
BX_SMF void SHUFPD_VpdWpdIb(bxInstruction_c *i);
BX_SMF void PSRLW_VdqWdq(bxInstruction_c *i);
BX_SMF void PSRLD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSRLQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDQ_PqQq(bxInstruction_c *i);
BX_SMF void PADDQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULLW_VdqWdq(bxInstruction_c *i);
BX_SMF void MOVQ_WqVq(bxInstruction_c *i);
BX_SMF void MOVDQ2Q_PqVRq(bxInstruction_c *i);
BX_SMF void MOVQ2DQ_VdqQq(bxInstruction_c *i);
BX_SMF void PMOVMSKB_GdUdq(bxInstruction_c *i);
BX_SMF void PSUBUSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PSUBUSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMINUB_VdqWdq(bxInstruction_c *i);
BX_SMF void ANDPS_VpsWps(bxInstruction_c *i);
BX_SMF void PADDUSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDUSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMAXUB_VdqWdq(bxInstruction_c *i);
BX_SMF void ANDNPS_VpsWps(bxInstruction_c *i);
BX_SMF void PAVGB_VdqWdq(bxInstruction_c *i);
BX_SMF void PSRAW_VdqWdq(bxInstruction_c *i);
BX_SMF void PSRAD_VdqWdq(bxInstruction_c *i);
BX_SMF void PAVGW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULHUW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULHW_VdqWdq(bxInstruction_c *i);
BX_SMF void CVTTPD2DQ_VqWpd(bxInstruction_c *i);
BX_SMF void CVTPD2DQ_VqWpd(bxInstruction_c *i);
BX_SMF void CVTDQ2PD_VpdWq(bxInstruction_c *i);
BX_SMF void PSUBSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PSUBSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMINSW_VdqWdq(bxInstruction_c *i);
BX_SMF void ORPS_VpsWps(bxInstruction_c *i);
BX_SMF void PADDSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMAXSW_VdqWdq(bxInstruction_c *i);
BX_SMF void XORPS_VpsWps(bxInstruction_c *i);
BX_SMF void PSLLW_VdqWdq(bxInstruction_c *i);
BX_SMF void PSLLD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSLLQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULUDQ_PqQq(bxInstruction_c *i);
BX_SMF void PMULUDQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PMADDWD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSADBW_VdqWdq(bxInstruction_c *i);
BX_SMF void MASKMOVDQU_VdqUdq(bxInstruction_c *i);
BX_SMF void PSUBB_VdqWdq(bxInstruction_c *i);
BX_SMF void PSUBW_VdqWdq(bxInstruction_c *i);
BX_SMF void PSUBD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSUBQ_PqQq(bxInstruction_c *i);
BX_SMF void PSUBQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDB_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDW_VdqWdq(bxInstruction_c *i);
BX_SMF void PADDD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSRLW_UdqIb(bxInstruction_c *i);
BX_SMF void PSRAW_UdqIb(bxInstruction_c *i);
BX_SMF void PSLLW_UdqIb(bxInstruction_c *i);
BX_SMF void PSRLD_UdqIb(bxInstruction_c *i);
BX_SMF void PSRAD_UdqIb(bxInstruction_c *i);
BX_SMF void PSLLD_UdqIb(bxInstruction_c *i);
BX_SMF void PSRLQ_UdqIb(bxInstruction_c *i);
BX_SMF void PSRLDQ_UdqIb(bxInstruction_c *i);
BX_SMF void PSLLQ_UdqIb(bxInstruction_c *i);
BX_SMF void PSLLDQ_UdqIb(bxInstruction_c *i);
/* SSE2 */
/* SSE3 */
BX_SMF void MOVDDUP_VpdWq(bxInstruction_c *i);
BX_SMF void MOVSLDUP_VpsWps(bxInstruction_c *i);
BX_SMF void MOVSHDUP_VpsWps(bxInstruction_c *i);
BX_SMF void HADDPD_VpdWpd(bxInstruction_c *i);
BX_SMF void HADDPS_VpsWps(bxInstruction_c *i);
BX_SMF void HSUBPD_VpdWpd(bxInstruction_c *i);
BX_SMF void HSUBPS_VpsWps(bxInstruction_c *i);
BX_SMF void ADDSUBPD_VpdWpd(bxInstruction_c *i);
BX_SMF void ADDSUBPS_VpsWps(bxInstruction_c *i);
BX_SMF void LDDQU_VdqMdq(bxInstruction_c *i);
/* SSE3 */
// 3-byte opcodes
#if (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)
/* SSE3E */
BX_SMF void PSHUFB_PqQq(bxInstruction_c *i);
BX_SMF void PHADDW_PqQq(bxInstruction_c *i);
BX_SMF void PHADDD_PqQq(bxInstruction_c *i);
BX_SMF void PHADDSW_PqQq(bxInstruction_c *i);
BX_SMF void PMADDUBSW_PqQq(bxInstruction_c *i);
BX_SMF void PHSUBSW_PqQq(bxInstruction_c *i);
BX_SMF void PHSUBW_PqQq(bxInstruction_c *i);
BX_SMF void PHSUBD_PqQq(bxInstruction_c *i);
BX_SMF void PSIGNB_PqQq(bxInstruction_c *i);
BX_SMF void PSIGNW_PqQq(bxInstruction_c *i);
BX_SMF void PSIGND_PqQq(bxInstruction_c *i);
BX_SMF void PMULHRSW_PqQq(bxInstruction_c *i);
BX_SMF void PABSB_PqQq(bxInstruction_c *i);
BX_SMF void PABSW_PqQq(bxInstruction_c *i);
BX_SMF void PABSD_PqQq(bxInstruction_c *i);
BX_SMF void PALIGNR_PqQqIb(bxInstruction_c *i);
BX_SMF void PSHUFB_VdqWdq(bxInstruction_c *i);
BX_SMF void PHADDW_VdqWdq(bxInstruction_c *i);
BX_SMF void PHADDD_VdqWdq(bxInstruction_c *i);
BX_SMF void PHADDSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMADDUBSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PHSUBSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PHSUBW_VdqWdq(bxInstruction_c *i);
BX_SMF void PHSUBD_VdqWdq(bxInstruction_c *i);
BX_SMF void PSIGNB_VdqWdq(bxInstruction_c *i);
BX_SMF void PSIGNW_VdqWdq(bxInstruction_c *i);
BX_SMF void PSIGND_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULHRSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PABSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PABSW_VdqWdq(bxInstruction_c *i);
BX_SMF void PABSD_VdqWdq(bxInstruction_c *i);
BX_SMF void PALIGNR_VdqWdqIb(bxInstruction_c *i);
/* SSE3E */
/* SSE4.1 */
BX_SMF void PBLENDVB_VdqWdq(bxInstruction_c *i);
BX_SMF void BLENDVPS_VpsWps(bxInstruction_c *i);
BX_SMF void BLENDVPD_VpdWpd(bxInstruction_c *i);
BX_SMF void PTEST_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULDQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PCMPEQQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PACKUSDW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMOVSXBW_VdqWq(bxInstruction_c *i);
BX_SMF void PMOVSXBD_VdqWd(bxInstruction_c *i);
BX_SMF void PMOVSXBQ_VdqWw(bxInstruction_c *i);
BX_SMF void PMOVSXWD_VdqWq(bxInstruction_c *i);
BX_SMF void PMOVSXWQ_VdqWd(bxInstruction_c *i);
BX_SMF void PMOVSXDQ_VdqWq(bxInstruction_c *i);
BX_SMF void PMOVZXBW_VdqWq(bxInstruction_c *i);
BX_SMF void PMOVZXBD_VdqWd(bxInstruction_c *i);
BX_SMF void PMOVZXBQ_VdqWw(bxInstruction_c *i);
BX_SMF void PMOVZXWD_VdqWq(bxInstruction_c *i);
BX_SMF void PMOVZXWQ_VdqWd(bxInstruction_c *i);
BX_SMF void PMOVZXDQ_VdqWq(bxInstruction_c *i);
BX_SMF void PMINSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PMINSD_VdqWdq(bxInstruction_c *i);
BX_SMF void PMINUW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMINUD_VdqWdq(bxInstruction_c *i);
BX_SMF void PMAXSB_VdqWdq(bxInstruction_c *i);
BX_SMF void PMAXSD_VdqWdq(bxInstruction_c *i);
BX_SMF void PMAXUW_VdqWdq(bxInstruction_c *i);
BX_SMF void PMAXUD_VdqWdq(bxInstruction_c *i);
BX_SMF void PMULLD_VdqWdq(bxInstruction_c *i);
BX_SMF void PHMINPOSUW_VdqWdq(bxInstruction_c *i);
BX_SMF void ROUNDPS_VpsWpsIb(bxInstruction_c *i);
BX_SMF void ROUNDPD_VpdWpdIb(bxInstruction_c *i);
BX_SMF void ROUNDSS_VssWssIb(bxInstruction_c *i);
BX_SMF void ROUNDSD_VsdWsdIb(bxInstruction_c *i);
BX_SMF void BLENDPS_VpsWpsIb(bxInstruction_c *i);
BX_SMF void BLENDPD_VpdWpdIb(bxInstruction_c *i);
BX_SMF void PBLENDW_VdqWdqIb(bxInstruction_c *i);
BX_SMF void PEXTRB_HbdUdqIb(bxInstruction_c *i);
BX_SMF void PEXTRW_HwdUdqIb(bxInstruction_c *i);
BX_SMF void PEXTRD_HdUdqIb(bxInstruction_c *i);
BX_SMF void EXTRACTPS_HdUpsIb(bxInstruction_c *i);
BX_SMF void PINSRB_VdqEbIb(bxInstruction_c *i);
BX_SMF void INSERTPS_VpsWssIb(bxInstruction_c *i);
BX_SMF void PINSRD_VdqEdIb(bxInstruction_c *i);
BX_SMF void DPPS_VpsWpsIb(bxInstruction_c *i);
BX_SMF void DPPD_VpdWpdIb(bxInstruction_c *i);
BX_SMF void MPSADBW_VdqWdqIb(bxInstruction_c *i);
BX_SMF void MOVNTDQA_VdqMdq(bxInstruction_c *i);
/* SSE4.1 */
/* SSE4.2 */
BX_SMF void CRC32_GdEb(bxInstruction_c *i);
BX_SMF void CRC32_GdEv(bxInstruction_c *i);
BX_SMF void PCMPGTQ_VdqWdq(bxInstruction_c *i);
BX_SMF void PCMPESTRM_VdqWdqIb(bxInstruction_c *i);
BX_SMF void PCMPESTRI_VdqWdqIb(bxInstruction_c *i);
BX_SMF void PCMPISTRM_VdqWdqIb(bxInstruction_c *i);
BX_SMF void PCMPISTRI_VdqWdqIb(bxInstruction_c *i);
/* SSE4.2 */
#endif
/*** Duplicate SSE instructions ***/
// Although in implementation, these instructions are aliased to the
// another function, it's nice to have them call a separate function when
// the decoder is being tested in stand-alone mode.
#ifdef STAND_ALONE_DECODER
BX_SMF void MOVUPD_VpdWpd(bxInstruction_c *);
BX_SMF void MOVUPD_WpdVpd(bxInstruction_c *);
BX_SMF void MOVAPD_VpdWpd(bxInstruction_c *);
BX_SMF void MOVAPD_WpdVpd(bxInstruction_c *);
BX_SMF void MOVDQU_VdqWdq(bxInstruction_c *);
BX_SMF void MOVDQU_WdqVdq(bxInstruction_c *);
BX_SMF void MOVDQA_VdqWdq(bxInstruction_c *);
BX_SMF void MOVDQA_WdqVdq(bxInstruction_c *);
BX_SMF void PUNPCKHDQ_VdqWdq(bxInstruction_c *);
BX_SMF void PUNPCKLDQ_VdqWdq(bxInstruction_c *);
BX_SMF void ANDPD_VpdWpd(bxInstruction_c *);
BX_SMF void ANDNPD_VpdWpd(bxInstruction_c *);
BX_SMF void ORPD_VpdWpd(bxInstruction_c *);
BX_SMF void XORPD_VpdWpd(bxInstruction_c *);
BX_SMF void PAND_VdqWdq(bxInstruction_c *);
BX_SMF void PANDN_VdqWdq(bxInstruction_c *);
BX_SMF void POR_VdqWdq(bxInstruction_c *);
BX_SMF void PXOR_VdqWdq(bxInstruction_c *);
BX_SMF void UNPCKHPD_VpdWdq(bxInstruction_c *);
BX_SMF void UNPCKLPD_VpdWdq(bxInstruction_c *);
BX_SMF void MOVLPD_VsdMq(bxInstruction_c *);
BX_SMF void MOVLPD_MqVsd(bxInstruction_c *);
BX_SMF void MOVHPD_VsdMq(bxInstruction_c *);
BX_SMF void MOVHPD_MqVsd(bxInstruction_c *);
BX_SMF void MOVNTPD_MdqVpd(bxInstruction_c *);
BX_SMF void MOVNTDQ_MdqVdq(bxInstruction_c *);
#else
#if BX_SUPPORT_SSE >= 2
#define SSE2_ALIAS(i) i
#else
#define SSE2_ALIAS(i) BxError
#endif
#define MOVUPD_VpdWpd /* 66 0f 10 */ SSE2_ALIAS(MOVUPS_VpsWps) /* 0f 10 */
#define MOVUPD_WpdVpd /* 66 0f 11 */ SSE2_ALIAS(MOVUPS_WpsVps) /* 0f 11 */
#define MOVAPD_VpdWpd /* 66 0f 28 */ SSE2_ALIAS(MOVAPS_VpsWps) /* 0f 28 */
#define MOVAPD_WpdVpd /* 66 0f 29 */ SSE2_ALIAS(MOVAPS_WpsVps) /* 0f 29 */
#define MOVDQU_VdqWdq /* f3 0f 6f */ SSE2_ALIAS(MOVUPS_VpsWps) /* 0f 10 */
#define MOVDQU_WdqVdq /* f3 0f 7f */ SSE2_ALIAS(MOVUPS_WpsVps) /* 0f 11 */
#define MOVDQA_VdqWdq /* 66 0f 6f */ SSE2_ALIAS(MOVAPS_VpsWps) /* 0f 28 */
#define MOVDQA_WdqVdq /* 66 0f 7f */ SSE2_ALIAS(MOVAPS_WpsVps) /* 0f 29 */
#define PUNPCKLDQ_VdqWdq /* 66 0f 62 */ SSE2_ALIAS(UNPCKLPS_VpsWdq) /* 0f 14 */
#define PUNPCKHDQ_VdqWdq /* 66 0f 6a */ SSE2_ALIAS(UNPCKHPS_VpsWdq) /* 0f 15 */
#define PAND_VdqWdq /* 66 0f db */ SSE2_ALIAS(ANDPS_VpsWps) /* 0f 54 */
#define PANDN_VdqWdq /* 66 0f df */ SSE2_ALIAS(ANDNPS_VpsWps) /* 0f 55 */
#define POR_VdqWdq /* 66 0f eb */ SSE2_ALIAS(ORPS_VpsWps) /* 0f 56 */
#define PXOR_VdqWdq /* 66 0f ef */ SSE2_ALIAS(XORPS_VpsWps) /* 0f 57 */
#define ANDPD_VpdWpd /* 66 0f 54 */ SSE2_ALIAS(ANDPS_VpsWps) /* 0f 54 */
#define ANDNPD_VpdWpd /* 66 0f 55 */ SSE2_ALIAS(ANDNPS_VpsWps) /* 0f 55 */
#define ORPD_VpdWpd /* 66 0f 56 */ SSE2_ALIAS(ORPS_VpsWps) /* 0f 56 */
#define XORPD_VpdWpd /* 66 0f 57 */ SSE2_ALIAS(XORPS_VpsWps) /* 0f 57 */
#define MOVLPD_VsdMq /* 66 0f 12 */ SSE2_ALIAS(MOVLPS_VpsMq) /* 0f 12 */
#define MOVLPD_MqVsd /* 66 0f 13 */ SSE2_ALIAS(MOVLPS_MqVps) /* 0f 13 */
#define MOVHPD_VsdMq /* 66 0f 16 */ SSE2_ALIAS(MOVHPS_VpsMq) /* 0f 16 */
#define MOVHPD_MqVsd /* 66 0f 17 */ SSE2_ALIAS(MOVHPS_MqVps) /* 0f 17 */
#define MOVNTPD_MpdVpd /* 66 0f 2b */ SSE2_ALIAS(MOVNTPS_MpsVps) /* 0f 2b */
#define MOVNTDQ_MdqVdq /* 66 0f e7 */ SSE2_ALIAS(MOVNTPS_MpsVps) /* 0f 2b */
#define UNPCKLPD_VpdWdq /* 66 0f 14 */ PUNPCKLQDQ_VdqWdq /* 66 0f 6c */
#define UNPCKHPD_VpdWdq /* 66 0f 15 */ PUNPCKHQDQ_VdqWdq /* 66 0f 6d */
#endif // #ifdef STAND_ALONE_DECODER
BX_SMF void CMPXCHG_XBTS(bxInstruction_c *);
BX_SMF void CMPXCHG_IBTS(bxInstruction_c *);
BX_SMF void CMPXCHG8B(bxInstruction_c *);
BX_SMF void RETnear32_Iw(bxInstruction_c *);
BX_SMF void RETnear16_Iw(bxInstruction_c *);
BX_SMF void RETfar32_Iw(bxInstruction_c *);
BX_SMF void RETfar16_Iw(bxInstruction_c *);
BX_SMF void XADD_EbGbM(bxInstruction_c *);
BX_SMF void XADD_EwGwM(bxInstruction_c *);
BX_SMF void XADD_EdGdM(bxInstruction_c *);
BX_SMF void XADD_EbGbR(bxInstruction_c *);
BX_SMF void XADD_EwGwR(bxInstruction_c *);
BX_SMF void XADD_EdGdR(bxInstruction_c *);
#if BX_CPU_LEVEL == 2
BX_SMF void LOADALL(bxInstruction_c *);
#endif
BX_SMF void CMOV_GdEd(bxInstruction_c *);
BX_SMF void CMOV_GwEw(bxInstruction_c *);
BX_SMF void CWDE(bxInstruction_c *);
BX_SMF void CDQ(bxInstruction_c *);
BX_SMF void CMPXCHG_EbGbM(bxInstruction_c *);
BX_SMF void CMPXCHG_EwGwM(bxInstruction_c *);
BX_SMF void CMPXCHG_EdGdM(bxInstruction_c *);
BX_SMF void CMPXCHG_EbGbR(bxInstruction_c *);
BX_SMF void CMPXCHG_EwGwR(bxInstruction_c *);
BX_SMF void CMPXCHG_EdGdR(bxInstruction_c *);
BX_SMF void MUL_AXEw(bxInstruction_c *);
BX_SMF void IMUL_AXEw(bxInstruction_c *);
BX_SMF void DIV_AXEw(bxInstruction_c *);
BX_SMF void IDIV_AXEw(bxInstruction_c *);
BX_SMF void IMUL_GwEwIw(bxInstruction_c *);
BX_SMF void IMUL_GwEw(bxInstruction_c *);
BX_SMF void NOP(bxInstruction_c *);
BX_SMF void MOV_RLIb(bxInstruction_c *);
BX_SMF void MOV_RHIb(bxInstruction_c *);
BX_SMF void MOV_RXIw(bxInstruction_c *);
BX_SMF void MOV_ERXId(bxInstruction_c *);
BX_SMF void INC_RX(bxInstruction_c *);
BX_SMF void DEC_RX(bxInstruction_c *);
BX_SMF void INC_ERX(bxInstruction_c *);
BX_SMF void DEC_ERX(bxInstruction_c *);
BX_SMF void PUSH_RX(bxInstruction_c *);
BX_SMF void POP_RX(bxInstruction_c *);
BX_SMF void PUSH_ERX(bxInstruction_c *);
BX_SMF void POP_ERX(bxInstruction_c *);
BX_SMF void XCHG_RXAX(bxInstruction_c *);
BX_SMF void XCHG_ERXEAX(bxInstruction_c *);
BX_SMF void POP_EwM(bxInstruction_c *);
BX_SMF void POP_EdM(bxInstruction_c *);
BX_SMF void POP_EwR(bxInstruction_c *);
BX_SMF void POP_EdR(bxInstruction_c *);
BX_SMF void POPCNT_GwEw(bxInstruction_c *);
BX_SMF void POPCNT_GdEd(bxInstruction_c *);
#if BX_SUPPORT_X86_64
// 64 bit extensions
BX_SMF void ADD_GqEqM(bxInstruction_c *);
BX_SMF void OR_GqEqM(bxInstruction_c *);
BX_SMF void ADC_GqEqM(bxInstruction_c *);
BX_SMF void SBB_GqEqM(bxInstruction_c *);
BX_SMF void AND_GqEqM(bxInstruction_c *);
BX_SMF void SUB_GqEqM(bxInstruction_c *);
BX_SMF void XOR_GqEqM(bxInstruction_c *);
BX_SMF void CMP_GqEqM(bxInstruction_c *);
BX_SMF void ADD_GqEqR(bxInstruction_c *);
BX_SMF void OR_GqEqR(bxInstruction_c *);
BX_SMF void ADC_GqEqR(bxInstruction_c *);
BX_SMF void SBB_GqEqR(bxInstruction_c *);
BX_SMF void AND_GqEqR(bxInstruction_c *);
BX_SMF void SUB_GqEqR(bxInstruction_c *);
BX_SMF void XOR_GqEqR(bxInstruction_c *);
BX_SMF void CMP_GqEqR(bxInstruction_c *);
BX_SMF void ADD_RAXId(bxInstruction_c *);
BX_SMF void OR_RAXId(bxInstruction_c *);
BX_SMF void ADC_RAXId(bxInstruction_c *);
BX_SMF void SBB_RAXId(bxInstruction_c *);
BX_SMF void AND_RAXId(bxInstruction_c *);
BX_SMF void SUB_RAXId(bxInstruction_c *);
BX_SMF void XOR_RAXId(bxInstruction_c *);
BX_SMF void CMP_RAXId(bxInstruction_c *);
BX_SMF void TEST_EqGqR(bxInstruction_c *);
BX_SMF void TEST_EqGqM(bxInstruction_c *);
BX_SMF void TEST_RAXId(bxInstruction_c *);
BX_SMF void XCHG_EqGqR(bxInstruction_c *);
BX_SMF void XCHG_EqGqM(bxInstruction_c *);
BX_SMF void LEA_GqM(bxInstruction_c *);
BX_SMF void MOV_RAXOq(bxInstruction_c *);
BX_SMF void MOV_OqRAX(bxInstruction_c *);
BX_SMF void MOV_EAXOq(bxInstruction_c *);
BX_SMF void MOV_OqEAX(bxInstruction_c *);
BX_SMF void MOV_AXOq(bxInstruction_c *);
BX_SMF void MOV_OqAX(bxInstruction_c *);
BX_SMF void MOV_ALOq(bxInstruction_c *);
BX_SMF void MOV_OqAL(bxInstruction_c *);
BX_SMF void MOV_EqGqR(bxInstruction_c *);
BX_SMF void MOV_EqGqM(bxInstruction_c *);
BX_SMF void MOV_GqEqR(bxInstruction_c *);
BX_SMF void MOV_GqEqM(bxInstruction_c *);
BX_SMF void MOV_EqIdR(bxInstruction_c *);
BX_SMF void MOV_EqIdM(bxInstruction_c *);
BX_SMF void MOVSQ_XqYq(bxInstruction_c *);
BX_SMF void CMPSQ_XqYq(bxInstruction_c *);
BX_SMF void STOSQ_YqRAX(bxInstruction_c *);
BX_SMF void LODSQ_RAXXq(bxInstruction_c *);
BX_SMF void SCASQ_RAXXq(bxInstruction_c *);
BX_SMF void REP_MOVSQ_XqYq(bxInstruction_c *);
BX_SMF void REP_CMPSQ_XqYq(bxInstruction_c *);
BX_SMF void REP_STOSQ_YqRAX(bxInstruction_c *);
BX_SMF void REP_LODSQ_RAXXq(bxInstruction_c *);
BX_SMF void REP_SCASQ_RAXXq(bxInstruction_c *);
BX_SMF void ENTER64_IwIb(bxInstruction_c *);
BX_SMF void LEAVE64(bxInstruction_c *);
BX_SMF void IRET64(bxInstruction_c *);
BX_SMF void CALL_Jq(bxInstruction_c *);
BX_SMF void JMP_Jq(bxInstruction_c *);
BX_SMF void JO_Jq(bxInstruction_c *);
BX_SMF void JNO_Jq(bxInstruction_c *);
BX_SMF void JB_Jq(bxInstruction_c *);
BX_SMF void JNB_Jq(bxInstruction_c *);
BX_SMF void JZ_Jq(bxInstruction_c *);
BX_SMF void JNZ_Jq(bxInstruction_c *);
BX_SMF void JBE_Jq(bxInstruction_c *);
BX_SMF void JNBE_Jq(bxInstruction_c *);
BX_SMF void JS_Jq(bxInstruction_c *);
BX_SMF void JNS_Jq(bxInstruction_c *);
BX_SMF void JP_Jq(bxInstruction_c *);
BX_SMF void JNP_Jq(bxInstruction_c *);
BX_SMF void JL_Jq(bxInstruction_c *);
BX_SMF void JNL_Jq(bxInstruction_c *);
BX_SMF void JLE_Jq(bxInstruction_c *);
BX_SMF void JNLE_Jq(bxInstruction_c *);
BX_SMF void MOV_CqRq(bxInstruction_c *);
BX_SMF void MOV_DqRq(bxInstruction_c *);
BX_SMF void MOV_RqCq(bxInstruction_c *);
BX_SMF void MOV_RqDq(bxInstruction_c *);
BX_SMF void SHLD_EqGq(bxInstruction_c *);
BX_SMF void SHRD_EqGq(bxInstruction_c *);
BX_SMF void IMUL_GqEq(bxInstruction_c *);
BX_SMF void IMUL_GqEqId(bxInstruction_c *);
BX_SMF void MOVZX_GqEbM(bxInstruction_c *);
BX_SMF void MOVZX_GqEwM(bxInstruction_c *);
BX_SMF void MOVSX_GqEbM(bxInstruction_c *);
BX_SMF void MOVSX_GqEwM(bxInstruction_c *);
BX_SMF void MOVSX_GqEdM(bxInstruction_c *);
BX_SMF void MOVZX_GqEbR(bxInstruction_c *);
BX_SMF void MOVZX_GqEwR(bxInstruction_c *);
BX_SMF void MOVSX_GqEbR(bxInstruction_c *);
BX_SMF void MOVSX_GqEwR(bxInstruction_c *);
BX_SMF void MOVSX_GqEdR(bxInstruction_c *);
BX_SMF void BSF_GqEq(bxInstruction_c *);
BX_SMF void BSR_GqEq(bxInstruction_c *);
BX_SMF void BT_EqGqM(bxInstruction_c *);
BX_SMF void BTS_EqGqM(bxInstruction_c *);
BX_SMF void BTR_EqGqM(bxInstruction_c *);
BX_SMF void BTC_EqGqM(bxInstruction_c *);
BX_SMF void BT_EqGqR(bxInstruction_c *);
BX_SMF void BTS_EqGqR(bxInstruction_c *);
BX_SMF void BTR_EqGqR(bxInstruction_c *);
BX_SMF void BTC_EqGqR(bxInstruction_c *);
BX_SMF void BT_EqIb(bxInstruction_c *);
BX_SMF void BTS_EqIb(bxInstruction_c *);
BX_SMF void BTR_EqIb(bxInstruction_c *);
BX_SMF void BTC_EqIb(bxInstruction_c *);
BX_SMF void BSWAP_RRX(bxInstruction_c *);
BX_SMF void ADD_EqGqM(bxInstruction_c *);
BX_SMF void OR_EqGqM(bxInstruction_c *);
BX_SMF void ADC_EqGqM(bxInstruction_c *);
BX_SMF void SBB_EqGqM(bxInstruction_c *);
BX_SMF void AND_EqGqM(bxInstruction_c *);
BX_SMF void SUB_EqGqM(bxInstruction_c *);
BX_SMF void XOR_EqGqM(bxInstruction_c *);
BX_SMF void CMP_EqGqM(bxInstruction_c *);
BX_SMF void ADD_EqGqR(bxInstruction_c *);
BX_SMF void OR_EqGqR(bxInstruction_c *);
BX_SMF void ADC_EqGqR(bxInstruction_c *);
BX_SMF void SBB_EqGqR(bxInstruction_c *);
BX_SMF void AND_EqGqR(bxInstruction_c *);
BX_SMF void SUB_EqGqR(bxInstruction_c *);
BX_SMF void XOR_EqGqR(bxInstruction_c *);
BX_SMF void CMP_EqGqR(bxInstruction_c *);
BX_SMF void ADD_EqIdM(bxInstruction_c *);
BX_SMF void OR_EqIdM(bxInstruction_c *);
BX_SMF void ADC_EqIdM(bxInstruction_c *);
BX_SMF void SBB_EqIdM(bxInstruction_c *);
BX_SMF void AND_EqIdM(bxInstruction_c *);
BX_SMF void SUB_EqIdM(bxInstruction_c *);
BX_SMF void XOR_EqIdM(bxInstruction_c *);
BX_SMF void CMP_EqIdM(bxInstruction_c *);
BX_SMF void ADD_EqIdR(bxInstruction_c *);
BX_SMF void OR_EqIdR(bxInstruction_c *);
BX_SMF void ADC_EqIdR(bxInstruction_c *);
BX_SMF void SBB_EqIdR(bxInstruction_c *);
BX_SMF void AND_EqIdR(bxInstruction_c *);
BX_SMF void SUB_EqIdR(bxInstruction_c *);
BX_SMF void XOR_EqIdR(bxInstruction_c *);
BX_SMF void CMP_EqIdR(bxInstruction_c *);
BX_SMF void ROL_Eq(bxInstruction_c *);
BX_SMF void ROR_Eq(bxInstruction_c *);
BX_SMF void RCL_Eq(bxInstruction_c *);
BX_SMF void RCR_Eq(bxInstruction_c *);
BX_SMF void SHL_Eq(bxInstruction_c *);
BX_SMF void SHR_Eq(bxInstruction_c *);
BX_SMF void SAR_Eq(bxInstruction_c *);
BX_SMF void NOT_EqM(bxInstruction_c *);
BX_SMF void NEG_EqM(bxInstruction_c *);
BX_SMF void NOT_EqR(bxInstruction_c *);
BX_SMF void NEG_EqR(bxInstruction_c *);
BX_SMF void TEST_EqIdM(bxInstruction_c *);
BX_SMF void TEST_EqIdR(bxInstruction_c *);
BX_SMF void MUL_RAXEq(bxInstruction_c *);
BX_SMF void IMUL_RAXEq(bxInstruction_c *);
BX_SMF void DIV_RAXEq(bxInstruction_c *);
BX_SMF void IDIV_RAXEq(bxInstruction_c *);
BX_SMF void INC_EqR(bxInstruction_c *);
BX_SMF void DEC_EqR(bxInstruction_c *);
BX_SMF void INC_EqM(bxInstruction_c *);
BX_SMF void DEC_EqM(bxInstruction_c *);
BX_SMF void CALL_Eq(bxInstruction_c *);
BX_SMF void CALL64_Ep(bxInstruction_c *);
BX_SMF void JMP_Eq(bxInstruction_c *);
BX_SMF void JMP64_Ep(bxInstruction_c *);
BX_SMF void PUSH_EqR(bxInstruction_c *);
BX_SMF void PUSH_EqM(bxInstruction_c *);
BX_SMF void PUSHF_Fq(bxInstruction_c *);
BX_SMF void POPF_Fq(bxInstruction_c *);
BX_SMF void CMPXCHG_EqGqR(bxInstruction_c *);
BX_SMF void CMPXCHG_EqGqM(bxInstruction_c *);
BX_SMF void CDQE(bxInstruction_c *);
BX_SMF void CQO(bxInstruction_c *);
BX_SMF void XADD_EqGqR(bxInstruction_c *);
BX_SMF void XADD_EqGqM(bxInstruction_c *);
BX_SMF void RETnear64(bxInstruction_c *);
BX_SMF void RETnear64_Iw(bxInstruction_c *);
BX_SMF void RETfar64(bxInstruction_c *);
BX_SMF void RETfar64_Iw(bxInstruction_c *);
BX_SMF void CMOV_GqEq(bxInstruction_c *);
BX_SMF void MOV_RRXIq(bxInstruction_c *);
BX_SMF void PUSH_RRX(bxInstruction_c *);
BX_SMF void POP_RRX(bxInstruction_c *);
BX_SMF void XCHG_RRXRAX(bxInstruction_c *);
BX_SMF void POP_EqR(bxInstruction_c *);
BX_SMF void POP_EqM(bxInstruction_c *);
BX_SMF void PUSH64_Id(bxInstruction_c *);
BX_SMF void PUSH64_FS(bxInstruction_c *);
BX_SMF void POP64_FS(bxInstruction_c *);
BX_SMF void PUSH64_GS(bxInstruction_c *);
BX_SMF void POP64_GS(bxInstruction_c *);
BX_SMF void LSS_GqMp(bxInstruction_c *);
BX_SMF void LFS_GqMp(bxInstruction_c *);
BX_SMF void LGS_GqMp(bxInstruction_c *);
BX_SMF void SGDT64_Ms(bxInstruction_c *);
BX_SMF void SIDT64_Ms(bxInstruction_c *);
BX_SMF void LGDT64_Ms(bxInstruction_c *);
BX_SMF void LIDT64_Ms(bxInstruction_c *);
BX_SMF void SYSCALL(bxInstruction_c *i);
BX_SMF void SYSRET(bxInstruction_c *i);
BX_SMF void SWAPGS(bxInstruction_c *i);
BX_SMF void LOOPNE64_Jb(bxInstruction_c *);
BX_SMF void LOOPE64_Jb(bxInstruction_c *);
BX_SMF void LOOP64_Jb(bxInstruction_c *);
BX_SMF void JCXZ64_Jb(bxInstruction_c *);
BX_SMF void RDTSCP(bxInstruction_c *);
BX_SMF void CMPXCHG16B(bxInstruction_c *);
BX_SMF void POPCNT_GqEq(bxInstruction_c *);
BX_SMF void MOVNTI_MqGq(bxInstruction_c *i);
#endif // #if BX_SUPPORT_X86_64
BX_SMF void INVLPG(bxInstruction_c *);
BX_SMF void RSM(bxInstruction_c *);
BX_SMF void WRMSR(bxInstruction_c *);
BX_SMF void RDTSC(bxInstruction_c *);
BX_SMF void RDPMC(bxInstruction_c *);
BX_SMF void RDMSR(bxInstruction_c *);
BX_SMF void SYSENTER(bxInstruction_c *);
BX_SMF void SYSEXIT(bxInstruction_c *);
BX_SMF void MONITOR(bxInstruction_c *);
BX_SMF void MWAIT(bxInstruction_c *);
BX_SMF unsigned fetchDecode32(Bit8u *, bxInstruction_c *, unsigned);
#if BX_SUPPORT_X86_64
BX_SMF unsigned fetchDecode64(Bit8u *, bxInstruction_c *, unsigned);
#endif
BX_SMF bxInstruction_c* fetchInstruction(bxInstruction_c *, bx_address);
BX_SMF void UndefinedOpcode(bxInstruction_c *);
BX_SMF void BxError(bxInstruction_c *i);
BX_SMF void BxResolveDummy(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod0Rm0(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod0Rm1(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod0Rm2(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod0Rm3(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod0Rm4(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod0Rm5(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod0Rm6(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod0Rm7(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod1or2Rm0(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod1or2Rm1(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod1or2Rm2(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod1or2Rm3(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod1or2Rm4(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod1or2Rm5(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod1or2Rm6(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve16Mod1or2Rm7(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve32Rm(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve32Disp(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve32Base(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve32BaseIndex(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve32DispIndex(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
#if BX_SUPPORT_X86_64
BX_SMF void BxResolve32Rip(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve64Rip(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve64Rm(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve64Disp(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve64Base(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve64BaseIndex(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
BX_SMF void BxResolve64DispIndex(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
#endif // #if BX_SUPPORT_X86_64
// <TAG-CLASS-CPU-END>
#if BX_DEBUGGER
BX_SMF void dbg_take_irq(void);
BX_SMF void dbg_force_interrupt(unsigned vector);
BX_SMF void dbg_take_dma(void);
BX_SMF bx_bool dbg_set_reg(unsigned reg, Bit32u val);
BX_SMF Bit32u dbg_get_reg(unsigned reg);
BX_SMF bx_bool dbg_get_sreg(bx_dbg_sreg_t *sreg, unsigned sreg_no);
BX_SMF void dbg_get_tr(bx_dbg_sreg_t *sreg);
BX_SMF void dbg_get_ldtr(bx_dbg_sreg_t *sreg);
BX_SMF void dbg_get_gdtr(bx_dbg_global_sreg_t *sreg);
BX_SMF void dbg_get_idtr(bx_dbg_global_sreg_t *sreg);
BX_SMF unsigned dbg_query_pending(void);
BX_SMF bx_bool dbg_check_begin_instr_bpoint(void);
BX_SMF bx_bool dbg_check_end_instr_bpoint(void);
#endif
#if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
BX_SMF bx_bool dbg_instruction_prolog(void);
BX_SMF bx_bool dbg_instruction_epilog(void);
#endif
#if BX_DEBUGGER || BX_DISASM || BX_INSTRUMENTATION || BX_GDBSTUB
BX_SMF bx_bool dbg_xlate_linear2phy(bx_address linear, bx_phy_address *phy);
#endif
BX_SMF void atexit(void);
// now for some ancillary functions...
BX_SMF void cpu_loop(Bit32u max_instr_count);
BX_SMF unsigned handleAsyncEvent(void);
BX_SMF void boundaryFetch(Bit8u *fetchPtr, unsigned remainingInPage, bxInstruction_c *i);
BX_SMF void prefetch(void);
BX_SMF BX_CPP_INLINE void invalidate_prefetch_q(void)
{
BX_CPU_THIS_PTR eipPageWindowSize = 0;
}
BX_SMF void write_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length) BX_CPP_AttrRegparmN(3);
BX_SMF void read_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length) BX_CPP_AttrRegparmN(3);
BX_SMF void execute_virtual_checks(bx_segment_reg_t *seg, bx_address offset, unsigned length) BX_CPP_AttrRegparmN(3);
BX_SMF void write_virtual_byte(unsigned seg, bx_address offset, Bit8u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void write_virtual_word(unsigned seg, bx_address offset, Bit16u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void write_virtual_dword(unsigned seg, bx_address offset, Bit32u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void write_virtual_qword(unsigned seg, bx_address offset, Bit64u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void write_virtual_dqword(unsigned s, bx_address off, Bit8u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void write_virtual_dqword_aligned(unsigned s, bx_address off, Bit8u *data) BX_CPP_AttrRegparmN(3);
#if BX_SUPPORT_FPU
BX_SMF void write_virtual_tword(unsigned seg, bx_address offset, floatx80 *data) BX_CPP_AttrRegparmN(3);
#endif
BX_SMF void read_virtual_byte(unsigned seg, bx_address offset, Bit8u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void read_virtual_word(unsigned seg, bx_address offset, Bit16u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void read_virtual_dword(unsigned seg, bx_address offset, Bit32u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void read_virtual_qword(unsigned seg, bx_address offset, Bit64u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void read_virtual_dqword(unsigned s, bx_address off, Bit8u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void read_virtual_dqword_aligned(unsigned s, bx_address off, Bit8u *data) BX_CPP_AttrRegparmN(3);
#if BX_SUPPORT_FPU
BX_SMF void read_virtual_tword(unsigned seg, bx_address offset, floatx80 *data) BX_CPP_AttrRegparmN(3);
#endif
// write of word/dword to new stack could happen only in legacy mode
BX_SMF void write_new_stack_word(bx_segment_reg_t *seg, bx_address offset, bx_bool user, Bit16u data);
BX_SMF void write_new_stack_dword(bx_segment_reg_t *seg, bx_address offset, bx_bool user, Bit32u data);
#if BX_SUPPORT_X86_64
// write of qword to new stack could happen only in 64-bit mode
// (so stack segment is not relavant)
BX_SMF void write_new_stack_qword(bx_address offset, bx_bool user, Bit64u data);
#endif
#if BX_SUPPORT_MISALIGNED_SSE
#define readVirtualDQwordAligned(s, off, data) \
if (! MXCSR.get_misaligned_exception_mask()) \
read_virtual_dqword_aligned(s, off, data); \
else \
read_virtual_dqword(s, off, data);
#define writeVirtualDQwordAligned(s, off, data) \
if (! MXCSR.get_misaligned_exception_mask()) \
write_virtual_dqword_aligned(s, off, data); \
else \
write_virtual_dqword(s, off, data);
#else // BX_SUPPORT_MISALIGNED_SSE = 0
#define readVirtualDQwordAligned(s, off, data) \
read_virtual_dqword_aligned(s, off, data)
#define writeVirtualDQwordAligned(s, off, data) \
write_virtual_dqword_aligned(s, off, data)
#endif
BX_SMF void read_RMW_virtual_byte(unsigned seg, bx_address offset, Bit8u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void read_RMW_virtual_word(unsigned seg, bx_address offset, Bit16u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void read_RMW_virtual_dword(unsigned seg, bx_address offset, Bit32u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void read_RMW_virtual_qword(unsigned seg, bx_address offset, Bit64u *data) BX_CPP_AttrRegparmN(3);
BX_SMF void write_RMW_virtual_byte(Bit8u val8) BX_CPP_AttrRegparmN(1);
BX_SMF void write_RMW_virtual_word(Bit16u val16) BX_CPP_AttrRegparmN(1);
BX_SMF void write_RMW_virtual_dword(Bit32u val32) BX_CPP_AttrRegparmN(1);
BX_SMF void write_RMW_virtual_qword(Bit64u val64) BX_CPP_AttrRegparmN(1);
#if BX_SupportGuest2HostTLB
BX_SMF Bit8u* v2h_read_byte(bx_address laddr, unsigned pl) BX_CPP_AttrRegparmN(2);
BX_SMF Bit16u* v2h_read_word(bx_address laddr, unsigned pl) BX_CPP_AttrRegparmN(2);
BX_SMF Bit32u* v2h_read_dword(bx_address laddr, unsigned pl) BX_CPP_AttrRegparmN(2);
BX_SMF Bit64u* v2h_read_qword(bx_address laddr, unsigned pl) BX_CPP_AttrRegparmN(2);
BX_SMF Bit8u* v2h_write_byte(bx_address laddr, unsigned pl) BX_CPP_AttrRegparmN(2);
BX_SMF Bit16u* v2h_write_word(bx_address laddr, unsigned pl) BX_CPP_AttrRegparmN(2);
BX_SMF Bit32u* v2h_write_dword(bx_address laddr, unsigned pl) BX_CPP_AttrRegparmN(2);
BX_SMF Bit64u* v2h_write_qword(bx_address laddr, unsigned pl) BX_CPP_AttrRegparmN(2);
#endif
BX_SMF void branch_near32(Bit32u new_EIP) BX_CPP_AttrRegparmN(1);
#if BX_SUPPORT_X86_64
BX_SMF void branch_near64(bxInstruction_c *i) BX_CPP_AttrRegparmN(1);
#endif
BX_SMF void branch_far32(bx_selector_t *selector,
bx_descriptor_t *descriptor, Bit32u eip, Bit8u cpl);
BX_SMF void branch_far64(bx_selector_t *selector,
bx_descriptor_t *descriptor, bx_address rip, Bit8u cpl);
#if BX_SupportRepeatSpeedups
BX_SMF Bit32u FastRepMOVSB(bxInstruction_c *i, unsigned srcSeg, bx_address srcOff,
unsigned dstSeg, bx_address dstOff, Bit32u byteCount);
BX_SMF Bit32u FastRepMOVSW(bxInstruction_c *i, unsigned srcSeg, bx_address srcOff,
unsigned dstSeg, bx_address dstOff, Bit32u wordCount);
BX_SMF Bit32u FastRepMOVSD(bxInstruction_c *i, unsigned srcSeg, bx_address srcOff,
unsigned dstSeg, bx_address dstOff, Bit32u dwordCount);
BX_SMF Bit32u FastRepSTOSB(bxInstruction_c *i, unsigned dstSeg, bx_address dstOff,
Bit8u val, Bit32u byteCount);
BX_SMF Bit32u FastRepSTOSW(bxInstruction_c *i, unsigned dstSeg, bx_address dstOff,
Bit16u val, Bit32u wordCount);
BX_SMF Bit32u FastRepSTOSD(bxInstruction_c *i, unsigned dstSeg, bx_address dstOff,
Bit32u val, Bit32u dwordCount);
BX_SMF Bit32u FastRepINSW(bxInstruction_c *i, bx_address dstOff,
Bit16u port, Bit32u wordCount);
BX_SMF Bit32u FastRepOUTSW(bxInstruction_c *i, unsigned srcSeg, bx_address srcOff,
Bit16u port, Bit32u wordCount);
#endif
BX_SMF void repeat(bxInstruction_c *i, BxExecutePtr_t execute);
BX_SMF void repeat_ZFL(bxInstruction_c *i, BxExecutePtr_t execute);
// linear address for access_linear expected to be canonical !
BX_SMF void access_linear(bx_address address, unsigned length, unsigned pl,
unsigned rw, void *data);
BX_SMF void page_fault(unsigned fault, bx_address laddr, unsigned pl, unsigned rw, unsigned access_type);
// linear address for translate_linear expected to be canonical !
BX_SMF bx_phy_address translate_linear(bx_address laddr, unsigned pl, unsigned rw, unsigned access_type);
BX_SMF BX_CPP_INLINE bx_phy_address itranslate_linear(bx_address laddr, unsigned pl)
{
return translate_linear(laddr, pl, BX_READ, CODE_ACCESS);
}
BX_SMF BX_CPP_INLINE bx_phy_address dtranslate_linear(bx_address laddr, unsigned pl, unsigned rw)
{
return translate_linear(laddr, pl, rw, DATA_ACCESS);
}
BX_SMF void TLB_flush(bx_bool invalidateGlobal);
BX_SMF void TLB_invlpg(bx_address laddr);
BX_SMF void TLB_init(void);
BX_SMF void set_INTR(bx_bool value);
BX_SMF const char *strseg(bx_segment_reg_t *seg) BX_CPP_AttrRegparmN(1);
BX_SMF void interrupt(Bit8u vector, bx_bool is_INT, bx_bool is_error_code,
Bit16u error_code);
BX_SMF void real_mode_int(Bit8u vector, bx_bool is_INT, bx_bool is_error_code,
Bit16u error_code);
BX_SMF void protected_mode_int(Bit8u vector, bx_bool is_INT, bx_bool is_error_code,
Bit16u error_code);
#if BX_SUPPORT_X86_64
BX_SMF void long_mode_int(Bit8u vector, bx_bool is_INT, bx_bool is_error_code,
Bit16u error_code);
#endif
#if BX_CPU_LEVEL >= 2
BX_SMF void exception(unsigned vector, Bit16u error_code, bx_bool is_INT)
BX_CPP_AttrNoReturn();
#endif
BX_SMF void smram_save_state(Bit32u *smm_saved_state);
BX_SMF bx_bool smram_restore_state(const Bit32u *smm_saved_state);
BX_SMF int int_number(bx_segment_reg_t *seg);
BX_SMF void SetCR0(Bit32u val_32);
BX_SMF void CR3_change(bx_phy_address value) BX_CPP_AttrRegparmN(1);
#if BX_CPU_LEVEL >= 4
BX_SMF bx_bool SetCR4(Bit32u val_32);
#endif
BX_SMF void pagingCR0Changed(Bit32u oldCR0, Bit32u newCR0) BX_CPP_AttrRegparmN(2);
BX_SMF void pagingCR4Changed(Bit32u oldCR4, Bit32u newCR4) BX_CPP_AttrRegparmN(2);
BX_SMF void reset(unsigned source);
BX_SMF void shutdown(void);
BX_SMF void handleCpuModeChange(void);
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
BX_SMF void handleAlignmentCheck(void);
#endif
BX_SMF void jump_protected(bxInstruction_c *, Bit16u cs, bx_address disp) BX_CPP_AttrRegparmN(3);
BX_SMF void jmp_task_gate(bx_descriptor_t *gate_descriptor) BX_CPP_AttrRegparmN(1);
BX_SMF void jmp_call_gate16(bx_descriptor_t *gate_descriptor) BX_CPP_AttrRegparmN(1);
BX_SMF void jmp_call_gate32(bx_descriptor_t *gate_descriptor) BX_CPP_AttrRegparmN(1);
#if BX_SUPPORT_X86_64
BX_SMF void jmp_call_gate64(bx_selector_t *selector) BX_CPP_AttrRegparmN(1);
#endif
BX_SMF void call_protected(bxInstruction_c *, Bit16u cs, bx_address disp) BX_CPP_AttrRegparmN(3);
#if BX_SUPPORT_X86_64
BX_SMF void call_gate64(bx_selector_t *selector) BX_CPP_AttrRegparmN(1);
#endif
BX_SMF void return_protected(bxInstruction_c *, Bit16u pop_bytes) BX_CPP_AttrRegparmN(2);
BX_SMF void iret_protected(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
#if BX_SUPPORT_X86_64
BX_SMF void long_iret(bxInstruction_c *) BX_CPP_AttrRegparmN(1);
#endif
BX_SMF void validate_seg_reg(unsigned seg);
BX_SMF void validate_seg_regs(void);
BX_SMF void stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector, Bit32u flags32);
BX_SMF void iret16_stack_return_from_v86(bxInstruction_c *);
BX_SMF void iret32_stack_return_from_v86(bxInstruction_c *);
#if BX_SUPPORT_VME
BX_SMF void v86_redirect_interrupt(Bit32u vector);
#endif
BX_SMF void init_v8086_mode(void);
BX_SMF void task_switch_load_selector(bx_segment_reg_t *seg,
bx_selector_t *selector, Bit16u raw_selector, Bit8u cs_rpl);
BX_SMF void task_switch(bx_selector_t *selector, bx_descriptor_t *descriptor,
unsigned source, Bit32u dword1, Bit32u dword2);
BX_SMF void get_SS_ESP_from_TSS(unsigned pl, Bit16u *ss, Bit32u *esp);
#if BX_SUPPORT_X86_64
BX_SMF void get_RSP_from_TSS(unsigned pl, Bit64u *rsp);
#endif
BX_SMF void write_flags(Bit16u flags, bx_bool change_IOPL, bx_bool change_IF) BX_CPP_AttrRegparmN(3);
BX_SMF void writeEFlags(Bit32u eflags, Bit32u changeMask) BX_CPP_AttrRegparmN(2); // Newer variant.
#if BX_SUPPORT_FPU || BX_SUPPORT_SSE >= 1
BX_SMF void write_eflags_fpu_compare(int float_relation);
#endif
BX_SMF Bit32u force_flags(void);
BX_SMF Bit16u read_flags(void);
BX_SMF Bit32u read_eflags(void);
BX_SMF Bit8u inp8(Bit16u addr) BX_CPP_AttrRegparmN(1);
BX_SMF void outp8(Bit16u addr, Bit8u value) BX_CPP_AttrRegparmN(2);
BX_SMF Bit16u inp16(Bit16u addr) BX_CPP_AttrRegparmN(1);
BX_SMF void outp16(Bit16u addr, Bit16u value) BX_CPP_AttrRegparmN(2);
BX_SMF Bit32u inp32(Bit16u addr) BX_CPP_AttrRegparmN(1);
BX_SMF void outp32(Bit16u addr, Bit32u value) BX_CPP_AttrRegparmN(2);
BX_SMF bx_bool allow_io(Bit16u addr, unsigned len);
BX_SMF void parse_selector(Bit16u raw_selector, bx_selector_t *selector) BX_CPP_AttrRegparmN(2);
BX_SMF void parse_descriptor(Bit32u dword1, Bit32u dword2, bx_descriptor_t *temp) BX_CPP_AttrRegparmN(3);
BX_SMF Bit8u ar_byte(const bx_descriptor_t *d) BX_CPP_AttrRegparmN(1);
BX_SMF void set_ar_byte(bx_descriptor_t *d, Bit8u ar_byte) BX_CPP_AttrRegparmN(2);
BX_SMF Bit32u get_descriptor_l(const bx_descriptor_t *) BX_CPP_AttrRegparmN(1);
BX_SMF Bit32u get_descriptor_h(const bx_descriptor_t *) BX_CPP_AttrRegparmN(1);
BX_SMF Bit16u get_segment_ar_data(const bx_descriptor_t *d) BX_CPP_AttrRegparmN(1);
BX_SMF bx_bool set_segment_ar_data(bx_segment_reg_t *seg, Bit16u raw_selector,
bx_address base, Bit32u limit, Bit16u ar_data);
BX_SMF void check_cs(bx_descriptor_t *descriptor, Bit16u cs_raw, Bit8u check_rpl, Bit8u check_cpl);
// the basic assumption of the code that load_cs and load_ss cannot fail !
BX_SMF void load_cs(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl) BX_CPP_AttrRegparmN(3);
BX_SMF void load_ss(bx_selector_t *selector, bx_descriptor_t *descriptor, Bit8u cpl) BX_CPP_AttrRegparmN(3);
BX_SMF void fetch_raw_descriptor(const bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2, unsigned exception) BX_CPP_AttrRegparmN(3);
BX_SMF bx_bool fetch_raw_descriptor2(const bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2) BX_CPP_AttrRegparmN(3);
BX_SMF void load_seg_reg(bx_segment_reg_t *seg, Bit16u new_value) BX_CPP_AttrRegparmN(2);
#if BX_SUPPORT_X86_64
BX_SMF void fetch_raw_descriptor64(const bx_selector_t *selector,
Bit32u *dword1, Bit32u *dword2, Bit32u *dword3, unsigned exception_no);
BX_SMF void loadSRegLMNominal(unsigned seg, unsigned selector, unsigned dpl);
#endif
BX_SMF void push_16(Bit16u value16);
BX_SMF void push_32(Bit32u value32);
BX_SMF void push_64(Bit64u value64);
BX_SMF void pop_16(Bit16u *value16_ptr);
BX_SMF void pop_32(Bit32u *value32_ptr);
BX_SMF void pop_64(Bit64u *value64_ptr);
BX_SMF bx_bool can_push(bx_descriptor_t *descriptor, Bit32u esp, Bit32u bytes) BX_CPP_AttrRegparmN(3);
BX_SMF bx_bool can_pop(Bit32u bytes);
BX_SMF void decrementESPForPush(unsigned nBytes, Bit32u *eSP);
BX_SMF void sanity_checks(void);
BX_SMF void assert_checks(void);
BX_SMF void enter_system_management_mode(void);
BX_SMF void deliver_NMI(void);
BX_SMF void deliver_SMI(void);
BX_SMF void debug(bx_address offset);
#if BX_DISASM
BX_SMF void debug_disasm_instruction(bx_address offset);
#endif
#if BX_X86_DEBUGGER
// x86 hardware debug support
BX_SMF Bit32u hwdebug_compare(bx_address laddr, unsigned size,
unsigned opa, unsigned opb);
#endif
BX_SMF Bit32u get_cpu_version_information(void);
BX_SMF Bit32u get_extended_cpuid_features(void);
BX_SMF Bit32u get_std_cpuid_features(void);
BX_SMF void set_cpuid_defaults(void);
BX_SMF BX_CPP_INLINE unsigned which_cpu(void) { return BX_CPU_THIS_PTR bx_cpuid; }
BX_SMF BX_CPP_INLINE const bx_gen_reg_t *get_gen_regfile() { return BX_CPU_THIS_PTR gen_reg; }
BX_CPP_INLINE Bit8u get_CPL(void) { return (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl); }
BX_CPP_INLINE Bit8u get_reg8l(unsigned reg);
BX_CPP_INLINE Bit8u get_reg8h(unsigned reg);
BX_CPP_INLINE void set_reg8l(unsigned reg, Bit8u val);
BX_CPP_INLINE void set_reg8h(unsigned reg, Bit8u val);
BX_CPP_INLINE bx_address get_ip(void);
BX_CPP_INLINE void set_ip(bx_address ip);
BX_CPP_INLINE Bit16u get_reg16(unsigned reg);
BX_CPP_INLINE void set_reg16(unsigned reg, Bit16u val);
BX_CPP_INLINE Bit32u get_reg32(unsigned reg);
BX_CPP_INLINE void set_reg32(unsigned reg, Bit32u val);
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit64u get_reg64(unsigned reg);
BX_CPP_INLINE void set_reg64(unsigned reg, Bit64u val);
#endif
BX_CPP_INLINE bx_address get_segment_base(unsigned seg);
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit32u get_EFER(void);
#endif
DECLARE_EFLAG_ACCESSOR (ID, 21)
DECLARE_EFLAG_ACCESSOR (VIP, 20)
DECLARE_EFLAG_ACCESSOR (VIF, 19)
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
DECLARE_EFLAG_ACCESSOR_AC( 18)
#else
DECLARE_EFLAG_ACCESSOR (AC, 18)
#endif
DECLARE_EFLAG_ACCESSOR_VM( 17)
DECLARE_EFLAG_ACCESSOR (RF, 16)
DECLARE_EFLAG_ACCESSOR (NT, 14)
DECLARE_EFLAG_ACCESSOR_IOPL( 12)
DECLARE_EFLAG_ACCESSOR (DF, 10)
DECLARE_EFLAG_ACCESSOR (IF, 9)
DECLARE_EFLAG_ACCESSOR (TF, 8)
BX_SMF BX_CPP_INLINE bx_bool real_mode(void);
BX_SMF BX_CPP_INLINE bx_bool smm_mode(void);
BX_SMF BX_CPP_INLINE bx_bool protected_mode(void);
BX_SMF BX_CPP_INLINE bx_bool v8086_mode(void);
BX_SMF BX_CPP_INLINE bx_bool long_mode(void);
BX_SMF BX_CPP_INLINE unsigned get_cpu_mode(void);
#if BX_CPU_LEVEL >= 5
BX_SMF Bit64u get_TSC();
BX_SMF void set_TSC(Bit32u tsc);
#endif
#if BX_SUPPORT_FPU
BX_SMF void print_state_FPU(void);
BX_SMF void prepareFPU(bxInstruction_c *i, bx_bool = 1, bx_bool = 1);
BX_SMF void FPU_check_pending_exceptions(void);
BX_SMF void FPU_stack_underflow(int stnr, int pop_stack = 0);
BX_SMF void FPU_stack_overflow(void);
BX_SMF int FPU_exception(int exception);
BX_SMF int fpu_save_environment(bxInstruction_c *i);
BX_SMF int fpu_load_environment(bxInstruction_c *i);
#endif
#if BX_SUPPORT_MMX || BX_SUPPORT_SSE
BX_SMF void prepareMMX(void);
BX_SMF void prepareFPU2MMX(void); /* cause transition from FPU to MMX technology state */
BX_SMF void print_state_MMX(void);
#endif
#if BX_SUPPORT_SSE
BX_SMF void prepareSSE(void);
BX_SMF void check_exceptionsSSE(int);
BX_SMF void print_state_SSE(void);
#endif
#if BX_SUPPORT_MONITOR_MWAIT
BX_SMF bx_bool is_monitor(bx_phy_address addr, unsigned len);
BX_SMF void check_monitor(bx_phy_address addr, unsigned len);
#endif
};
#if BX_SUPPORT_ICACHE
BX_CPP_INLINE void BX_CPU_C::updateFetchModeMask(void)
{
fetchModeMask =
#if BX_SUPPORT_X86_64
((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)<<30) |
#endif
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b << 31);
}
#endif
#if BX_X86_DEBUGGER
#define BX_HWDebugInstruction 0x00
#define BX_HWDebugMemW 0x01
#define BX_HWDebugIO 0x02
#define BX_HWDebugMemRW 0x03
#endif
#include <assert.h>
BX_CPP_INLINE bx_address BX_CPU_C::get_segment_base(unsigned seg)
{
#if BX_SUPPORT_X86_64
if ((BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) && (seg < BX_SEG_REG_FS))
{
return 0;
}
#endif
return (BX_CPU_THIS_PTR sregs[seg].cache.u.segment.base);
}
BX_CPP_INLINE Bit8u BX_CPU_C::get_reg8l(unsigned reg)
{
assert(reg < BX_GENERAL_REGISTERS);
return (BX_CPU_THIS_PTR gen_reg[reg].word.byte.rl);
}
BX_CPP_INLINE void BX_CPU_C::set_reg8l(unsigned reg, Bit8u val)
{
assert(reg < BX_GENERAL_REGISTERS);
BX_CPU_THIS_PTR gen_reg[reg].word.byte.rl = val;
}
BX_CPP_INLINE Bit8u BX_CPU_C::get_reg8h(unsigned reg)
{
assert(reg < BX_GENERAL_REGISTERS);
return (BX_CPU_THIS_PTR gen_reg[reg].word.byte.rh);
}
BX_CPP_INLINE void BX_CPU_C::set_reg8h(unsigned reg, Bit8u val)
{
assert(reg < BX_GENERAL_REGISTERS);
BX_CPU_THIS_PTR gen_reg[reg].word.byte.rh = val;
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE bx_address BX_CPU_C::get_ip(void)
{
return (BX_CPU_THIS_PTR eip_reg.rip);
}
BX_CPP_INLINE void BX_CPU_C::set_ip(bx_address ip)
{
BX_CPU_THIS_PTR eip_reg.rip = ip;
}
#else
BX_CPP_INLINE bx_address BX_CPU_C::get_ip(void)
{
return (BX_CPU_THIS_PTR eip_reg.dword.eip);
}
BX_CPP_INLINE void BX_CPU_C::set_ip(bx_address ip)
{
BX_CPU_THIS_PTR eip_reg.dword.eip = ip;
}
#endif
BX_CPP_INLINE Bit16u BX_CPU_C::get_reg16(unsigned reg)
{
assert(reg < BX_GENERAL_REGISTERS);
return (BX_CPU_THIS_PTR gen_reg[reg].word.rx);
}
BX_CPP_INLINE void BX_CPU_C::set_reg16(unsigned reg, Bit16u val)
{
assert(reg < BX_GENERAL_REGISTERS);
BX_CPU_THIS_PTR gen_reg[reg].word.rx = val;
}
BX_CPP_INLINE Bit32u BX_CPU_C::get_reg32(unsigned reg)
{
assert(reg < BX_GENERAL_REGISTERS);
return (BX_CPU_THIS_PTR gen_reg[reg].dword.erx);
}
BX_CPP_INLINE void BX_CPU_C::set_reg32(unsigned reg, Bit32u val)
{
assert(reg < BX_GENERAL_REGISTERS);
BX_CPU_THIS_PTR gen_reg[reg].dword.erx = val;
}
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit64u BX_CPU_C::get_reg64(unsigned reg)
{
assert(reg < BX_GENERAL_REGISTERS);
return (BX_CPU_THIS_PTR gen_reg[reg].rrx);
}
BX_CPP_INLINE void BX_CPU_C::set_reg64(unsigned reg, Bit64u val)
{
assert(reg < BX_GENERAL_REGISTERS);
BX_CPU_THIS_PTR gen_reg[reg].rrx = val;
}
#endif
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit32u BX_CPU_C::get_EFER(void)
{
return (BX_CPU_THIS_PTR efer.sce << 0) |
(BX_CPU_THIS_PTR efer.lme << 8) |
(BX_CPU_THIS_PTR efer.lma << 10) |
(BX_CPU_THIS_PTR efer.nxe << 11) |
(BX_CPU_THIS_PTR efer.ffxsr << 14);
}
#endif
BX_CPP_INLINE bx_bool BX_CPU_C::real_mode(void)
{
return (BX_CPU_THIS_PTR cpu_mode == BX_MODE_IA32_REAL);
}
BX_CPP_INLINE bx_bool BX_CPU_C::smm_mode(void)
{
return (BX_CPU_THIS_PTR in_smm);
}
BX_CPP_INLINE bx_bool BX_CPU_C::v8086_mode(void)
{
return (BX_CPU_THIS_PTR cpu_mode == BX_MODE_IA32_V8086);
}
BX_CPP_INLINE bx_bool BX_CPU_C::protected_mode(void)
{
return (BX_CPU_THIS_PTR cpu_mode >= BX_MODE_IA32_PROTECTED);
}
BX_CPP_INLINE unsigned BX_CPU_C::long_mode(void)
{
#if BX_SUPPORT_X86_64
return BX_CPU_THIS_PTR efer.lma;
#else
return 0;
#endif
}
BX_CPP_INLINE unsigned BX_CPU_C::get_cpu_mode(void)
{
return (BX_CPU_THIS_PTR cpu_mode);
}
BOCHSAPI extern const bx_bool bx_parity_lookup[256];
BX_CPP_INLINE void BX_CPU_C::set_PF_base(Bit8u val)
{
BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f;
val = bx_parity_lookup[val]; // Always returns 0 or 1.
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<2);
BX_CPU_THIS_PTR eflags.val32 |= val<<2;
}
// *******************
// OSZAPC
// *******************
/* op1, op2, result */
#define SET_FLAGS_OSZAPC_SIZE(size, lf_op1, lf_op2, lf_result, ins) { \
BX_CPU_THIS_PTR oszapc.op1##size = lf_op1; \
BX_CPU_THIS_PTR oszapc.op2##size = lf_op2; \
BX_CPU_THIS_PTR oszapc.result##size = lf_result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_8(op1, op2, result, ins) \
SET_FLAGS_OSZAPC_SIZE(_8, op1, op2, result, ins)
#define SET_FLAGS_OSZAPC_16(op1, op2, result, ins) \
SET_FLAGS_OSZAPC_SIZE(_16, op1, op2, result, ins)
#define SET_FLAGS_OSZAPC_32(op1, op2, result, ins) \
SET_FLAGS_OSZAPC_SIZE(_32, op1, op2, result, ins)
#if BX_SUPPORT_X86_64
#define SET_FLAGS_OSZAPC_64(op1, op2, result, ins) \
SET_FLAGS_OSZAPC_SIZE(_64, op1, op2, result, ins)
#endif
/* op1 and result only */
#define SET_FLAGS_OSZAPC_S1_SIZE(size, lf_op1, lf_result, ins) { \
BX_CPU_THIS_PTR oszapc.op1##size = lf_op1; \
BX_CPU_THIS_PTR oszapc.result##size = lf_result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_S1_8(op1, result, ins) \
SET_FLAGS_OSZAPC_S1_SIZE(_8, op1, result, ins)
#define SET_FLAGS_OSZAPC_S1_16(op1, result, ins) \
SET_FLAGS_OSZAPC_S1_SIZE(_16, op1, result, ins)
#define SET_FLAGS_OSZAPC_S1_32(op1, result, ins) \
SET_FLAGS_OSZAPC_S1_SIZE(_32, op1, result, ins)
#if BX_SUPPORT_X86_64
#define SET_FLAGS_OSZAPC_S1_64(op1, result, ins) \
SET_FLAGS_OSZAPC_S1_SIZE(_64, op1, result, ins)
#endif
/* op2 and result only */
#define SET_FLAGS_OSZAPC_S2_SIZE(size, lf_op2, lf_result, ins) { \
BX_CPU_THIS_PTR oszapc.op2##size = lf_op2; \
BX_CPU_THIS_PTR oszapc.result##size = lf_result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_S2_8(op2, result, ins) \
SET_FLAGS_OSZAPC_S2_SIZE(_8, op2, result, ins)
#define SET_FLAGS_OSZAPC_S2_16(op2, result, ins) \
SET_FLAGS_OSZAPC_S2_SIZE(_16, op2, result, ins)
#define SET_FLAGS_OSZAPC_S2_32(op2, result, ins) \
SET_FLAGS_OSZAPC_S2_SIZE(_32, op2, result, ins)
#if BX_SUPPORT_X86_64
#define SET_FLAGS_OSZAPC_S2_64(op2, result, ins) \
SET_FLAGS_OSZAPC_S2_SIZE(_64, op2, result, ins)
#endif
/* op1 and op2 only */
#define SET_FLAGS_OSZAPC_S1S2_SIZE(size, lf_op1, lf_op2, ins) { \
BX_CPU_THIS_PTR oszapc.op1##size = lf_op1; \
BX_CPU_THIS_PTR oszapc.op2##size = lf_op2; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_S1S2_8(op1, op2, ins) \
SET_FLAGS_OSZAPC_S1S2_SIZE(_8, op1, op2, ins)
#define SET_FLAGS_OSZAPC_S1S2_16(op1, op2, ins) \
SET_FLAGS_OSZAPC_S1S2_SIZE(_16, op1, op2, ins)
#define SET_FLAGS_OSZAPC_S1S2_32(op1, op2, ins) \
SET_FLAGS_OSZAPC_S1S2_SIZE(_32, op1, op2, ins)
#if BX_SUPPORT_X86_64
#define SET_FLAGS_OSZAPC_S1S2_64(op1, op2, ins) \
SET_FLAGS_OSZAPC_S1S2_SIZE(_64, op1, op2, ins)
#endif
/* result only */
#define SET_FLAGS_OSZAPC_RESULT_SIZE(size, lf_result, ins) { \
BX_CPU_THIS_PTR oszapc.result##size = lf_result; \
BX_CPU_THIS_PTR oszapc.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = BX_LF_MASK_OSZAPC; \
}
#define SET_FLAGS_OSZAPC_RESULT_8(result, ins) \
SET_FLAGS_OSZAPC_RESULT_SIZE(_8, result, ins)
#define SET_FLAGS_OSZAPC_RESULT_16(result, ins) \
SET_FLAGS_OSZAPC_RESULT_SIZE(_16, result, ins)
#define SET_FLAGS_OSZAPC_RESULT_32(result, ins) \
SET_FLAGS_OSZAPC_RESULT_SIZE(_32, result, ins)
#if BX_SUPPORT_X86_64
#define SET_FLAGS_OSZAPC_RESULT_64(result, ins) \
SET_FLAGS_OSZAPC_RESULT_SIZE(_64, result, ins)
#endif
// *******************
// OSZAP
// *******************
/* op1, op2, result */
#define SET_FLAGS_OSZAP_SIZE(size, lf_op1, lf_op2, lf_result, ins) { \
BX_CPU_THIS_PTR oszap.op1##size = lf_op1; \
BX_CPU_THIS_PTR oszap.op2##size = lf_op2; \
BX_CPU_THIS_PTR oszap.result##size = lf_result; \
BX_CPU_THIS_PTR oszap.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
}
#define SET_FLAGS_OSZAP_8(op1, op2, result, ins) \
SET_FLAGS_OSZAP_SIZE(_8, op1, op2, result, ins)
#define SET_FLAGS_OSZAP_16(op1, op2, result, ins) \
SET_FLAGS_OSZAP_SIZE(_16, op1, op2, result, ins)
#define SET_FLAGS_OSZAP_32(op1, op2, result, ins) \
SET_FLAGS_OSZAP_SIZE(_32, op1, op2, result, ins)
#if BX_SUPPORT_X86_64
#define SET_FLAGS_OSZAP_64(op1, op2, result, ins) \
SET_FLAGS_OSZAP_SIZE(_64, op1, op2, result, ins)
#endif
/* result only */
#define SET_FLAGS_OSZAP_RESULT_SIZE(size, lf_result, ins) { \
BX_CPU_THIS_PTR oszap.result##size = lf_result; \
BX_CPU_THIS_PTR oszap.instr = ins; \
BX_CPU_THIS_PTR lf_flags_status = (BX_CPU_THIS_PTR lf_flags_status & 0x00000f) | BX_LF_MASK_OSZAP; \
}
#define SET_FLAGS_OSZAP_RESULT_8(result, ins) \
SET_FLAGS_OSZAP_RESULT_SIZE(_8, result, ins)
#define SET_FLAGS_OSZAP_RESULT_16(result, ins) \
SET_FLAGS_OSZAP_RESULT_SIZE(_16, result, ins)
#define SET_FLAGS_OSZAP_RESULT_32(result, ins) \
SET_FLAGS_OSZAP_RESULT_SIZE(_32, result, ins)
#if BX_SUPPORT_X86_64
#define SET_FLAGS_OSZAP_RESULT_64(result, ins) \
SET_FLAGS_OSZAP_RESULT_SIZE(_64, result, ins)
#endif
#define SET_FLAGS_OSZAPC_LOGIC_8(result_8) \
SET_FLAGS_OSZAPC_RESULT_8((result_8), BX_INSTR_LOGIC8)
#define SET_FLAGS_OSZAPC_LOGIC_16(result_16) \
SET_FLAGS_OSZAPC_RESULT_16((result_16), BX_INSTR_LOGIC16)
#define SET_FLAGS_OSZAPC_LOGIC_32(result_32) \
SET_FLAGS_OSZAPC_RESULT_32((result_32), BX_INSTR_LOGIC32)
#if BX_SUPPORT_X86_64
#define SET_FLAGS_OSZAPC_LOGIC_64(result_64) \
SET_FLAGS_OSZAPC_RESULT_64((result_64), BX_INSTR_LOGIC64)
#endif
#define SET_FLAGS_OSZAPC_ADD_8(op1_8, op2_8, sum_8) \
SET_FLAGS_OSZAPC_S1_8((op1_8), (sum_8), BX_INSTR_ADD8)
#define SET_FLAGS_OSZAPC_ADD_16(op1_16, op2_16, sum_16) \
SET_FLAGS_OSZAPC_S1_16((op1_16), (sum_16), BX_INSTR_ADD16)
#define SET_FLAGS_OSZAPC_ADD_32(op1_32, op2_32, sum_32) \
SET_FLAGS_OSZAPC_S1_32((op1_32), (sum_32), BX_INSTR_ADD32)
#if BX_SUPPORT_X86_64
#define SET_FLAGS_OSZAPC_ADD_64(op1_64, op2_64, sum_64) \
SET_FLAGS_OSZAPC_S1_64((op1_64), (sum_64), BX_INSTR_ADD64)
#endif
#define SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8) \
SET_FLAGS_OSZAPC_8((op1_8), (op2_8), (diff_8), BX_INSTR_SUB8)
#define SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16) \
SET_FLAGS_OSZAPC_16((op1_16), (op2_16), (diff_16), BX_INSTR_SUB16)
#define SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32) \
SET_FLAGS_OSZAPC_32((op1_32), (op2_32), (diff_32), BX_INSTR_SUB32)
#if BX_SUPPORT_X86_64
#define SET_FLAGS_OSZAPC_SUB_64(op1_64, op2_64, diff_64) \
SET_FLAGS_OSZAPC_64((op1_64), (op2_64), (diff_64), BX_INSTR_SUB64)
#endif
IMPLEMENT_EFLAG_ACCESSOR (ID, 21)
IMPLEMENT_EFLAG_ACCESSOR (VIP, 20)
IMPLEMENT_EFLAG_ACCESSOR (VIF, 19)
#if BX_SUPPORT_ALIGNMENT_CHECK
IMPLEMENT_EFLAG_ACCESSOR_AC( 18)
#else
IMPLEMENT_EFLAG_ACCESSOR (AC, 18)
#endif
IMPLEMENT_EFLAG_ACCESSOR_VM( 17)
IMPLEMENT_EFLAG_ACCESSOR (RF, 16)
IMPLEMENT_EFLAG_ACCESSOR (NT, 14)
IMPLEMENT_EFLAG_ACCESSOR_IOPL( 12)
IMPLEMENT_EFLAG_ACCESSOR (DF, 10)
IMPLEMENT_EFLAG_ACCESSOR (IF, 9)
IMPLEMENT_EFLAG_ACCESSOR (TF, 8)
// <TAG-DEFINES-DECODE-START>
//
// For decoding...
//
#define BX_TASK_FROM_JUMP 10
#define BX_TASK_FROM_CALL_OR_INT 11
#define BX_TASK_FROM_IRET 12
// If the Immediate bit is set, the lowest 3 bits of the attribute
// specify which kinds of immediate data a required by instruction.
#define BxImmediate 0x000f // bits 3..0: any immediate
#define BxImmediate_Ib 0x0001 // 8 bits regardless
#define BxImmediate_Ib_SE 0x0002 // sign extend to OS size
#define BxImmediate_Iv 0x0003 // 16 or 32 depending on OS size
#define BxImmediate_Iw 0x0004 // 16 bits regardless
#define BxImmediate_IvIw 0x0005 // call_Ap
#define BxImmediate_IwIb 0x0006 // enter_IwIb
#define BxImmediate_O 0x0007 // MOV_ALOd, mov_OdAL, mov_eAXOv, mov_OveAX
#define BxImmediate_BrOff8 0x0008 // Relative branch offset byte
#define BxImmediate_BrOff16 0x0009 // Relative branch offset word, not encodable in 64-bit mode
#define BxImmediate_BrOff32 0x000A // Relative branch offset dword
#if BX_SUPPORT_X86_64
#define BxImmediate_Iq 0x000B // 64 bit override
#endif
// Lookup for opcode and attributes in another opcode tables
// Totally 7 opcode groups supported
#define BxGroupX 0x0070 // bits 6..4: opcode groups definition
#define BxGroupN 0x0010 // Group encoding: 001
#define BxPrefixSSE 0x0020 // Group encoding: 010
#define BxFPGroup 0x0030 // Group encoding: 011
#define BxRMGroup 0x0040 // Group encoding: 100
#define Bx3ByteOpIndex 0x0050 // Group encoding: 101
#define Bx3ByteOpTable 0x0060 // Group encoding: 110
// Group encoding: 111
#define BxPrefix 0x0080 // bit 7
#define BxLockable 0x0100 // bit 8
#define Bx3ByteOpcode 0x0200 // bit 9
#define BxGroup1 BxGroupN
#define BxGroup2 BxGroupN
#define BxGroup3 BxGroupN
#define BxGroup4 BxGroupN
#define BxGroup5 BxGroupN
#define BxGroup6 BxGroupN
#define BxGroup7 BxGroupN
#define BxGroup8 BxGroupN
#define BxGroup9 BxGroupN
#define BxGroup12 BxGroupN
#define BxGroup13 BxGroupN
#define BxGroup14 BxGroupN
#define BxGroup15 BxGroupN
#define BxGroup16 BxGroupN
// <TAG-DEFINES-DECODE-END>
// Can be used as LHS or RHS.
#define RMAddr(i) (BX_CPU_THIS_PTR address_xlation.rm_addr)
#define setEFlagsOSZAPC(flags32) { \
BX_CPU_THIS_PTR eflags.val32 = \
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) | \
(flags32 & EFlagsOSZAPCMask); \
BX_CPU_THIS_PTR lf_flags_status = 0; \
}
#define SET_FLAGS_OxxxxC(new_of, new_cf) { \
BX_CPU_THIS_PTR eflags.val32 &= ~((1<<11) | (1<<0)); \
BX_CPU_THIS_PTR eflags.val32 |= ((!!new_of)<<11) | ((!!new_cf)<<0); \
BX_CPU_THIS_PTR lf_flags_status &= 0x0ffff0; \
}
#define ASSERT_FLAGS_OxxxxC() { \
BX_CPU_THIS_PTR eflags.val32 |= (EFlagsOFMask | EFlagsCFMask); \
BX_CPU_THIS_PTR lf_flags_status &= ~(EFlagsOFMask | EFlagsCFMask); \
}
#endif // #ifndef BX_CPU_H