Bochs/bochs/cpu/crregs.h
2023-12-29 14:48:38 +02:00

419 lines
15 KiB
C

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2007-2020 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#ifndef BX_CRREGS
#define BX_CRREGS
#define BX_CR0_PE_MASK (1 << 0)
#define BX_CR0_MP_MASK (1 << 1)
#define BX_CR0_EM_MASK (1 << 2)
#define BX_CR0_TS_MASK (1 << 3)
#define BX_CR0_ET_MASK (1 << 4)
#define BX_CR0_NE_MASK (1 << 5)
#define BX_CR0_WP_MASK (1 << 16)
#define BX_CR0_AM_MASK (1 << 18)
#define BX_CR0_NW_MASK (1 << 29)
#define BX_CR0_CD_MASK (1 << 30)
#define BX_CR0_PG_MASK (1 << 31)
struct bx_cr0_t {
Bit32u val32; // 32bit value of register
// Accessors for all cr0 bitfields.
#define IMPLEMENT_CRREG_ACCESSORS(name, bitnum) \
BX_CPP_INLINE bool get_##name() const { \
return 1 & (val32 >> bitnum); \
} \
BX_CPP_INLINE void set_##name(Bit8u val) { \
val32 = (val32 & ~(1<<bitnum)) | ((!!val) << bitnum); \
}
// CR0 notes:
// Each x86 level has its own quirks regarding how it handles
// reserved bits. I used DOS DEBUG.EXE in real mode on the
// following processors, tried to clear bits 1..30, then tried
// to set bits 1..30, to see how these bits are handled.
// I found the following:
//
// Processor try to clear bits 1..30 try to set bits 1..30
// 386 7FFFFFF0 7FFFFFFE
// 486DX2 00000010 6005003E
// Pentium 00000010 7FFFFFFE
// Pentium-II 00000010 6005003E
//
// My assumptions:
// All processors: bit 4 is hardwired to 1 (not true on all clones)
// 386: bits 5..30 of CR0 are also hardwired to 1
// Pentium: reserved bits retain value set using mov cr0, reg32
// 486DX2/Pentium-II: reserved bits are hardwired to 0
IMPLEMENT_CRREG_ACCESSORS(PE, 0);
IMPLEMENT_CRREG_ACCESSORS(MP, 1);
IMPLEMENT_CRREG_ACCESSORS(EM, 2);
IMPLEMENT_CRREG_ACCESSORS(TS, 3);
#if BX_CPU_LEVEL >= 4
IMPLEMENT_CRREG_ACCESSORS(ET, 4);
IMPLEMENT_CRREG_ACCESSORS(NE, 5);
IMPLEMENT_CRREG_ACCESSORS(WP, 16);
IMPLEMENT_CRREG_ACCESSORS(AM, 18);
IMPLEMENT_CRREG_ACCESSORS(NW, 29);
IMPLEMENT_CRREG_ACCESSORS(CD, 30);
#endif
IMPLEMENT_CRREG_ACCESSORS(PG, 31);
BX_CPP_INLINE Bit32u get32() const { return val32; }
// ET is hardwired bit in CR0
BX_CPP_INLINE void set32(Bit32u val) { val32 = val | 0x10; }
};
#if BX_CPU_LEVEL >= 5
#define BX_CR4_VME_MASK (1 << 0)
#define BX_CR4_PVI_MASK (1 << 1)
#define BX_CR4_TSD_MASK (1 << 2)
#define BX_CR4_DE_MASK (1 << 3)
#define BX_CR4_PSE_MASK (1 << 4)
#define BX_CR4_PAE_MASK (1 << 5)
#define BX_CR4_MCE_MASK (1 << 6)
#define BX_CR4_PGE_MASK (1 << 7)
#define BX_CR4_PCE_MASK (1 << 8)
#define BX_CR4_OSFXSR_MASK (1 << 9)
#define BX_CR4_OSXMMEXCPT_MASK (1 << 10)
#define BX_CR4_UMIP_MASK (1 << 11)
#define BX_CR4_LA57_MASK (1 << 12)
#define BX_CR4_VMXE_MASK (1 << 13)
#define BX_CR4_SMXE_MASK (1 << 14)
#define BX_CR4_FSGSBASE_MASK (1 << 16)
#define BX_CR4_PCIDE_MASK (1 << 17)
#define BX_CR4_OSXSAVE_MASK (1 << 18)
#define BX_CR4_KEYLOCKER_MASK (1 << 19)
#define BX_CR4_SMEP_MASK (1 << 20)
#define BX_CR4_SMAP_MASK (1 << 21)
#define BX_CR4_PKE_MASK (1 << 22)
#define BX_CR4_CET_MASK (1 << 23)
#define BX_CR4_PKS_MASK (1 << 24)
#define BX_CR4_UINTR_MASK (1 << 25)
#define BX_CR4_LASS_MASK (1 << 27)
struct bx_cr4_t {
Bit32u val32; // 32bit value of register
IMPLEMENT_CRREG_ACCESSORS(VME, 0);
IMPLEMENT_CRREG_ACCESSORS(PVI, 1);
IMPLEMENT_CRREG_ACCESSORS(TSD, 2);
IMPLEMENT_CRREG_ACCESSORS(DE, 3);
IMPLEMENT_CRREG_ACCESSORS(PSE, 4);
IMPLEMENT_CRREG_ACCESSORS(PAE, 5);
IMPLEMENT_CRREG_ACCESSORS(MCE, 6);
IMPLEMENT_CRREG_ACCESSORS(PGE, 7);
IMPLEMENT_CRREG_ACCESSORS(PCE, 8);
IMPLEMENT_CRREG_ACCESSORS(OSFXSR, 9);
IMPLEMENT_CRREG_ACCESSORS(OSXMMEXCPT, 10);
IMPLEMENT_CRREG_ACCESSORS(UMIP, 11);
IMPLEMENT_CRREG_ACCESSORS(LA57, 12);
#if BX_SUPPORT_VMX
IMPLEMENT_CRREG_ACCESSORS(VMXE, 13);
#endif
IMPLEMENT_CRREG_ACCESSORS(SMXE, 14);
#if BX_SUPPORT_X86_64
IMPLEMENT_CRREG_ACCESSORS(FSGSBASE, 16);
#endif
IMPLEMENT_CRREG_ACCESSORS(PCIDE, 17);
IMPLEMENT_CRREG_ACCESSORS(OSXSAVE, 18);
IMPLEMENT_CRREG_ACCESSORS(KEYLOCKER, 19);
IMPLEMENT_CRREG_ACCESSORS(SMEP, 20);
IMPLEMENT_CRREG_ACCESSORS(SMAP, 21);
IMPLEMENT_CRREG_ACCESSORS(PKE, 22);
IMPLEMENT_CRREG_ACCESSORS(CET, 23);
IMPLEMENT_CRREG_ACCESSORS(PKS, 24);
IMPLEMENT_CRREG_ACCESSORS(UINTR, 25);
IMPLEMENT_CRREG_ACCESSORS(LASS, 27);
BX_CPP_INLINE Bit32u get32() const { return val32; }
BX_CPP_INLINE void set32(Bit32u val) { val32 = val; }
};
const Bit32u BX_CR4_FLUSH_TLB_MASK = (BX_CR4_PSE_MASK | BX_CR4_PAE_MASK | BX_CR4_PGE_MASK | BX_CR4_LA57_MASK | BX_CR4_PCIDE_MASK | BX_CR4_SMEP_MASK | BX_CR4_SMAP_MASK | BX_CR4_PKE_MASK | BX_CR4_CET_MASK | BX_CR4_PKS_MASK | BX_CR4_LASS_MASK);
#endif // #if BX_CPU_LEVEL >= 5
struct bx_dr6_t {
Bit32u val32; // 32bit value of register
IMPLEMENT_CRREG_ACCESSORS(B0, 0);
IMPLEMENT_CRREG_ACCESSORS(B1, 1);
IMPLEMENT_CRREG_ACCESSORS(B2, 2);
IMPLEMENT_CRREG_ACCESSORS(B3, 3);
#define BX_DEBUG_TRAP_HIT (1 << 12)
#define BX_DEBUG_DR_ACCESS_BIT (1 << 13)
#define BX_DEBUG_SINGLE_STEP_BIT (1 << 14)
#define BX_DEBUG_TRAP_TASK_SWITCH_BIT (1 << 15)
IMPLEMENT_CRREG_ACCESSORS(BD, 13);
IMPLEMENT_CRREG_ACCESSORS(BS, 14);
IMPLEMENT_CRREG_ACCESSORS(BT, 15);
BX_CPP_INLINE Bit32u get32() const { return val32; }
BX_CPP_INLINE void set32(Bit32u val) { val32 = val; }
};
struct bx_dr7_t {
Bit32u val32; // 32bit value of register
IMPLEMENT_CRREG_ACCESSORS(L0, 0);
IMPLEMENT_CRREG_ACCESSORS(G0, 1);
IMPLEMENT_CRREG_ACCESSORS(L1, 2);
IMPLEMENT_CRREG_ACCESSORS(G1, 3);
IMPLEMENT_CRREG_ACCESSORS(L2, 4);
IMPLEMENT_CRREG_ACCESSORS(G2, 5);
IMPLEMENT_CRREG_ACCESSORS(L3, 6);
IMPLEMENT_CRREG_ACCESSORS(G3, 7);
IMPLEMENT_CRREG_ACCESSORS(LE, 8);
IMPLEMENT_CRREG_ACCESSORS(GE, 9);
IMPLEMENT_CRREG_ACCESSORS(GD, 13);
#define IMPLEMENT_DRREG_ACCESSORS(name, bitmask, bitnum) \
int get_##name() const { \
return (val32 & (bitmask)) >> (bitnum); \
}
IMPLEMENT_DRREG_ACCESSORS(R_W0, 0x00030000, 16);
IMPLEMENT_DRREG_ACCESSORS(LEN0, 0x000C0000, 18);
IMPLEMENT_DRREG_ACCESSORS(R_W1, 0x00300000, 20);
IMPLEMENT_DRREG_ACCESSORS(LEN1, 0x00C00000, 22);
IMPLEMENT_DRREG_ACCESSORS(R_W2, 0x03000000, 24);
IMPLEMENT_DRREG_ACCESSORS(LEN2, 0x0C000000, 26);
IMPLEMENT_DRREG_ACCESSORS(R_W3, 0x30000000, 28);
IMPLEMENT_DRREG_ACCESSORS(LEN3, 0xC0000000, 30);
IMPLEMENT_DRREG_ACCESSORS(bp_enabled, 0xFF, 0);
BX_CPP_INLINE Bit32u get32() const { return val32; }
BX_CPP_INLINE void set32(Bit32u val) { val32 = val; }
};
#if BX_CPU_LEVEL >= 5
#define BX_EFER_SCE_MASK (1 << 0)
#define BX_EFER_LME_MASK (1 << 8)
#define BX_EFER_LMA_MASK (1 << 10)
#define BX_EFER_NXE_MASK (1 << 11)
#define BX_EFER_SVME_MASK (1 << 12)
#define BX_EFER_LMSLE_MASK (1 << 13)
#define BX_EFER_FFXSR_MASK (1 << 14)
#define BX_EFER_TCE_MASK (1 << 15)
struct bx_efer_t {
Bit32u val32; // 32bit value of register
IMPLEMENT_CRREG_ACCESSORS(SCE, 0);
#if BX_SUPPORT_X86_64
IMPLEMENT_CRREG_ACCESSORS(LME, 8);
IMPLEMENT_CRREG_ACCESSORS(LMA, 10);
#endif
IMPLEMENT_CRREG_ACCESSORS(NXE, 11);
#if BX_SUPPORT_X86_64
IMPLEMENT_CRREG_ACCESSORS(SVME, 12); /* AMD Secure Virtual Machine */
IMPLEMENT_CRREG_ACCESSORS(LMSLE, 13); /* AMD Long Mode Segment Limit */
IMPLEMENT_CRREG_ACCESSORS(FFXSR, 14);
IMPLEMENT_CRREG_ACCESSORS(TCE, 15); /* AMD Translation Cache Extensions */
#endif
BX_CPP_INLINE Bit32u get32() const { return val32; }
BX_CPP_INLINE void set32(Bit32u val) { val32 = val; }
};
#endif
#if BX_CPU_LEVEL >= 6
const unsigned XSAVE_HEADER_LEN = 64;
const unsigned XSAVE_FPU_STATE_LEN = 160;
const unsigned XSAVE_SSE_STATE_LEN = 256;
const unsigned XSAVE_YMM_STATE_LEN = 256;
const unsigned XSAVE_OPMASK_STATE_LEN = 64;
const unsigned XSAVE_ZMM_HI256_STATE_LEN = 512;
const unsigned XSAVE_HI_ZMM_STATE_LEN = 1024;
const unsigned XSAVE_PT_STATE_LEN = 128;
const unsigned XSAVE_PKRU_STATE_LEN = 8;
const unsigned XSAVE_PASID_STATE_LEN = 8;
const unsigned XSAVE_CET_U_STATE_LEN = 16;
const unsigned XSAVE_CET_S_STATE_LEN = 24;
const unsigned XSAVE_HDC_STATE_LEN = 8;
const unsigned XSAVE_UINTR_STATE_LEN = 48;
const unsigned XSAVE_LBR_STATE_LEN = 808;
const unsigned XSAVE_HWP_STATE_LEN = 8;
const unsigned XSAVE_XTILECFG_STATE_LEN = 64;
const unsigned XSAVE_XTILEDATA_STATE_LEN = 8192;
const unsigned XSAVE_FPU_STATE_OFFSET = 0;
const unsigned XSAVE_SSE_STATE_OFFSET = 160;
const unsigned XSAVE_YMM_STATE_OFFSET = 576;
const unsigned XSAVE_OPMASK_STATE_OFFSET = 1088;
const unsigned XSAVE_ZMM_HI256_STATE_OFFSET = 1152;
const unsigned XSAVE_HI_ZMM_STATE_OFFSET = 1664;
const unsigned XSAVE_PKRU_STATE_OFFSET = 2688;
struct xcr0_t {
Bit32u val32; // 32bit value of register
enum {
BX_XCR0_FPU_BIT = 0,
BX_XCR0_SSE_BIT = 1,
BX_XCR0_YMM_BIT = 2,
BX_XCR0_BNDREGS_BIT = 3, // not implemented, deprecated
BX_XCR0_BNDCFG_BIT = 4, // not implemented, deprecated
BX_XCR0_OPMASK_BIT = 5,
BX_XCR0_ZMM_HI256_BIT = 6,
BX_XCR0_HI_ZMM_BIT = 7,
BX_XCR0_PT_BIT = 8, // not implemented yet
BX_XCR0_PKRU_BIT = 9,
BX_XCR0_PASID_BIT = 10, // not implemented yet
BX_XCR0_CET_U_BIT = 11,
BX_XCR0_CET_S_BIT = 12,
BX_XCR0_HDC_BIT = 13, // not implemented yet
BX_XCR0_UINTR_BIT = 14,
BX_XCR0_LBR_BIT = 15, // not implemented yet
BX_XCR0_HWP_BIT = 16, // not implemented yet
BX_XCR0_XTILECFG_BIT = 17, // not implemented yet
BX_XCR0_XTILEDATA_BIT = 18, // not implemented yet
BX_XCR0_LAST // make sure it is < 32
};
#define BX_XCR0_FPU_MASK (1 << xcr0_t::BX_XCR0_FPU_BIT)
#define BX_XCR0_SSE_MASK (1 << xcr0_t::BX_XCR0_SSE_BIT)
#define BX_XCR0_YMM_MASK (1 << xcr0_t::BX_XCR0_YMM_BIT)
#define BX_XCR0_BNDREGS_MASK (1 << xcr0_t::BX_XCR0_BNDREGS_BIT)
#define BX_XCR0_BNDCFG_MASK (1 << xcr0_t::BX_XCR0_BNDCFG_BIT)
#define BX_XCR0_OPMASK_MASK (1 << xcr0_t::BX_XCR0_OPMASK_BIT)
#define BX_XCR0_ZMM_HI256_MASK (1 << xcr0_t::BX_XCR0_ZMM_HI256_BIT)
#define BX_XCR0_HI_ZMM_MASK (1 << xcr0_t::BX_XCR0_HI_ZMM_BIT)
#define BX_XCR0_PT_MASK (1 << xcr0_t::BX_XCR0_PT_BIT)
#define BX_XCR0_PKRU_MASK (1 << xcr0_t::BX_XCR0_PKRU_BIT)
#define BX_XCR0_PASID_MASK (1 << xcr0_t::BX_XCR0_PASID_BIT)
#define BX_XCR0_CET_U_MASK (1 << xcr0_t::BX_XCR0_CET_U_BIT)
#define BX_XCR0_CET_S_MASK (1 << xcr0_t::BX_XCR0_CET_S_BIT)
#define BX_XCR0_HDC_MASK (1 << xcr0_t::BX_XCR0_HDC_BIT)
#define BX_XCR0_UINTR_MASK (1 << xcr0_t::BX_XCR0_UINTR_BIT)
#define BX_XCR0_LBR_MASK (1 << xcr0_t::BX_XCR0_LBR_BIT)
#define BX_XCR0_HWP_MASK (1 << xcr0_t::BX_XCR0_HWP_BIT)
#define BX_XCR0_XTILECFG_MASK (1 << xcr0_t::BX_XCR0_XTILECFG_BIT)
#define BX_XCR0_XTILEDATA_MASK (1 << xcr0_t::BX_XCR0_XTILEDATA_BIT)
IMPLEMENT_CRREG_ACCESSORS(FPU, BX_XCR0_FPU_BIT);
IMPLEMENT_CRREG_ACCESSORS(SSE, BX_XCR0_SSE_BIT);
IMPLEMENT_CRREG_ACCESSORS(YMM, BX_XCR0_YMM_BIT);
IMPLEMENT_CRREG_ACCESSORS(BNDREGS, BX_XCR0_BNDREGS_BIT);
IMPLEMENT_CRREG_ACCESSORS(BNDCFG, BX_XCR0_BNDCFG_BIT);
IMPLEMENT_CRREG_ACCESSORS(OPMASK, BX_XCR0_OPMASK_BIT);
IMPLEMENT_CRREG_ACCESSORS(ZMM_HI256, BX_XCR0_ZMM_HI256_BIT);
IMPLEMENT_CRREG_ACCESSORS(HI_ZMM, BX_XCR0_HI_ZMM_BIT);
IMPLEMENT_CRREG_ACCESSORS(PT, BX_XCR0_PT_BIT);
IMPLEMENT_CRREG_ACCESSORS(PKRU, BX_XCR0_PKRU_BIT);
IMPLEMENT_CRREG_ACCESSORS(PASID, BX_XCR0_PASID_BIT);
IMPLEMENT_CRREG_ACCESSORS(CET_U, BX_XCR0_CET_U_BIT);
IMPLEMENT_CRREG_ACCESSORS(CET_S, BX_XCR0_CET_S_BIT);
IMPLEMENT_CRREG_ACCESSORS(UINTR, BX_XCR0_UINTR_BIT);
IMPLEMENT_CRREG_ACCESSORS(LBR, BX_XCR0_LBR_BIT);
IMPLEMENT_CRREG_ACCESSORS(HWP, BX_XCR0_HWP_BIT);
IMPLEMENT_CRREG_ACCESSORS(XTILECFG, BX_XCR0_XTILECFG_BIT);
IMPLEMENT_CRREG_ACCESSORS(XTILEDATA, BX_XCR0_XTILEDATA_BIT);
BX_CPP_INLINE Bit32u get32() const { return val32; }
BX_CPP_INLINE void set32(Bit32u val) { val32 = val; }
};
#if BX_USE_CPU_SMF
typedef bool (*XSaveStateInUsePtr_tR)(void);
typedef void (*XSavePtr_tR)(bxInstruction_c *i, bx_address offset);
typedef void (*XRestorPtr_tR)(bxInstruction_c *i, bx_address offset);
typedef void (*XRestorInitPtr_tR)(void);
#else
typedef bool (BX_CPU_C::*XSaveStateInUsePtr_tR)(void);
typedef void (BX_CPU_C::*XSavePtr_tR)(bxInstruction_c *i, bx_address offset);
typedef void (BX_CPU_C::*XRestorPtr_tR)(bxInstruction_c *i, bx_address offset);
typedef void (BX_CPU_C::*XRestorInitPtr_tR)(void);
#endif
struct XSaveRestoreStateHelper {
unsigned len;
unsigned offset;
XSaveStateInUsePtr_tR xstate_in_use_method;
XSavePtr_tR xsave_method;
XRestorPtr_tR xrstor_method;
XRestorInitPtr_tR xrstor_init_method;
};
#endif
#undef IMPLEMENT_CRREG_ACCESSORS
#undef IMPLEMENT_DRREG_ACCESSORS
#if BX_CPU_LEVEL >= 5
typedef struct msr {
unsigned index; // MSR index
unsigned type; // MSR type: 1 - lin address, 2 - phy address
#define BX_LIN_ADDRESS_MSR 1
#define BX_PHY_ADDRESS_MSR 2
Bit64u val64; // current MSR value
Bit64u reset_value; // reset value
Bit64u reserved; // r/o bits - fault on write
Bit64u ignored; // hardwired bits - ignored on write
msr(unsigned idx, unsigned msr_type = 0, Bit64u reset_val = 0, Bit64u rsrv = 0, Bit64u ign = 0):
index(idx), type(msr_type), val64(reset_val), reset_value(reset_val),
reserved(rsrv), ignored(ign) {}
msr(unsigned idx, Bit64u reset_val = 0, Bit64u rsrv = 0, Bit64u ign = 0):
index(idx), type(0), val64(reset_val), reset_value(reset_val),
reserved(rsrv), ignored(ign) {}
BX_CPP_INLINE void reset() { val64 = reset_value; }
BX_CPP_INLINE Bit64u get64() const { return val64; }
BX_CPP_INLINE bool set64(Bit64u new_val) {
new_val = (new_val & ~ignored) | (val64 & ignored);
switch(type) {
#if BX_SUPPORT_X86_64
case BX_LIN_ADDRESS_MSR:
if (! IsCanonical48(new_val)) return 0;
break;
#endif
case BX_PHY_ADDRESS_MSR:
if (! IsValidPhyAddr(new_val)) return 0;
break;
default:
if ((val64 ^ new_val) & reserved) return 0;
break;
}
val64 = new_val;
return 1;
}
} MSR;
#endif // BX_CPU_LEVEL >= 5
#endif