29ba221c3e
BEFORE it is executed. Print the registers at this time, BEFORE the instruction, since they are the values BEFORE the instruction is executed. The important result of this is that in TRACE output, both the instruction causing an exception and the first instruction of the exception handler are BOTH printed. I'm working on getting this behavior in the debugger user-interface. Modified Files: cpu/cpu.cc debug/dbg_main.cc
881 lines
28 KiB
C++
881 lines
28 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: cpu.cc,v 1.23 2002-02-15 22:58:06 yakovlev Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
#define BX_INSTR_SPY 0
|
|
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
#if BX_USE_CPU_SMF
|
|
#define this (BX_CPU(0))
|
|
#endif
|
|
|
|
//unsigned counter[2] = { 0, 0 };
|
|
|
|
|
|
|
|
#if BX_SIM_ID == 0 // only need to define once
|
|
// This array defines a look-up table for the even parity-ness
|
|
// of an 8bit quantity, for optimal assignment of the parity bit
|
|
// in the EFLAGS register
|
|
const Boolean bx_parity_lookup[256] = {
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
|
|
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
|
|
};
|
|
#endif
|
|
|
|
|
|
#if BX_SMP_PROCESSORS==1
|
|
// single processor simulation, so there's one of everything
|
|
BX_CPU_C bx_cpu;
|
|
BX_MEM_C bx_mem;
|
|
#else
|
|
// multiprocessor simulation, we need an array of cpus and memories
|
|
BX_CPU_C *bx_cpu_array[BX_SMP_PROCESSORS];
|
|
BX_MEM_C *bx_mem_array[BX_ADDRESS_SPACES];
|
|
#endif
|
|
|
|
|
|
|
|
// notes:
|
|
//
|
|
// check limit of CS?
|
|
|
|
#ifdef REGISTER_IADDR
|
|
extern void REGISTER_IADDR(Bit32u addr);
|
|
#endif
|
|
|
|
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
|
|
// instructions and then return so that the other processors have a chance to
|
|
// run. This is used only when simulating multiple processors.
|
|
//
|
|
// If maximum instructions have been executed, return. A count less
|
|
// than zero means run forever.
|
|
#define CHECK_MAX_INSTRUCTIONS(count) \
|
|
if (count >= 0) { \
|
|
count--; if (count == 0) return; \
|
|
}
|
|
|
|
#if BX_SMP_PROCESSORS==1
|
|
# define BX_TICK1_IF_SINGLE_PROCESSOR() BX_TICK1()
|
|
#else
|
|
# define BX_TICK1_IF_SINGLE_PROCESSOR()
|
|
#endif
|
|
|
|
|
|
#if BX_DYNAMIC_TRANSLATION == 0
|
|
void
|
|
BX_CPU_C::cpu_loop(Bit32s max_instr_count)
|
|
{
|
|
unsigned ret;
|
|
BxInstruction_t i;
|
|
unsigned maxisize;
|
|
Bit8u *fetch_ptr;
|
|
Boolean is_32;
|
|
|
|
#if BX_DEBUGGER
|
|
BX_CPU_THIS_PTR break_point = 0;
|
|
#ifdef MAGIC_BREAKPOINT
|
|
BX_CPU_THIS_PTR magic_break = 0;
|
|
#endif
|
|
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
|
|
#endif
|
|
|
|
(void) setjmp( BX_CPU_THIS_PTR jmp_buf_env );
|
|
|
|
// not sure if these two are used during the async handling... --bbd
|
|
BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
|
|
BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
|
|
|
|
main_cpu_loop:
|
|
|
|
// ???
|
|
BX_CPU_THIS_PTR EXT = 0;
|
|
BX_CPU_THIS_PTR errorno = 0;
|
|
|
|
// First check on events which occurred for previous instructions
|
|
// (traps) and ones which are asynchronous to the CPU
|
|
// (hardware interrupts).
|
|
if (BX_CPU_THIS_PTR async_event)
|
|
goto handle_async_event;
|
|
|
|
async_events_processed:
|
|
// added so that all debugging/tracing code uses the correct EIP even in the
|
|
// instruction just after a trap/interrupt. If you use the prev_eip that was
|
|
// set before handle_async_event, traces and breakpoints fail to show the
|
|
// first instruction of int/trap handlers.
|
|
BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
|
|
BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
|
|
|
|
// Now we can handle things which are synchronous to instruction
|
|
// execution.
|
|
if (BX_CPU_THIS_PTR eflags.rf) {
|
|
BX_CPU_THIS_PTR eflags.rf = 0;
|
|
}
|
|
#if BX_X86_DEBUGGER
|
|
else {
|
|
// only bother comparing if any breakpoints enabled
|
|
if ( BX_CPU_THIS_PTR dr7 & 0x000000ff ) {
|
|
Bit32u iaddr =
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base +
|
|
BX_CPU_THIS_PTR prev_eip;
|
|
Bit32u dr6_bits;
|
|
if ( (dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction,
|
|
BX_HWDebugInstruction)) ) {
|
|
// Add to the list of debug events thus far.
|
|
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
|
|
BX_CPU_THIS_PTR async_event = 1;
|
|
// If debug events are not inhibited on this boundary,
|
|
// fire off a debug fault. Otherwise handle it on the next
|
|
// boundary. (becomes a trap)
|
|
if ( !(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
|
|
// Commit debug events to DR6
|
|
BX_CPU_THIS_PTR dr6 = BX_CPU_THIS_PTR debug_trap;
|
|
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// We have ignored processing of external interrupts and
|
|
// debug events on this boundary. Reset the mask so they
|
|
// will be processed on the next boundary.
|
|
BX_CPU_THIS_PTR inhibit_mask = 0;
|
|
|
|
|
|
#if BX_DEBUGGER
|
|
{
|
|
Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
|
|
if ( dbg_is_begin_instr_bpoint(
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
|
|
debug_eip,
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip,
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
|
|
return;
|
|
}
|
|
}
|
|
#endif // #if BX_DEBUGGER
|
|
|
|
#if BX_INSTR_SPY
|
|
{
|
|
int n=0;
|
|
if ((n & 0xffffff) == 0) {
|
|
Bit32u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
|
|
Bit32u eip = BX_CPU_THIS_PTR prev_eip;
|
|
fprintf (stdout, "instr %d, time %lld, pc %04x:%08x, fetch_ptr=%p\n", n, bx_pc_system.time_ticks (), cs, eip, fetch_ptr);
|
|
}
|
|
n++;
|
|
}
|
|
#endif
|
|
|
|
is_32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
|
|
|
|
if (BX_CPU_THIS_PTR bytesleft == 0) {
|
|
prefetch();
|
|
}
|
|
fetch_ptr = BX_CPU_THIS_PTR fetch_ptr;
|
|
|
|
maxisize = 16;
|
|
if (BX_CPU_THIS_PTR bytesleft < 16)
|
|
maxisize = BX_CPU_THIS_PTR bytesleft;
|
|
ret = FetchDecode(fetch_ptr, &i, maxisize, is_32);
|
|
|
|
if (ret) {
|
|
if (i.ResolveModrm) {
|
|
// call method on BX_CPU_C object
|
|
BX_CPU_CALL_METHOD(i.ResolveModrm, (&i));
|
|
}
|
|
BX_CPU_THIS_PTR fetch_ptr += i.ilen;
|
|
BX_CPU_THIS_PTR bytesleft -= i.ilen;
|
|
fetch_decode_OK:
|
|
|
|
#if BX_DEBUGGER
|
|
if (BX_CPU_THIS_PTR trace) {
|
|
// print the instruction that is about to be executed.
|
|
// fprintf(stderr, "begin about to execute:\n");
|
|
bx_dbg_disassemble_current (-1, 1); // all cpus, print time stamp
|
|
// fprintf(stderr, " end about to execute:\n");
|
|
}
|
|
#endif
|
|
|
|
if (i.rep_used && (i.attr & BxRepeatable)) {
|
|
repeat_loop:
|
|
if (i.attr & BxRepeatableZF) {
|
|
if (i.as_32) {
|
|
if (ECX != 0) {
|
|
BX_CPU_CALL_METHOD(i.execute, (&i));
|
|
ECX -= 1;
|
|
}
|
|
if ((i.rep_used==0xf3) && (get_ZF()==0)) goto repeat_done;
|
|
if ((i.rep_used==0xf2) && (get_ZF()!=0)) goto repeat_done;
|
|
if (ECX == 0) goto repeat_done;
|
|
goto repeat_not_done;
|
|
}
|
|
else {
|
|
if (CX != 0) {
|
|
BX_CPU_CALL_METHOD(i.execute, (&i));
|
|
CX -= 1;
|
|
}
|
|
if ((i.rep_used==0xf3) && (get_ZF()==0)) goto repeat_done;
|
|
if ((i.rep_used==0xf2) && (get_ZF()!=0)) goto repeat_done;
|
|
if (CX == 0) goto repeat_done;
|
|
goto repeat_not_done;
|
|
}
|
|
}
|
|
else { // normal repeat, no concern for ZF
|
|
if (i.as_32) {
|
|
if (ECX != 0) {
|
|
BX_CPU_CALL_METHOD(i.execute, (&i));
|
|
ECX -= 1;
|
|
}
|
|
if (ECX == 0) goto repeat_done;
|
|
goto repeat_not_done;
|
|
}
|
|
else { // 16bit addrsize
|
|
if (CX != 0) {
|
|
BX_CPU_CALL_METHOD(i.execute, (&i));
|
|
CX -= 1;
|
|
}
|
|
if (CX == 0) goto repeat_done;
|
|
goto repeat_not_done;
|
|
}
|
|
}
|
|
// shouldn't get here from above
|
|
repeat_not_done:
|
|
#ifdef REGISTER_IADDR
|
|
REGISTER_IADDR(BX_CPU_THIS_PTR eip + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base);
|
|
#endif
|
|
|
|
#if BX_DEBUGGER
|
|
// if (BX_CPU_THIS_PTR trace) {
|
|
// print the instruction that was just executed.
|
|
// bx_dbg_disassemble_current (-1, 1); // all cpus, print time stamp
|
|
// }
|
|
#endif
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
|
|
|
#if BX_DEBUGGER == 0
|
|
if (BX_CPU_THIS_PTR async_event) {
|
|
invalidate_prefetch_q();
|
|
goto debugger_check;
|
|
}
|
|
goto repeat_loop;
|
|
#else /* if BX_DEBUGGER == 1 */
|
|
invalidate_prefetch_q();
|
|
goto debugger_check;
|
|
#endif
|
|
|
|
|
|
repeat_done:
|
|
BX_CPU_THIS_PTR eip += i.ilen;
|
|
}
|
|
else {
|
|
// non repeating instruction
|
|
BX_CPU_THIS_PTR eip += i.ilen;
|
|
BX_CPU_CALL_METHOD(i.execute, (&i));
|
|
}
|
|
|
|
BX_CPU_THIS_PTR prev_eip = EIP; // commit new EIP
|
|
BX_CPU_THIS_PTR prev_esp = ESP; // commit new ESP
|
|
#ifdef REGISTER_IADDR
|
|
REGISTER_IADDR(BX_CPU_THIS_PTR eip + BX_CPU_THIS_PTR sregs[BX_SREG_CS].cache.u.segment.base);
|
|
#endif
|
|
|
|
#if BX_DEBUGGER
|
|
// if (BX_CPU_THIS_PTR trace) {
|
|
// print the instruction that was just executed.
|
|
// bx_dbg_disassemble_current (-1, 1); // all cpus, print time stamp
|
|
// }
|
|
#endif
|
|
BX_TICK1_IF_SINGLE_PROCESSOR();
|
|
|
|
debugger_check:
|
|
|
|
#if (BX_SMP_PROCESSORS>1 && BX_DEBUGGER==0)
|
|
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
|
|
// instructions and then return so that the other processors have a chance
|
|
// to run. This is used only when simulating multiple processors. If only
|
|
// one processor, don't waste any cycles on it! Also, it is not needed
|
|
// with the debugger because its guard mechanism provides the same
|
|
// functionality.
|
|
CHECK_MAX_INSTRUCTIONS(max_instr_count);
|
|
#endif
|
|
|
|
#if BX_DEBUGGER
|
|
|
|
// BW vm mode switch support is in dbg_is_begin_instr_bpoint
|
|
// note instr generating exceptions never reach this point.
|
|
|
|
// (mch) Read/write, time break point support
|
|
if (BX_CPU_THIS_PTR break_point) {
|
|
switch (BX_CPU_THIS_PTR break_point) {
|
|
case BREAK_POINT_TIME:
|
|
BX_INFO(("[%lld] Caught time breakpoint", bx_pc_system.time_ticks()));
|
|
BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT;
|
|
return;
|
|
case BREAK_POINT_READ:
|
|
BX_INFO(("[%lld] Caught read watch point", bx_pc_system.time_ticks()));
|
|
BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT;
|
|
return;
|
|
case BREAK_POINT_WRITE:
|
|
BX_INFO(("[%lld] Caught write watch point", bx_pc_system.time_ticks()));
|
|
BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT;
|
|
return;
|
|
default:
|
|
BX_PANIC(("Weird break point condition"));
|
|
}
|
|
}
|
|
#ifdef MAGIC_BREAKPOINT
|
|
// (mch) Magic break point support
|
|
if (BX_CPU_THIS_PTR magic_break) {
|
|
if (bx_dbg.magic_break_enabled) {
|
|
BX_DEBUG(("Stopped on MAGIC BREAKPOINT"));
|
|
BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT;
|
|
return;
|
|
} else {
|
|
BX_CPU_THIS_PTR magic_break = 0;
|
|
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
|
|
BX_DEBUG(("Ignoring MAGIC BREAKPOINT"));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
{
|
|
// check for icount or control-C. If found, set guard reg and return.
|
|
Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
|
|
if ( dbg_is_end_instr_bpoint(
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
|
|
debug_eip,
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + debug_eip,
|
|
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
#endif // #if BX_DEBUGGER
|
|
goto main_cpu_loop;
|
|
}
|
|
else {
|
|
unsigned remain, j;
|
|
static Bit8u FetchBuffer[16];
|
|
Bit8u *temp_ptr;
|
|
|
|
// read all leftover bytes in current page
|
|
for (j=0; j<BX_CPU_THIS_PTR bytesleft; j++) {
|
|
FetchBuffer[j] = *fetch_ptr++;
|
|
}
|
|
|
|
// get remaining bytes for prefetch in next page
|
|
// prefetch() needs eip current
|
|
BX_CPU_THIS_PTR eip += BX_CPU_THIS_PTR bytesleft;
|
|
remain = BX_CPU_THIS_PTR bytesleft;
|
|
prefetch();
|
|
|
|
if (BX_CPU_THIS_PTR bytesleft < 16) {
|
|
// make sure (bytesleft - remain) below doesn't go negative
|
|
BX_PANIC(("fetch_decode: bytesleft==0 after prefetch"));
|
|
}
|
|
temp_ptr = fetch_ptr = BX_CPU_THIS_PTR fetch_ptr;
|
|
|
|
// read leftover bytes in next page
|
|
for (; j<16; j++) {
|
|
FetchBuffer[j] = *temp_ptr++;
|
|
}
|
|
ret = FetchDecode(FetchBuffer, &i, 16, is_32);
|
|
if (ret==0)
|
|
BX_PANIC(("fetchdecode: cross boundary: ret==0"));
|
|
if (i.ResolveModrm) {
|
|
BX_CPU_CALL_METHOD(i.ResolveModrm, (&i));
|
|
}
|
|
remain = i.ilen - remain;
|
|
|
|
// note: eip has already been advanced to beginning of page
|
|
BX_CPU_THIS_PTR fetch_ptr = fetch_ptr + remain;
|
|
BX_CPU_THIS_PTR bytesleft -= remain;
|
|
//BX_CPU_THIS_PTR eip += remain;
|
|
BX_CPU_THIS_PTR eip = BX_CPU_THIS_PTR prev_eip;
|
|
goto fetch_decode_OK;
|
|
}
|
|
|
|
|
|
|
|
//
|
|
// This area is where we process special conditions and events.
|
|
//
|
|
|
|
handle_async_event:
|
|
|
|
if (BX_CPU_THIS_PTR debug_trap & 0x80000000) {
|
|
// I made up the bitmask above to mean HALT state.
|
|
#if BX_SMP_PROCESSORS==1
|
|
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
|
|
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
|
|
// for one processor, pass the time as quickly as possible until
|
|
// an interrupt wakes up the CPU.
|
|
while (1) {
|
|
if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_) {
|
|
break;
|
|
}
|
|
BX_TICK1();
|
|
}
|
|
#else /* BX_SMP_PROCESSORS != 1 */
|
|
// for multiprocessor simulation, even if this CPU is halted we still
|
|
// must give the others a chance to simulate. If an interrupt has
|
|
// arrived, then clear the HALT condition; otherwise just return from
|
|
// the CPU loop with stop_reason STOP_CPU_HALTED.
|
|
if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_) {
|
|
// interrupt ends the HALT condition
|
|
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
|
|
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
|
|
//bx_printf ("halt condition has been cleared in %s", name);
|
|
} else {
|
|
// HALT condition remains, return so other CPUs have a chance
|
|
#if BX_DEBUGGER
|
|
BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED;
|
|
#endif
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
// Priority 1: Hardware Reset and Machine Checks
|
|
// RESET
|
|
// Machine Check
|
|
// (bochs doesn't support these)
|
|
|
|
// Priority 2: Trap on Task Switch
|
|
// T flag in TSS is set
|
|
if (BX_CPU_THIS_PTR debug_trap & 0x00008000) {
|
|
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
|
|
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
|
|
}
|
|
|
|
// Priority 3: External Hardware Interventions
|
|
// FLUSH
|
|
// STOPCLK
|
|
// SMI
|
|
// INIT
|
|
// (bochs doesn't support these)
|
|
|
|
// Priority 4: Traps on Previous Instruction
|
|
// Breakpoints
|
|
// Debug Trap Exceptions (TF flag set or data/IO breakpoint)
|
|
if ( BX_CPU_THIS_PTR debug_trap &&
|
|
!(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
|
|
// A trap may be inhibited on this boundary due to an instruction
|
|
// which loaded SS. If so we clear the inhibit_mask below
|
|
// and don't execute this code until the next boundary.
|
|
// Commit debug events to DR6
|
|
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
|
|
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
|
|
}
|
|
|
|
// Priority 5: External Interrupts
|
|
// NMI Interrupts
|
|
// Maskable Hardware Interrupts
|
|
if (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_INTERRUPTS) {
|
|
// Processing external interrupts is inhibited on this
|
|
// boundary because of certain instructions like STI.
|
|
// inhibit_mask is cleared below, in which case we will have
|
|
// an opportunity to check interrupts on the next instruction
|
|
// boundary.
|
|
}
|
|
else if (BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_ && BX_DBG_ASYNC_INTR) {
|
|
Bit8u vector;
|
|
|
|
// NOTE: similar code in ::take_irq()
|
|
#if BX_SUPPORT_APIC
|
|
if (BX_CPU_THIS_PTR int_from_local_apic)
|
|
vector = BX_CPU_THIS_PTR local_apic.acknowledge_int ();
|
|
else
|
|
vector = BX_IAC(); // may set INTR with next interrupt
|
|
#else
|
|
// if no local APIC, always acknowledge the PIC.
|
|
vector = BX_IAC(); // may set INTR with next interrupt
|
|
#endif
|
|
//BX_DEBUG(("decode: interrupt %u",
|
|
// (unsigned) vector));
|
|
BX_CPU_THIS_PTR errorno = 0;
|
|
BX_CPU_THIS_PTR EXT = 1; /* external event */
|
|
interrupt(vector, 0, 0, 0);
|
|
BX_INSTR_HWINTERRUPT(vector, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR eip);
|
|
}
|
|
else if (BX_HRQ && BX_DBG_ASYNC_DMA) {
|
|
// NOTE: similar code in ::take_dma()
|
|
// assert Hold Acknowledge (HLDA) and go into a bus hold state
|
|
BX_RAISE_HLDA();
|
|
}
|
|
|
|
// Priority 6: Faults from fetching next instruction
|
|
// Code breakpoint fault
|
|
// Code segment limit violation (priority 7 on 486/Pentium)
|
|
// Code page fault (priority 7 on 486/Pentium)
|
|
// (handled in main decode loop)
|
|
|
|
// Priority 7: Faults from decoding next instruction
|
|
// Instruction length > 15 bytes
|
|
// Illegal opcode
|
|
// Coprocessor not available
|
|
// (handled in main decode loop etc)
|
|
|
|
// Priority 8: Faults on executing an instruction
|
|
// Floating point execution
|
|
// Overflow
|
|
// Bound error
|
|
// Invalid TSS
|
|
// Segment not present
|
|
// Stack fault
|
|
// General protection
|
|
// Data page fault
|
|
// Alignment check
|
|
// (handled by rest of the code)
|
|
|
|
|
|
if (BX_CPU_THIS_PTR eflags.tf) {
|
|
// TF is set before execution of next instruction. Schedule
|
|
// a debug trap (#DB) after execution. After completion of
|
|
// next instruction, the code above will invoke the trap.
|
|
BX_CPU_THIS_PTR debug_trap |= 0x00004000; // BS flag in DR6
|
|
}
|
|
|
|
if ( !(BX_CPU_THIS_PTR INTR ||
|
|
BX_CPU_THIS_PTR debug_trap ||
|
|
BX_HRQ ||
|
|
BX_CPU_THIS_PTR eflags.tf) )
|
|
BX_CPU_THIS_PTR async_event = 0;
|
|
goto async_events_processed;
|
|
}
|
|
#endif // #if BX_DYNAMIC_TRANSLATION == 0
|
|
|
|
|
|
|
|
|
|
// boundaries of consideration:
|
|
//
|
|
// * physical memory boundary: 1024k (1Megabyte) (increments of...)
|
|
// * A20 boundary: 1024k (1Megabyte)
|
|
// * page boundary: 4k
|
|
// * ROM boundary: 2k (dont care since we are only reading)
|
|
// * segment boundary: any
|
|
|
|
|
|
|
|
void
|
|
BX_CPU_C::prefetch(void)
|
|
{
|
|
// cs:eIP
|
|
// prefetch QSIZE byte quantity aligned on corresponding boundary
|
|
Bit32u new_linear_addr;
|
|
Bit32u new_phy_addr;
|
|
Bit32u temp_eip, temp_limit;
|
|
|
|
temp_eip = BX_CPU_THIS_PTR eip;
|
|
temp_limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled;
|
|
|
|
new_linear_addr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + temp_eip;
|
|
BX_CPU_THIS_PTR prev_linear_page = new_linear_addr & 0xfffff000;
|
|
if (temp_eip > temp_limit) {
|
|
BX_PANIC(("prefetch: EIP > CS.limit"));
|
|
}
|
|
|
|
#if BX_SUPPORT_PAGING
|
|
if (BX_CPU_THIS_PTR cr0.pg) {
|
|
// aligned block guaranteed to be all in one page, same A20 address
|
|
new_phy_addr = itranslate_linear(new_linear_addr, CPL==3);
|
|
new_phy_addr = A20ADDR(new_phy_addr);
|
|
}
|
|
else
|
|
#endif // BX_SUPPORT_PAGING
|
|
{
|
|
new_phy_addr = A20ADDR(new_linear_addr);
|
|
}
|
|
|
|
if ( new_phy_addr >= BX_CPU_THIS_PTR mem->len ) {
|
|
// don't take this out if dynamic translation enabled,
|
|
// otherwise you must make a check to see if bytesleft is 0 after
|
|
// a call to prefetch() in the dynamic code.
|
|
BX_ERROR(("prefetch: running in bogus memory"));
|
|
}
|
|
|
|
// max physical address as confined by page boundary
|
|
BX_CPU_THIS_PTR prev_phy_page = new_phy_addr & 0xfffff000;
|
|
BX_CPU_THIS_PTR max_phy_addr = BX_CPU_THIS_PTR prev_phy_page | 0x00000fff;
|
|
|
|
// check if segment boundary comes into play
|
|
//if ((temp_limit - temp_eip) < 4096) {
|
|
// }
|
|
|
|
#if BX_PCI_SUPPORT
|
|
if ((new_phy_addr >= 0x000C0000) && (new_phy_addr <= 0x000FFFFF)) {
|
|
BX_CPU_THIS_PTR bytesleft = 0x4000 - (new_phy_addr & 0x3FFF);
|
|
BX_CPU_THIS_PTR fetch_ptr = bx_devices.pci->i440fx_fetch_ptr(new_phy_addr);
|
|
} else {
|
|
BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1;
|
|
BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr];
|
|
}
|
|
#else
|
|
BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1;
|
|
BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr];
|
|
#endif
|
|
}
|
|
|
|
|
|
// If control has transfered locally, it is possible the prefetch Q is
|
|
// still valid. This would happen for repeat instructions, and small
|
|
// branches.
|
|
void
|
|
BX_CPU_C::revalidate_prefetch_q(void)
|
|
{
|
|
Bit32u new_linear_addr, new_linear_page, new_linear_offset;
|
|
Bit32u new_phy_addr;
|
|
|
|
new_linear_addr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + BX_CPU_THIS_PTR eip;
|
|
|
|
new_linear_page = new_linear_addr & 0xfffff000;
|
|
if (new_linear_page == BX_CPU_THIS_PTR prev_linear_page) {
|
|
// same linear address, old linear->physical translation valid
|
|
new_linear_offset = new_linear_addr & 0x00000fff;
|
|
new_phy_addr = BX_CPU_THIS_PTR prev_phy_page | new_linear_offset;
|
|
#if BX_PCI_SUPPORT
|
|
if ((new_phy_addr >= 0x000C0000) && (new_phy_addr <= 0x000FFFFF)) {
|
|
BX_CPU_THIS_PTR bytesleft = 0x4000 - (new_phy_addr & 0x3FFF);
|
|
BX_CPU_THIS_PTR fetch_ptr = bx_devices.pci->i440fx_fetch_ptr(new_phy_addr);
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1;
|
|
BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr];
|
|
}
|
|
#else
|
|
BX_CPU_THIS_PTR bytesleft = (BX_CPU_THIS_PTR max_phy_addr - new_phy_addr) + 1;
|
|
BX_CPU_THIS_PTR fetch_ptr = &BX_CPU_THIS_PTR mem->vector[new_phy_addr];
|
|
#endif
|
|
}
|
|
else {
|
|
BX_CPU_THIS_PTR bytesleft = 0; // invalidate prefetch Q
|
|
}
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::invalidate_prefetch_q(void)
|
|
{
|
|
BX_CPU_THIS_PTR bytesleft = 0;
|
|
}
|
|
|
|
|
|
|
|
|
|
#if BX_DEBUGGER
|
|
extern unsigned int dbg_show_mask;
|
|
|
|
Boolean
|
|
BX_CPU_C::dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
|
|
Bit32u is_32)
|
|
{
|
|
//fprintf (stderr, "begin_instr_bp: checking cs:eip %04x:%08x\n", cs, eip);
|
|
BX_CPU_THIS_PTR guard_found.cs = cs;
|
|
BX_CPU_THIS_PTR guard_found.eip = eip;
|
|
BX_CPU_THIS_PTR guard_found.laddr = laddr;
|
|
BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
|
|
|
|
// BW mode switch breakpoint
|
|
// instruction which generate exceptions never reach the end of the
|
|
// loop due to a long jump. Thats why we check at start of instr.
|
|
// Downside is that we show the instruction about to be executed
|
|
// (not the one generating the mode switch).
|
|
if (BX_CPU_THIS_PTR mode_break &&
|
|
(BX_CPU_THIS_PTR debug_vm != BX_CPU_THIS_PTR eflags.vm)) {
|
|
BX_INFO(("Caught vm mode switch breakpoint"));
|
|
BX_CPU_THIS_PTR debug_vm = BX_CPU_THIS_PTR eflags.vm;
|
|
BX_CPU_THIS_PTR stop_reason = STOP_MODE_BREAK_POINT;
|
|
return 1;
|
|
}
|
|
|
|
if( (BX_CPU_THIS_PTR show_flag) & (dbg_show_mask)) {
|
|
int rv;
|
|
if((rv = bx_dbg_symbolic_output()))
|
|
return rv;
|
|
}
|
|
|
|
// see if debugger is looking for iaddr breakpoint of any type
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) {
|
|
#if BX_DBG_SUPPORT_VIR_BPOINT
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) {
|
|
if (BX_CPU_THIS_PTR guard_found.icount!=0) {
|
|
for (unsigned i=0; i<bx_guard.iaddr.num_virtual; i++) {
|
|
if ( (bx_guard.iaddr.vir[i].cs == cs) &&
|
|
(bx_guard.iaddr.vir[i].eip == eip) ) {
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR;
|
|
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
|
|
return(1); // on a breakpoint
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#if BX_DBG_SUPPORT_LIN_BPOINT
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) {
|
|
if (BX_CPU_THIS_PTR guard_found.icount!=0) {
|
|
for (unsigned i=0; i<bx_guard.iaddr.num_linear; i++) {
|
|
if ( bx_guard.iaddr.lin[i].addr == BX_CPU_THIS_PTR guard_found.laddr ) {
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN;
|
|
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
|
|
return(1); // on a breakpoint
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
#if BX_DBG_SUPPORT_PHY_BPOINT
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) {
|
|
Bit32u phy;
|
|
Boolean valid;
|
|
dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr,
|
|
&phy, &valid);
|
|
// The "guard_found.icount!=0" condition allows you to step or
|
|
// continue beyond a breakpoint. Bryce tried removing it once,
|
|
// and once you get to a breakpoint you are stuck there forever.
|
|
// Not pretty.
|
|
if (valid && (BX_CPU_THIS_PTR guard_found.icount!=0)) {
|
|
for (unsigned i=0; i<bx_guard.iaddr.num_physical; i++) {
|
|
if ( bx_guard.iaddr.phy[i].addr == phy ) {
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY;
|
|
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
|
|
return(1); // on a breakpoint
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
return(0); // not on a breakpoint
|
|
}
|
|
|
|
|
|
Boolean
|
|
BX_CPU_C::dbg_is_end_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
|
|
Bit32u is_32)
|
|
{
|
|
//fprintf (stderr, "end_instr_bp: checking for icount or ^C\n");
|
|
BX_CPU_THIS_PTR guard_found.icount++;
|
|
|
|
// convenient point to see if user typed Ctrl-C
|
|
if (bx_guard.interrupt_requested &&
|
|
(bx_guard.guard_for & BX_DBG_GUARD_CTRL_C)) {
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_CTRL_C;
|
|
return(1);
|
|
}
|
|
|
|
// see if debugger requesting icount guard
|
|
if (bx_guard.guard_for & BX_DBG_GUARD_ICOUNT) {
|
|
if (BX_CPU_THIS_PTR guard_found.icount >= bx_guard.icount) {
|
|
BX_CPU_THIS_PTR guard_found.cs = cs;
|
|
BX_CPU_THIS_PTR guard_found.eip = eip;
|
|
BX_CPU_THIS_PTR guard_found.laddr = laddr;
|
|
BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
|
|
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_ICOUNT;
|
|
return(1);
|
|
}
|
|
}
|
|
|
|
#if (BX_NUM_SIMULATORS >= 2)
|
|
// if async event pending, acknowlege them
|
|
if (bx_guard.async_changes_pending.which) {
|
|
if (bx_guard.async_changes_pending.which & BX_DBG_ASYNC_PENDING_A20)
|
|
bx_dbg_async_pin_ack(BX_DBG_ASYNC_PENDING_A20,
|
|
bx_guard.async_changes_pending.a20);
|
|
if (bx_guard.async_changes_pending.which) {
|
|
BX_PANIC(("decode: async pending unrecognized."));
|
|
}
|
|
}
|
|
#endif
|
|
return(0); // no breakpoint
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::dbg_take_irq(void)
|
|
{
|
|
unsigned vector;
|
|
|
|
// NOTE: similar code in ::cpu_loop()
|
|
|
|
if ( BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR eflags.if_ ) {
|
|
if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
|
|
// normal return from setjmp setup
|
|
vector = BX_IAC(); // may set INTR with next interrupt
|
|
BX_CPU_THIS_PTR errorno = 0;
|
|
BX_CPU_THIS_PTR EXT = 1; // external event
|
|
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
|
|
interrupt(vector, 0, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::dbg_force_interrupt(unsigned vector)
|
|
{
|
|
// Used to force slave simulator to take an interrupt, without
|
|
// regard to IF
|
|
|
|
if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
|
|
// normal return from setjmp setup
|
|
BX_CPU_THIS_PTR errorno = 0;
|
|
BX_CPU_THIS_PTR EXT = 1; // external event
|
|
BX_CPU_THIS_PTR async_event = 1; // probably don't need this
|
|
interrupt(vector, 0, 0, 0);
|
|
}
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::dbg_take_dma(void)
|
|
{
|
|
// NOTE: similar code in ::cpu_loop()
|
|
if ( BX_HRQ ) {
|
|
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
|
|
BX_RAISE_HLDA();
|
|
}
|
|
}
|
|
#endif // #if BX_DEBUGGER
|
|
|