Bochs/bochs/iodev/usb_uhci.cc

1135 lines
44 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2009 Benjamin D Lunt (fys at frontiernet net)
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
// Experimental USB UHCI adapter
// Notes: See usb_common.cc
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
#include "iodev.h"
#if BX_SUPPORT_PCI && BX_SUPPORT_USB_UHCI
#include "pci.h"
#include "usb_common.h"
#include "usb_uhci.h"
#define LOG_THIS theUSB_UHCI->
bx_usb_uhci_c* theUSB_UHCI = NULL;
const Bit8u uhci_iomask[32] = {2, 1, 2, 1, 2, 1, 2, 0, 4, 0, 0, 0, 1, 0, 0, 0,
3, 1, 3, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int libusb_uhci_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
theUSB_UHCI = new bx_usb_uhci_c();
BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theUSB_UHCI, BX_PLUGIN_USB_UHCI);
return 0; // Success
}
void libusb_uhci_LTX_plugin_fini(void)
{
delete theUSB_UHCI;
}
bx_usb_uhci_c::bx_usb_uhci_c()
{
put("UHCI");
memset((void*)&hub, 0, sizeof(bx_usb_uhci_t));
device_buffer = NULL;
hub.iolight_timer_index = BX_NULL_TIMER_HANDLE;
}
bx_usb_uhci_c::~bx_usb_uhci_c()
{
char pname[16];
if (BX_UHCI_THIS device_buffer != NULL)
delete [] BX_UHCI_THIS device_buffer;
for (int i=0; i<BX_N_USB_UHCI_PORTS; i++) {
sprintf(pname, "port%d.device", i+1);
SIM->get_param_string(pname, SIM->get_param(BXPN_USB_UHCI))->set_handler(NULL);
remove_device(i);
}
BX_DEBUG(("Exit"));
}
void bx_usb_uhci_c::init(void)
{
unsigned i;
char pname[6];
bx_list_c *port;
bx_param_string_c *device, *options;
BX_UHCI_THIS device_buffer = new Bit8u[65536];
// Call our timer routine every 1mS (1,000uS)
// Continuous and active
BX_UHCI_THIS hub.timer_index =
bx_pc_system.register_timer(this, usb_timer_handler, 1000, 1,1, "usb.timer");
if (DEV_is_pci_device(BX_PLUGIN_USB_UHCI)) {
BX_UHCI_THIS hub.devfunc = 0x00;
} else {
BX_UHCI_THIS hub.devfunc = BX_PCI_DEVICE(1,2);
}
DEV_register_pci_handlers(this, &BX_UHCI_THIS hub.devfunc, BX_PLUGIN_USB_UHCI,
"Experimental USB UHCI");
for (i=0; i<256; i++) {
BX_UHCI_THIS pci_conf[i] = 0x0;
}
BX_UHCI_THIS pci_base_address[4] = 0x0;
//FIXME: for now, we want a status bar // hub zero, port zero
BX_UHCI_THIS hub.statusbar_id = bx_gui->register_statusitem("UHCI");
bx_list_c *usb_rt = (bx_list_c*)SIM->get_param(BXPN_MENU_RUNTIME_USB);
bx_list_c *uhci = (bx_list_c*)SIM->get_param(BXPN_USB_UHCI);
uhci->set_options(uhci->SHOW_PARENT);
uhci->set_runtime_param(1);
usb_rt->add(uhci);
for (i=0; i<BX_N_USB_UHCI_PORTS; i++) {
sprintf(pname, "port%d", i+1);
port = (bx_list_c*)SIM->get_param(pname, uhci);
port->set_runtime_param(1);
device = (bx_param_string_c*)port->get_by_name("device");
device->set_handler(usb_param_handler);
device->set_runtime_param(1);
options = (bx_param_string_c*)port->get_by_name("options");
options->set_runtime_param(1);
BX_UHCI_THIS hub.usb_port[i].device = NULL;
}
//HACK: Turn on debug messages from the start
//BX_UHCI_THIS setonoff(LOGLEV_DEBUG, ACT_REPORT);
// register timer for i/o light
if (BX_UHCI_THIS hub.iolight_timer_index == BX_NULL_TIMER_HANDLE) {
BX_UHCI_THIS hub.iolight_timer_index =
DEV_register_timer(this, iolight_timer_handler, 5000, 0,0, "UHCI i/o light");
}
BX_UHCI_THIS hub.iolight_counter = 0;
// register handler for correct device connect handling after runtime config
SIM->register_runtime_config_handler(BX_UHCI_THIS_PTR, runtime_config_handler);
BX_UHCI_THIS hub.device_change = 0;
BX_INFO(("USB UHCI initialized"));
}
void bx_usb_uhci_c::reset(unsigned type)
{
unsigned i, j;
char pname[6];
if (type == BX_RESET_HARDWARE) {
static const struct reset_vals_t {
unsigned addr;
unsigned char val;
} reset_vals[] = {
{ 0x00, 0x86 }, { 0x01, 0x80 }, // 0x8086 = vendor
{ 0x02, 0x20 }, { 0x03, 0x70 }, // 0x7020 = device
{ 0x04, 0x05 }, { 0x05, 0x00 }, // command_io
{ 0x06, 0x80 }, { 0x07, 0x02 }, // status
{ 0x08, 0x01 }, // revision number
{ 0x09, 0x00 }, // interface
{ 0x0a, 0x03 }, // class_sub USB Host Controller
{ 0x0b, 0x0c }, // class_base Serial Bus Controller
{ 0x0D, 0x20 }, // bus latency
{ 0x0e, 0x00 }, // header_type_generic
// address space 0x20 - 0x23
{ 0x20, 0x01 }, { 0x21, 0x00 },
{ 0x22, 0x00 }, { 0x23, 0x00 },
{ 0x3c, 0x00 }, // IRQ
{ 0x3d, BX_PCI_INTD }, // INT
{ 0x60, 0x10 }, // USB revision 1.0
{ 0x6a, 0x01 }, // USB clock
{ 0xc1, 0x20 } // PIRQ enable
};
for (i = 0; i < sizeof(reset_vals) / sizeof(*reset_vals); ++i) {
BX_UHCI_THIS pci_conf[reset_vals[i].addr] = reset_vals[i].val;
}
}
// reset locals
BX_UHCI_THIS busy = 0;
BX_UHCI_THIS global_reset = 0;
// Put the USB registers into their RESET state
BX_UHCI_THIS hub.usb_command.max_packet_size = 0;
BX_UHCI_THIS hub.usb_command.configured = 0;
BX_UHCI_THIS hub.usb_command.debug = 0;
BX_UHCI_THIS hub.usb_command.resume = 0;
BX_UHCI_THIS hub.usb_command.suspend = 0;
BX_UHCI_THIS hub.usb_command.reset = 0;
BX_UHCI_THIS hub.usb_command.host_reset = 0;
BX_UHCI_THIS hub.usb_command.schedule = 0;
BX_UHCI_THIS hub.usb_status.error_interrupt = 0;
BX_UHCI_THIS hub.usb_status.host_error = 0;
BX_UHCI_THIS hub.usb_status.host_halted = 0;
BX_UHCI_THIS hub.usb_status.interrupt = 0;
BX_UHCI_THIS hub.usb_status.pci_error = 0;
BX_UHCI_THIS hub.usb_status.resume = 0;
BX_UHCI_THIS hub.usb_enable.short_packet = 0;
BX_UHCI_THIS hub.usb_enable.on_complete = 0;
BX_UHCI_THIS hub.usb_enable.resume = 0;
BX_UHCI_THIS hub.usb_enable.timeout_crc = 0;
BX_UHCI_THIS hub.usb_frame_num.frame_num = 0x0000;
BX_UHCI_THIS hub.usb_frame_base.frame_base = 0x00000000;
BX_UHCI_THIS hub.usb_sof.sof_timing = 0x40;
for (j=0; j<BX_N_USB_UHCI_PORTS; j++) {
BX_UHCI_THIS hub.usb_port[j].connect_changed = 0;
BX_UHCI_THIS hub.usb_port[j].line_dminus = 0;
BX_UHCI_THIS hub.usb_port[j].line_dplus = 0;
BX_UHCI_THIS hub.usb_port[j].low_speed = 0;
BX_UHCI_THIS hub.usb_port[j].reset = 0;
BX_UHCI_THIS hub.usb_port[j].resume = 0;
BX_UHCI_THIS hub.usb_port[j].suspend = 0;
BX_UHCI_THIS hub.usb_port[j].enabled = 0;
BX_UHCI_THIS hub.usb_port[j].able_changed = 0;
BX_UHCI_THIS hub.usb_port[j].status = 0;
if (BX_UHCI_THIS hub.usb_port[j].device == NULL) {
sprintf(pname, "port%d", j+1);
init_device(j, (bx_list_c*)SIM->get_param(pname, SIM->get_param(BXPN_USB_UHCI)));
} else {
usb_set_connect_status(j, BX_UHCI_THIS hub.usb_port[j].device->get_type(), 1);
}
}
}
void bx_usb_uhci_c::register_state(void)
{
unsigned j;
char portnum[8];
bx_list_c *hub, *usb_cmd, *usb_st, *usb_en, *port;
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "usb_uhci", "USB UHCI State");
hub = new bx_list_c(list, "hub", BX_N_USB_UHCI_PORTS + 7);
usb_cmd = new bx_list_c(hub, "usb_command", 8);
new bx_shadow_bool_c(usb_cmd, "max_packet_size", &BX_UHCI_THIS hub.usb_command.max_packet_size);
new bx_shadow_bool_c(usb_cmd, "configured", &BX_UHCI_THIS hub.usb_command.configured);
new bx_shadow_bool_c(usb_cmd, "debug", &BX_UHCI_THIS hub.usb_command.debug);
new bx_shadow_bool_c(usb_cmd, "resume", &BX_UHCI_THIS hub.usb_command.resume);
new bx_shadow_bool_c(usb_cmd, "suspend", &BX_UHCI_THIS hub.usb_command.suspend);
new bx_shadow_bool_c(usb_cmd, "reset", &BX_UHCI_THIS hub.usb_command.reset);
new bx_shadow_bool_c(usb_cmd, "host_reset", &BX_UHCI_THIS hub.usb_command.host_reset);
new bx_shadow_bool_c(usb_cmd, "schedule", &BX_UHCI_THIS hub.usb_command.schedule);
usb_st = new bx_list_c(hub, "usb_status", 6);
new bx_shadow_bool_c(usb_st, "host_halted", &BX_UHCI_THIS hub.usb_status.host_halted);
new bx_shadow_bool_c(usb_st, "host_error", &BX_UHCI_THIS hub.usb_status.host_error);
new bx_shadow_bool_c(usb_st, "pci_error", &BX_UHCI_THIS hub.usb_status.pci_error);
new bx_shadow_bool_c(usb_st, "resume", &BX_UHCI_THIS hub.usb_status.resume);
new bx_shadow_bool_c(usb_st, "error_interrupt", &BX_UHCI_THIS hub.usb_status.error_interrupt);
new bx_shadow_bool_c(usb_st, "interrupt", &BX_UHCI_THIS hub.usb_status.interrupt);
usb_en = new bx_list_c(hub, "usb_enable", 4);
new bx_shadow_bool_c(usb_en, "short_packet", &BX_UHCI_THIS hub.usb_enable.short_packet);
new bx_shadow_bool_c(usb_en, "on_complete", &BX_UHCI_THIS hub.usb_enable.on_complete);
new bx_shadow_bool_c(usb_en, "resume", &BX_UHCI_THIS hub.usb_enable.resume);
new bx_shadow_bool_c(usb_en, "timeout_crc", &BX_UHCI_THIS hub.usb_enable.timeout_crc);
new bx_shadow_num_c(hub, "frame_num", &BX_UHCI_THIS hub.usb_frame_num.frame_num, BASE_HEX);
new bx_shadow_num_c(hub, "frame_base", &BX_UHCI_THIS hub.usb_frame_base.frame_base, BASE_HEX);
new bx_shadow_num_c(hub, "sof_timing", &BX_UHCI_THIS hub.usb_sof.sof_timing, BASE_HEX);
for (j=0; j<BX_N_USB_UHCI_PORTS; j++) {
sprintf(portnum, "port%d", j+1);
port = new bx_list_c(hub, portnum, 11);
new bx_shadow_bool_c(port, "suspend", &BX_UHCI_THIS hub.usb_port[j].suspend);
new bx_shadow_bool_c(port, "reset", &BX_UHCI_THIS hub.usb_port[j].reset);
new bx_shadow_bool_c(port, "low_speed", &BX_UHCI_THIS hub.usb_port[j].low_speed);
new bx_shadow_bool_c(port, "resume", &BX_UHCI_THIS hub.usb_port[j].resume);
new bx_shadow_bool_c(port, "line_dminus", &BX_UHCI_THIS hub.usb_port[j].line_dminus);
new bx_shadow_bool_c(port, "line_dplus", &BX_UHCI_THIS hub.usb_port[j].line_dplus);
new bx_shadow_bool_c(port, "able_changed", &BX_UHCI_THIS hub.usb_port[j].able_changed);
new bx_shadow_bool_c(port, "enabled", &BX_UHCI_THIS hub.usb_port[j].enabled);
new bx_shadow_bool_c(port, "connect_changed", &BX_UHCI_THIS hub.usb_port[j].connect_changed);
new bx_shadow_bool_c(port, "status", &BX_UHCI_THIS hub.usb_port[j].status);
// empty list for USB device state
new bx_list_c(port, "device", 20);
}
register_pci_state(hub);
new bx_shadow_bool_c(list, "busy", &BX_UHCI_THIS busy);
new bx_shadow_num_c(list, "global_reset", &BX_UHCI_THIS global_reset);
}
void bx_usb_uhci_c::after_restore_state(void)
{
if (DEV_pci_set_base_io(BX_UHCI_THIS_PTR, read_handler, write_handler,
&BX_UHCI_THIS pci_base_address[4],
&BX_UHCI_THIS pci_conf[0x20],
32, &uhci_iomask[0], "USB UHCI Hub"))
{
BX_INFO(("new base address: 0x%04x", BX_UHCI_THIS pci_base_address[4]));
}
for (int j=0; j<BX_N_USB_UHCI_PORTS; j++) {
if (BX_UHCI_THIS hub.usb_port[j].device != NULL) {
BX_UHCI_THIS hub.usb_port[j].device->after_restore_state();
}
}
}
void bx_usb_uhci_c::init_device(Bit8u port, bx_list_c *portconf)
{
usbdev_type type;
char pname[BX_PATHNAME_LEN];
const char *devname = NULL;
devname = ((bx_param_string_c*)portconf->get_by_name("device"))->getptr();
if (devname == NULL) return;
if (!strlen(devname) || !strcmp(devname, "none")) return;
if (BX_UHCI_THIS hub.usb_port[port].device != NULL) {
BX_ERROR(("init_device(): port%d already in use", port+1));
return;
}
sprintf(pname, "usb_uhci.hub.port%d.device", port+1);
bx_list_c *sr_list = (bx_list_c*)SIM->get_param(pname, SIM->get_bochs_root());
type = DEV_usb_init_device(portconf, BX_UHCI_THIS_PTR, &BX_UHCI_THIS hub.usb_port[port].device, sr_list);
if (BX_UHCI_THIS hub.usb_port[port].device != NULL) {
usb_set_connect_status(port, type, 1);
}
}
void bx_usb_uhci_c::remove_device(Bit8u port)
{
char pname[BX_PATHNAME_LEN];
if (BX_UHCI_THIS hub.usb_port[port].device != NULL) {
delete BX_UHCI_THIS hub.usb_port[port].device;
BX_UHCI_THIS hub.usb_port[port].device = NULL;
sprintf(pname, "usb_uhci.hub.port%d.device", port+1);
bx_list_c *devlist = (bx_list_c*)SIM->get_param(pname, SIM->get_bochs_root());
devlist->clear();
}
}
void bx_usb_uhci_c::set_irq_level(bx_bool level)
{
DEV_pci_set_irq(BX_UHCI_THIS hub.devfunc, BX_UHCI_THIS pci_conf[0x3d], level);
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u bx_usb_uhci_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_USB_UHCI_SMF
bx_usb_uhci_c *class_ptr = (bx_usb_uhci_c *) this_ptr;
return class_ptr->read(address, io_len);
}
Bit32u bx_usb_uhci_c::read(Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_USB_UHCI_SMF
Bit32u val = 0x0;
Bit8u offset,port;
offset = address - BX_UHCI_THIS pci_base_address[4];
switch (offset) {
case 0x00: // command register (16-bit)
val = BX_UHCI_THIS hub.usb_command.max_packet_size << 7
| BX_UHCI_THIS hub.usb_command.configured << 6
| BX_UHCI_THIS hub.usb_command.debug << 5
| BX_UHCI_THIS hub.usb_command.resume << 4
| BX_UHCI_THIS hub.usb_command.suspend << 3
| BX_UHCI_THIS hub.usb_command.reset << 2
| BX_UHCI_THIS hub.usb_command.host_reset << 1
| BX_UHCI_THIS hub.usb_command.schedule;
break;
case 0x02: // status register (16-bit)
val = BX_UHCI_THIS hub.usb_status.host_halted << 5
| BX_UHCI_THIS hub.usb_status.host_error << 4
| BX_UHCI_THIS hub.usb_status.pci_error << 3
| BX_UHCI_THIS hub.usb_status.resume << 2
| BX_UHCI_THIS hub.usb_status.error_interrupt << 1
| BX_UHCI_THIS hub.usb_status.interrupt;
break;
case 0x04: // interrupt enable register (16-bit)
val = BX_UHCI_THIS hub.usb_enable.short_packet << 3
| BX_UHCI_THIS hub.usb_enable.on_complete << 2
| BX_UHCI_THIS hub.usb_enable.resume << 1
| BX_UHCI_THIS hub.usb_enable.timeout_crc;
break;
case 0x06: // frame number register (16-bit)
val = BX_UHCI_THIS hub.usb_frame_num.frame_num;
break;
case 0x08: // frame base register (32-bit)
val = BX_UHCI_THIS hub.usb_frame_base.frame_base;
break;
case 0x0C: // start of Frame Modify register (8-bit)
val = BX_UHCI_THIS hub.usb_sof.sof_timing;
break;
case 0x14: // port #3 non existant, but linux systems check it to see if there are more than 2
BX_ERROR(("read from non existant offset 0x14 (port #3)"));
val = 0xFF7F;
break;
case 0x10: // port #1
case 0x11:
case 0x12: // port #2
case 0x13:
port = (offset & 0x0F) >> 1;
if (port < BX_N_USB_UHCI_PORTS) {
val = BX_UHCI_THIS hub.usb_port[port].suspend << 12
| 1 << 10 // some Root Hubs have bit 10 set ?????
| BX_UHCI_THIS hub.usb_port[port].reset << 9
| BX_UHCI_THIS hub.usb_port[port].low_speed << 8
| 1 << 7
| BX_UHCI_THIS hub.usb_port[port].resume << 6
| BX_UHCI_THIS hub.usb_port[port].line_dminus << 5
| BX_UHCI_THIS hub.usb_port[port].line_dplus << 4
| BX_UHCI_THIS hub.usb_port[port].able_changed << 3
| BX_UHCI_THIS hub.usb_port[port].enabled << 2
| BX_UHCI_THIS hub.usb_port[port].connect_changed << 1
| BX_UHCI_THIS hub.usb_port[port].status;
if (offset & 1) val >>= 8;
break;
} // else fall through to default
default:
val = 0xFF7F; // keep compiler happy
BX_ERROR(("unsupported io read from address=0x%04x!", (unsigned) address));
break;
}
BX_DEBUG(("register read from address 0x%04X: 0x%08X (%2i bits)", (unsigned) address, (Bit32u) val, io_len * 8));
return(val);
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void bx_usb_uhci_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_USB_UHCI_SMF
bx_usb_uhci_c *class_ptr = (bx_usb_uhci_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
void bx_usb_uhci_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_USB_UHCI_SMF
Bit8u offset,port;
BX_DEBUG(("register write to address 0x%04X: 0x%08X (%2i bits)", (unsigned) address, (unsigned) value, io_len * 8));
offset = address - BX_UHCI_THIS pci_base_address[4];
switch (offset) {
case 0x00: // command register (16-bit) (R/W)
if (value & 0xFF00)
BX_DEBUG(("write to command register with bits 15:8 not zero: 0x%04x", value));
BX_UHCI_THIS hub.usb_command.max_packet_size = (value & 0x80) ? 1: 0;
BX_UHCI_THIS hub.usb_command.configured = (value & 0x40) ? 1: 0;
BX_UHCI_THIS hub.usb_command.debug = (value & 0x20) ? 1: 0;
BX_UHCI_THIS hub.usb_command.resume = (value & 0x10) ? 1: 0;
BX_UHCI_THIS hub.usb_command.suspend = (value & 0x08) ? 1: 0;
BX_UHCI_THIS hub.usb_command.reset = (value & 0x04) ? 1: 0;
BX_UHCI_THIS hub.usb_command.host_reset = (value & 0x02) ? 1: 0;
BX_UHCI_THIS hub.usb_command.schedule = (value & 0x01) ? 1: 0;
// HCRESET
if (BX_UHCI_THIS hub.usb_command.host_reset) {
BX_UHCI_THIS reset(0);
for (unsigned i=0; i<BX_N_USB_UHCI_PORTS; i++) {
if (BX_UHCI_THIS hub.usb_port[i].status) {
if (BX_UHCI_THIS hub.usb_port[i].device != NULL) {
DEV_usb_send_msg(BX_UHCI_THIS hub.usb_port[i].device, USB_MSG_RESET);
}
}
BX_UHCI_THIS hub.usb_port[i].connect_changed = 1;
BX_UHCI_THIS hub.usb_port[i].enabled = 0;
BX_UHCI_THIS hub.usb_port[i].able_changed = 1;
}
}
// If software set the GRESET bit, we need to send the reset to all USB.
// The software should guarentee that the reset is for at least 10ms.
// We hold the reset until software resets this bit
if (BX_UHCI_THIS hub.usb_command.reset) {
BX_UHCI_THIS global_reset = 1;
BX_DEBUG(("Global Reset"));
} else {
// if software cleared the reset, then we need to reset the usb registers.
if (BX_UHCI_THIS global_reset) {
BX_UHCI_THIS global_reset = 0;
unsigned int running = BX_UHCI_THIS hub.usb_command.schedule;
BX_UHCI_THIS reset(0);
BX_UHCI_THIS hub.usb_status.host_halted = (running) ? 1 : 0;
}
}
// If Run/Stop, identify in log
if (BX_UHCI_THIS hub.usb_command.schedule) {
BX_UHCI_THIS hub.usb_status.host_halted = 0;
BX_DEBUG(("Schedule bit set in Command register"));
} else {
BX_UHCI_THIS hub.usb_status.host_halted = 1;
BX_DEBUG(("Schedule bit clear in Command register"));
}
// If Debug mode set, panic. Not implemented
if (BX_UHCI_THIS hub.usb_command.debug)
BX_PANIC(("Software set DEBUG bit in Command register. Not implemented"));
break;
case 0x02: // status register (16-bit) (R/WC)
if (value & 0xFFC0)
BX_DEBUG(("write to status register with bits 15:6 not zero: 0x%04x", value));
// host_halted, even though not specified in the specs, is read only
//BX_UHCI_THIS hub.usb_status.host_halted = (value & 0x20) ? 0: BX_UHCI_THIS hub.usb_status.host_halted;
BX_UHCI_THIS hub.usb_status.host_error = (value & 0x10) ? 0: BX_UHCI_THIS hub.usb_status.host_error;
BX_UHCI_THIS hub.usb_status.pci_error = (value & 0x08) ? 0: BX_UHCI_THIS hub.usb_status.pci_error;
BX_UHCI_THIS hub.usb_status.resume = (value & 0x04) ? 0: BX_UHCI_THIS hub.usb_status.resume;
BX_UHCI_THIS hub.usb_status.error_interrupt = (value & 0x02) ? 0: BX_UHCI_THIS hub.usb_status.error_interrupt;
BX_UHCI_THIS hub.usb_status.interrupt = (value & 0x01) ? 0: BX_UHCI_THIS hub.usb_status.interrupt;
break;
case 0x04: // interrupt enable register (16-bit)
if (value & 0xFFF0)
BX_DEBUG(("write to interrupt enable register with bits 15:4 not zero: 0x%04x", value));
BX_UHCI_THIS hub.usb_enable.short_packet = (value & 0x08) ? 1: 0;
BX_UHCI_THIS hub.usb_enable.on_complete = (value & 0x04) ? 1: 0;
BX_UHCI_THIS hub.usb_enable.resume = (value & 0x02) ? 1: 0;
BX_UHCI_THIS hub.usb_enable.timeout_crc = (value & 0x01) ? 1: 0;
if (value & 0x08) {
BX_DEBUG(("Host set Enable Interrupt on Short Packet"));
}
if (value & 0x04) {
BX_DEBUG(("Host set Enable Interrupt on Complete"));
}
if (value & 0x02) {
BX_DEBUG(("Host set Enable Interrupt on Resume"));
}
break;
case 0x06: // frame number register (16-bit)
if (value & 0xF800)
BX_DEBUG(("write to frame number register with bits 15:11 not zero: 0x%04x", value));
if (BX_UHCI_THIS hub.usb_status.host_halted)
BX_UHCI_THIS hub.usb_frame_num.frame_num = (value & 0x07FF);
else
// ignored by the hardward, but lets report it anyway
BX_DEBUG(("write to frame number register with STATUS.HALTED == 0"));
break;
case 0x08: // frame base register (32-bit)
if (value & 0xFFF)
BX_DEBUG(("write to frame base register with bits 11:0 not zero: 0x%08x", value));
BX_UHCI_THIS hub.usb_frame_base.frame_base = (value & ~0xfff);
break;
case 0x0C: // start of Frame Modify register (8-bit)
if (value & 0x80)
BX_DEBUG(("write to SOF Modify register with bit 7 not zero: 0x%04x", value));
BX_UHCI_THIS hub.usb_sof.sof_timing = value;
break;
case 0x14: // port #3 non existant, but linux systems check it to see if there are more than 2
BX_ERROR(("write to non existant offset 0x14 (port #3)"));
break;
case 0x10: // port #1
case 0x12: // port #2
port = (offset & 0x0F) >> 1;
if ((port < BX_N_USB_UHCI_PORTS) && (io_len == 2)) {
// If the ports reset bit is set, don't allow any writes unless the new write will clear the reset bit
if (BX_UHCI_THIS hub.usb_port[port].reset & (value & (1<<9)))
break;
if (value & ((1<<5) | (1<<4) | (1<<0)))
BX_DEBUG(("write to one or more read-only bits in port #%d register: 0x%04x", port+1, value));
if (!(value & (1<<7)))
BX_DEBUG(("write to port #%d register bit 7 = 0", port+1));
if (value & (1<<8))
BX_DEBUG(("write to bit 8 in port #%d register ignored", port+1));
if ((value & (1<<12)) && BX_UHCI_THIS hub.usb_command.suspend)
BX_DEBUG(("write to port #%d register bit 12 when in Global-Suspend", port+1));
BX_UHCI_THIS hub.usb_port[port].suspend = (value & (1<<12)) ? 1 : 0;
BX_UHCI_THIS hub.usb_port[port].reset = (value & (1<<9)) ? 1 : 0;
BX_UHCI_THIS hub.usb_port[port].resume = (value & (1<<6)) ? 1 : 0;
if (!BX_UHCI_THIS hub.usb_port[port].enabled && (value & (1<<2)))
BX_UHCI_THIS hub.usb_port[port].able_changed = 0;
else
BX_UHCI_THIS hub.usb_port[port].able_changed = (value & (1<<3)) ? 0 : BX_UHCI_THIS hub.usb_port[port].able_changed;
BX_UHCI_THIS hub.usb_port[port].enabled = (value & (1<<2)) ? 1 : 0;
BX_UHCI_THIS hub.usb_port[port].connect_changed = (value & (1<<1)) ? 0 : BX_UHCI_THIS hub.usb_port[port].connect_changed;
// if port reset, reset function(s)
//TODO: only reset items on the downstream...
// for now, reset the one and only
// TODO: descriptors, etc....
if (BX_UHCI_THIS hub.usb_port[port].reset) {
BX_UHCI_THIS hub.usb_port[port].suspend = 0;
BX_UHCI_THIS hub.usb_port[port].resume = 0;
BX_UHCI_THIS hub.usb_port[port].enabled = 0;
// are we are currently connected/disconnected
if (BX_UHCI_THIS hub.usb_port[port].status) {
if (BX_UHCI_THIS hub.usb_port[port].device != NULL) {
BX_UHCI_THIS hub.usb_port[port].low_speed =
(BX_UHCI_THIS hub.usb_port[port].device->get_speed() == USB_SPEED_LOW);
usb_set_connect_status(port, BX_UHCI_THIS hub.usb_port[port].device->get_type(), 1);
DEV_usb_send_msg(BX_UHCI_THIS hub.usb_port[port].device, USB_MSG_RESET);
}
}
BX_INFO(("Port%d: Reset", port+1));
}
break;
}
// else fall through to default
default:
BX_ERROR(("unsupported io write to address=0x%04x!", (unsigned) address));
break;
}
}
void bx_usb_uhci_c::usb_timer_handler(void *this_ptr)
{
bx_usb_uhci_c *class_ptr = (bx_usb_uhci_c *) this_ptr;
class_ptr->usb_timer();
}
// Called once every 1ms
#define USB_STACK_SIZE 256
void bx_usb_uhci_c::usb_timer(void)
{
int i;
// If the "global reset" bit was set by software
if (BX_UHCI_THIS global_reset) {
for (i=0; i<BX_N_USB_UHCI_PORTS; i++) {
BX_UHCI_THIS hub.usb_port[i].able_changed = 0;
BX_UHCI_THIS hub.usb_port[i].connect_changed = 0;
BX_UHCI_THIS hub.usb_port[i].enabled = 0;
BX_UHCI_THIS hub.usb_port[i].line_dminus = 0;
BX_UHCI_THIS hub.usb_port[i].line_dplus = 0;
BX_UHCI_THIS hub.usb_port[i].low_speed = 0;
BX_UHCI_THIS hub.usb_port[i].reset = 0;
BX_UHCI_THIS hub.usb_port[i].resume = 0;
BX_UHCI_THIS hub.usb_port[i].status = 0;
BX_UHCI_THIS hub.usb_port[i].suspend = 0;
}
return;
}
// If command.schedule = 1, then run schedule
// *** This assumes that we can complete the frame within the 1ms time allowed ***
// Actually, not complete, but reach the end of the frame. This means that there may still
// be TDs and QHs that were BREADTH defined and will be executed on the next cycle/iteration.
if (BX_UHCI_THIS busy) {
BX_PANIC(("Did not complete last frame before the 1ms was over. Starting next frame."));
BX_UHCI_THIS busy = 0;
}
if (BX_UHCI_THIS hub.usb_command.schedule) {
BX_UHCI_THIS busy = 1;
bx_bool fire_int = 0;
set_irq_level(0); // make sure it is low
bx_bool interrupt = 0, shortpacket = 0, stalled = 0;
struct TD td;
struct HCSTACK stack[USB_STACK_SIZE+1]; // queue stack for this item only
Bit32s stk = 0;
Bit32u item, address, lastvertaddr = 0, queue_num = 0;
Bit32u frame, frm_addr = BX_UHCI_THIS hub.usb_frame_base.frame_base +
(BX_UHCI_THIS hub.usb_frame_num.frame_num << 2);
DEV_MEM_READ_PHYSICAL(frm_addr, 4, (Bit8u*) &frame);
if ((frame & 1) == 0) {
stack[stk].next = (frame & ~0xF);
stack[stk].d = 0;
stack[stk].q = (frame & 0x0002) ? 1 : 0;
stack[stk].t = 0;
while (stk > -1) {
// Linux seems to just loop a few queues together and wait for the 1ms to end.
// We will just count the stack and exit when we get to a good point to stop.
if (stk >= USB_STACK_SIZE) break;
// check to make sure we are not done before continue-ing on
if ((stack[stk].d == HC_VERT) && stack[stk].t) { stk--; continue; }
if ((stack[stk].d == HC_HORZ) && stack[stk].t) break;
if (stack[stk].q) { // is a queue
address = stack[stk].next;
lastvertaddr = address + 4;
// get HORZ slot
stk++;
DEV_MEM_READ_PHYSICAL(address, 4, (Bit8u*) &item);
stack[stk].next = item & ~0xF;
stack[stk].d = HC_HORZ;
stack[stk].q = (item & 0x0002) ? 1 : 0;
stack[stk].t = (item & 0x0001) ? 1 : 0;
// get VERT slot
stk++;
DEV_MEM_READ_PHYSICAL(lastvertaddr, 4, (Bit8u*) &item);
stack[stk].next = item & ~0xF;
stack[stk].d = HC_VERT;
stack[stk].q = (item & 0x0002) ? 1 : 0;
stack[stk].t = (item & 0x0001) ? 1 : 0;
BX_DEBUG(("Queue %3i: 0x%08X %i %i 0x%08X %i %i", queue_num,
stack[stk-1].next, stack[stk-1].q, stack[stk-1].t,
stack[stk].next, stack[stk].q, stack[stk].t));
queue_num++;
} else { // else is a TD
address = stack[stk].next;
DEV_MEM_READ_PHYSICAL(address, 4, (Bit8u*) &td.dword0);
DEV_MEM_READ_PHYSICAL(address+4, 4, (Bit8u*) &td.dword1);
DEV_MEM_READ_PHYSICAL(address+8, 4, (Bit8u*) &td.dword2);
DEV_MEM_READ_PHYSICAL(address+12, 4, (Bit8u*) &td.dword3);
bx_bool spd = (td.dword1 & (1<<29)) ? 1 : 0;
stack[stk].next = td.dword0 & ~0xF;
bx_bool depthbreadth = (td.dword0 & 0x0004) ? 1 : 0; // 1 = depth first, 0 = breadth first
stack[stk].q = (td.dword0 & 0x0002) ? 1 : 0;
stack[stk].t = (td.dword0 & 0x0001) ? 1 : 0;
if (td.dword1 & (1<<24)) interrupt = 1;
if (td.dword1 & (1<<23)) { // is it an active TD
BX_DEBUG(("Frame: %04i (0x%04X)", BX_UHCI_THIS hub.usb_frame_num.frame_num, BX_UHCI_THIS hub.usb_frame_num.frame_num));
if (BX_UHCI_THIS DoTransfer(address, queue_num, &td)) {
// issue short packet?
Bit16u r_actlen = (((td.dword1 & 0x7FF)+1) & 0x7FF);
Bit16u r_maxlen = (((td.dword2>>21)+1) & 0x7FF);
BX_DEBUG((" r_actlen = 0x%04X r_maxlen = 0x%04X", r_actlen, r_maxlen));
if (((td.dword2 & 0xFF) == USB_TOKEN_IN) && spd && stk && (r_actlen < r_maxlen) && ((td.dword1 & 0x00FF0000) == 0)) {
shortpacket = 1;
td.dword1 |= (1<<29);
}
if (td.dword1 & (1<<22)) stalled = 1;
DEV_MEM_WRITE_PHYSICAL(address+4, 4, (Bit8u*) &td.dword1); // write back the status
if (shortpacket) {
td.dword0 |= 1;
stack[stk].t = 1;
}
// copy pointer for next queue item, in to vert queue head
if ((stk > 0) && (stack[stk].d == HC_VERT))
DEV_MEM_WRITE_PHYSICAL(lastvertaddr, 4, (Bit8u*) &td.dword0);
}
}
if (stk > 0) {
// if last TD in HORZ queue pointer, then we are done.
if (stack[stk].t && (stack[stk].d == HC_HORZ)) break;
// if Breadth first or last item in queue, move to next queue.
if (!depthbreadth || stack[stk].t) {
if (stack[stk].d == HC_HORZ) queue_num--; // <-- really, this should never happen until we
stk--; // support bandwidth reclamation...
}
if (stk < 1) break;
} else {
if (stack[stk].t) break;
}
}
}
// set the status register bit:0 to 1 if SPD is enabled
// and if interrupts not masked via interrupt register, raise irq interrupt.
if (shortpacket && BX_UHCI_THIS hub.usb_enable.short_packet) {
fire_int = 1;
BX_DEBUG((" [SPD] We want it to fire here (Frame: %04i)", BX_UHCI_THIS hub.usb_frame_num.frame_num));
}
// if one of the TD's in this frame had the ioc bit set, we need to
// raise an interrupt, if interrupts are not masked via interrupt register.
// always set the status register if IOC.
if (interrupt && BX_UHCI_THIS hub.usb_enable.on_complete) {
fire_int = 1;
BX_DEBUG((" [IOC] We want it to fire here (Frame: %04i)", BX_UHCI_THIS hub.usb_frame_num.frame_num));
}
if (stalled && BX_UHCI_THIS hub.usb_enable.timeout_crc) {
fire_int = 1;
BX_DEBUG((" [stalled] We want it to fire here (Frame: %04i)", BX_UHCI_THIS hub.usb_frame_num.frame_num));
}
}
// The Frame Number Register is incremented every 1ms
BX_UHCI_THIS hub.usb_frame_num.frame_num++;
BX_UHCI_THIS hub.usb_frame_num.frame_num &= (1024-1);
// if we needed to fire an interrupt now, lets do it *after* we increment the frame_num register
if (fire_int) {
BX_UHCI_THIS hub.usb_status.interrupt = 1;
BX_UHCI_THIS hub.usb_status.error_interrupt = stalled;
set_irq_level(1);
}
// The status.interrupt bit should be set regardless of the enable bits if a IOC or SPD is found
if (shortpacket || interrupt)
BX_UHCI_THIS hub.usb_status.interrupt = 1;
BX_UHCI_THIS busy = 0; // ready to do next frame item
} // end run schedule
// if host turned off the schedule, set the halted bit in the status register
// Note: Can not use an else from the if() above since the host can changed this bit
// while we are processing a frame.
if (BX_UHCI_THIS hub.usb_command.schedule == 0)
BX_UHCI_THIS hub.usb_status.host_halted = 1;
// TODO:
// If in Global_Suspend mode and any of usb_port[i] bits 6,3, or 1 are set,
// we need to issue a Global_Resume (set the global resume bit).
// However, since we don't do anything, let's not.
}
bx_bool bx_usb_uhci_c::DoTransfer(Bit32u address, Bit32u queue_num, struct TD *td) {
int len = 0, ret = 0;
Bit16u maxlen = (td->dword2 >> 21);
Bit8u addr = (td->dword2 >> 8) & 0x7F;
Bit8u endpt = (td->dword2 >> 15) & 0x0F;
Bit8u pid = td->dword2 & 0xFF;
BX_DEBUG(("QH%03i:TD found at address: 0x%08X", queue_num, address));
BX_DEBUG((" %08X %08X %08X %08X", td->dword0, td->dword1, td->dword2, td->dword3));
// check TD to make sure it is valid
// A max length 0x500 to 0x77E is illegal
if (((td->dword2 >> 21) >= 0x500) && ((td->dword2 >> 21) != 0x7FF)) {
BX_ERROR(("error at 11111111111"));
return 1; // error = consistency check failure
}
//if (td->dword0 & 0x8) return 1; // error = reserved bits in dword0 set
// other error checks here
// the device should remain in a stall state until the next setup packet is recieved
// For some reason, this doesn't work yet.
//if (dev && dev->in_stall && (pid != USB_TOKEN_SETUP))
// return FALSE;
maxlen++;
maxlen &= 0x7FF;
/* set status bar conditions for device */
if (maxlen > 0) {
if (!BX_UHCI_THIS hub.iolight_counter) {
if (pid == USB_TOKEN_OUT)
bx_gui->statusbar_setitem(BX_UHCI_THIS hub.statusbar_id, 1, 1); // write
else
bx_gui->statusbar_setitem(BX_UHCI_THIS hub.statusbar_id, 1); // read
}
BX_UHCI_THIS hub.iolight_counter = 5;
bx_pc_system.activate_timer(BX_UHCI_THIS hub.iolight_timer_index, 5000, 0);
}
BX_UHCI_THIS usb_packet.pid = pid;
BX_UHCI_THIS usb_packet.devaddr = addr;
BX_UHCI_THIS usb_packet.devep = endpt;
BX_UHCI_THIS usb_packet.data = device_buffer;
BX_UHCI_THIS usb_packet.len = maxlen;
switch (pid) {
case USB_TOKEN_OUT:
case USB_TOKEN_SETUP:
if (maxlen > 0) {
DEV_MEM_READ_PHYSICAL_DMA(td->dword3, maxlen, device_buffer);
}
ret = BX_UHCI_THIS broadcast_packet(&BX_UHCI_THIS usb_packet);
len = maxlen;
break;
case USB_TOKEN_IN:
ret = BX_UHCI_THIS broadcast_packet(&BX_UHCI_THIS usb_packet);
if (ret >= 0) {
len = ret;
if (len > maxlen) {
len = maxlen;
ret = USB_RET_BABBLE;
}
if (len > 0) {
DEV_MEM_WRITE_PHYSICAL_DMA(td->dword3, len, device_buffer);
}
} else {
len = 0;
}
break;
default:
BX_UHCI_THIS hub.usb_status.host_error = 1;
BX_UHCI_THIS set_irq_level(1);
}
if (ret >= 0) {
BX_UHCI_THIS set_status(td, 0, 0, 0, 0, 0, 0, len-1);
} else {
BX_UHCI_THIS set_status(td, 1, 0, 0, 0, 0, 0, 0x007); // stalled
}
return 1;
}
int bx_usb_uhci_c::broadcast_packet(USBPacket *p)
{
int i, ret;
ret = USB_RET_NODEV;
for (i = 0; i < BX_N_USB_UHCI_PORTS && ret == USB_RET_NODEV; i++) {
if ((BX_UHCI_THIS hub.usb_port[i].device != NULL) &&
(BX_UHCI_THIS hub.usb_port[i].enabled)) {
ret = BX_UHCI_THIS hub.usb_port[i].device->handle_packet(p);
}
}
return ret;
}
// If the request fails, set the stall bit ????
void bx_usb_uhci_c::set_status(struct TD *td, bx_bool stalled, bx_bool data_buffer_error, bx_bool babble,
bx_bool nak, bx_bool crc_time_out, bx_bool bitstuff_error, Bit16u act_len)
{
// clear out the bits we can modify and/or want zero
td->dword1 &= 0xDF00F800;
// now set the bits according to the passed param's
td->dword1 |= stalled ? (1<<22) : 0; // stalled
td->dword1 |= data_buffer_error ? (1<<21) : 0; // data buffer error
td->dword1 |= babble ? (1<<20) : 0; // babble
td->dword1 |= nak ? (1<<19) : 0; // nak
td->dword1 |= crc_time_out ? (1<<18) : 0; // crc/timeout
td->dword1 |= bitstuff_error ? (1<<17) : 0; // bitstuff error
td->dword1 |= (act_len & 0x7FF); // actual length
if (stalled || data_buffer_error || babble || nak || crc_time_out || bitstuff_error)
td->dword1 &= ~((1<<28) | (1<<27)); // clear the c_err field in there was an error
}
void bx_usb_uhci_c::iolight_timer_handler(void *this_ptr)
{
bx_usb_uhci_c *class_ptr = (bx_usb_uhci_c *) this_ptr;
class_ptr->iolight_timer();
}
void bx_usb_uhci_c::iolight_timer()
{
if (BX_UHCI_THIS hub.iolight_counter > 0) {
if (--BX_UHCI_THIS hub.iolight_counter)
bx_pc_system.activate_timer(BX_UHCI_THIS hub.iolight_timer_index, 5000, 0);
else
bx_gui->statusbar_setitem(BX_UHCI_THIS hub.statusbar_id, 0);
}
}
void bx_usb_uhci_c::runtime_config_handler(void *this_ptr)
{
bx_usb_uhci_c *class_ptr = (bx_usb_uhci_c *) this_ptr;
class_ptr->runtime_config();
}
void bx_usb_uhci_c::runtime_config(void)
{
int i;
char pname[6];
for (i = 0; i < BX_N_USB_UHCI_PORTS; i++) {
// device change support
if ((BX_UHCI_THIS hub.device_change & (1 << i)) != 0) {
BX_INFO(("USB port #%d: device connect", i+1));
sprintf(pname, "port%d", i + 1);
init_device(i, (bx_list_c*)SIM->get_param(pname, SIM->get_param(BXPN_USB_UHCI)));
BX_UHCI_THIS hub.device_change &= ~(1 << i);
}
// forward to connected device
if (BX_UHCI_THIS hub.usb_port[i].device != NULL) {
BX_UHCI_THIS hub.usb_port[i].device->runtime_config();
}
}
}
// pci configuration space read callback handler
Bit32u bx_usb_uhci_c::pci_read_handler(Bit8u address, unsigned io_len)
{
Bit32u value = 0;
for (unsigned i=0; i<io_len; i++) {
value |= (BX_UHCI_THIS pci_conf[address+i] << (i*8));
}
if (io_len == 1)
BX_DEBUG(("read PCI register 0x%02x value 0x%02x", address, value));
else if (io_len == 2)
BX_DEBUG(("read PCI register 0x%02x value 0x%04x", address, value));
else if (io_len == 4)
BX_DEBUG(("read PCI register 0x%02x value 0x%08x", address, value));
return value;
}
// pci configuration space write callback handler
void bx_usb_uhci_c::pci_write_handler(Bit8u address, Bit32u value, unsigned io_len)
{
Bit8u value8, oldval;
bx_bool baseaddr_change = 0;
if (((address >= 0x10) && (address < 0x20)) ||
((address > 0x23) && (address < 0x34)))
return;
for (unsigned i=0; i<io_len; i++) {
value8 = (value >> (i*8)) & 0xFF;
oldval = BX_UHCI_THIS pci_conf[address+i];
switch (address+i) {
case 0x04:
value8 &= 0x05;
BX_UHCI_THIS pci_conf[address+i] = value8;
break;
case 0x3d: //
case 0x3e: //
case 0x3f: //
case 0x05: // disallowing write to command hi-byte
case 0x06: // disallowing write to status lo-byte (is that expected?)
break;
case 0x3c:
if (value8 != oldval) {
BX_INFO(("new irq line = %d", value8));
BX_UHCI_THIS pci_conf[address+i] = value8;
}
break;
case 0x20:
value8 = (value8 & 0xfc) | 0x01;
case 0x21:
case 0x22:
case 0x23:
baseaddr_change |= (value8 != oldval);
default:
BX_UHCI_THIS pci_conf[address+i] = value8;
}
}
if (baseaddr_change) {
if (DEV_pci_set_base_io(BX_UHCI_THIS_PTR, read_handler, write_handler,
&BX_UHCI_THIS pci_base_address[4],
&BX_UHCI_THIS pci_conf[0x20],
32, &uhci_iomask[0], "USB UHCI Hub")) {
BX_INFO(("new base address: 0x%04x", BX_UHCI_THIS pci_base_address[4]));
}
}
if (io_len == 1)
BX_DEBUG(("write PCI register 0x%02x value 0x%02x", address, value));
else if (io_len == 2)
BX_DEBUG(("write PCI register 0x%02x value 0x%04x", address, value));
else if (io_len == 4)
BX_DEBUG(("write PCI register 0x%02x value 0x%08x", address, value));
}
void bx_usb_uhci_c::usb_set_connect_status(Bit8u port, int type, bx_bool connected)
{
usb_device_c *device = BX_UHCI_THIS hub.usb_port[port].device;
if (device != NULL) {
if (device->get_type() == type) {
if (connected) {
BX_UHCI_THIS hub.usb_port[port].low_speed =
(device->get_speed() == USB_SPEED_LOW);
if (BX_UHCI_THIS hub.usb_port[port].low_speed) {
BX_UHCI_THIS hub.usb_port[port].line_dminus = 1; // dminus=1 & dplus=0 = low speed (at idle time)
BX_UHCI_THIS hub.usb_port[port].line_dplus = 0; // dminus=0 & dplus=1 = high speed (at idle time)
} else {
BX_UHCI_THIS hub.usb_port[port].line_dminus = 0;
BX_UHCI_THIS hub.usb_port[port].line_dplus = 1;
}
BX_UHCI_THIS hub.usb_port[port].status = 1;
BX_UHCI_THIS hub.usb_port[port].connect_changed = 1;
BX_UHCI_THIS hub.usb_port[port].able_changed = 1;
// if in suspend state, signal resume
if (BX_UHCI_THIS hub.usb_command.suspend) {
BX_UHCI_THIS hub.usb_port[port].resume = 1;
BX_UHCI_THIS hub.usb_status.resume = 1;
if (BX_UHCI_THIS hub.usb_enable.resume) {
BX_UHCI_THIS hub.usb_status.interrupt = 1;
set_irq_level(1);
}
}
if (!device->get_connected()) {
if (!device->init()) {
usb_set_connect_status(port, type, 0);
BX_ERROR(("port #%d: connect failed", port+1));
} else {
BX_INFO(("port #%d: connect: %s", port+1, device->get_info()));
}
}
} else {
BX_UHCI_THIS hub.usb_port[port].status = 0;
BX_UHCI_THIS hub.usb_port[port].connect_changed = 1;
BX_UHCI_THIS hub.usb_port[port].enabled = 0;
BX_UHCI_THIS hub.usb_port[port].able_changed = 1;
BX_UHCI_THIS hub.usb_port[port].low_speed = 0;
BX_UHCI_THIS hub.usb_port[port].line_dminus = 0;
BX_UHCI_THIS hub.usb_port[port].line_dplus = 0;
remove_device(port);
}
}
}
}
// USB runtime parameter handler
const char *bx_usb_uhci_c::usb_param_handler(bx_param_string_c *param, int set,
const char *oldval, const char *val, int maxlen)
{
usbdev_type type = USB_DEV_TYPE_NONE;
int portnum;
if (set) {
portnum = atoi((param->get_parent())->get_name()+4) - 1;
bx_bool empty = ((strlen(val) == 0) || (!strcmp(val, "none")));
if ((portnum >= 0) && (portnum < BX_N_USB_UHCI_PORTS)) {
if (empty && BX_UHCI_THIS hub.usb_port[portnum].status) {
BX_INFO(("USB port #%d: device disconnect", portnum+1));
if (BX_UHCI_THIS hub.usb_port[portnum].device != NULL) {
type = BX_UHCI_THIS hub.usb_port[portnum].device->get_type();
}
usb_set_connect_status(portnum, type, 0);
} else if (!empty && !BX_UHCI_THIS hub.usb_port[portnum].status) {
BX_UHCI_THIS hub.device_change |= (1 << portnum);
}
} else {
BX_PANIC(("usb_param_handler called with unexpected parameter '%s'", param->get_name()));
}
}
return val;
}
#endif // BX_SUPPORT_PCI && BX_SUPPORT_USB_UHCI