Bochs/bochs/cpu/logical8.cc
Kevin Lawton 91fd4b3745 Added new configure option --enable-host-specific-asms, so the
user can turn on/off use of native host specific inline asm
  statements.  By default, this option is enabled, so you only
  need it to disable inline asms in your compile for now.

Currently only on x86+GCC environments, will inline asm()
  statements be used.  Eventually, other platforms could specify
  some asm()s; probably for endian issues such as byte-swapping
  and unaligned memory accesses.  On x86, there are some inline
  asm()s which do the arithmetic EFLAGS processing so that the
  lazy flags handling is somewhat bypassed.  Eventually, I'll
  add more, at least for the more common instructions.  This
  adds a little extra performance.
2002-09-23 17:59:18 +00:00

552 lines
11 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: logical8.cc,v 1.13 2002-09-23 17:59:18 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::XOR_EbGb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
/* op2 is a register, op2_addr is an index of a register */
op2 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
/* op1 is a register or memory reference */
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
}
result = op1 ^ op2;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
Write_RMW_virtual_byte(result);
}
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_XOR8);
}
void
BX_CPU_C::XOR_GbEb(bxInstruction_c *i)
{
Bit8u op1, op2, result;
op1 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_virtual_byte(i->seg(), RMAddr(i), &op2);
}
result = op1 ^ op2;
/* now write result back to destination, which is a register */
BX_WRITE_8BIT_REGx(i->nnn(), i->extend8bitL(), result);
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_XOR8);
}
void
BX_CPU_C::XOR_ALIb(bxInstruction_c *i)
{
Bit8u op1, op2, sum;
op1 = AL;
op2 = i->Ib();
sum = op1 ^ op2;
/* now write sum back to destination, which is a register */
AL = sum;
SET_FLAGS_OSZAPC_8(op1, op2, sum, BX_INSTR_XOR8);
}
void
BX_CPU_C::XOR_EbIb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
op2 = i->Ib();
/* op1 is a register or memory reference */
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
}
result = op1 ^ op2;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
Write_RMW_virtual_byte(result);
}
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_XOR8);
}
void
BX_CPU_C::OR_EbIb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
op2 = i->Ib();
/* op1 is a register or memory reference */
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
}
result = op1 | op2;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
Write_RMW_virtual_byte(result);
}
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_OR8);
}
void
BX_CPU_C::NOT_Eb(bxInstruction_c *i)
{
Bit8u op1_8, result_8;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_8 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1_8);
}
result_8 = ~op1_8;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
Write_RMW_virtual_byte(result_8);
}
}
void
BX_CPU_C::OR_EbGb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
/* op2 is a register, op2_addr is an index of a register */
op2 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
/* op1 is a register or memory reference */
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
}
result = op1 | op2;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
Write_RMW_virtual_byte(result);
}
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_OR8);
}
void
BX_CPU_C::OR_GbEb(bxInstruction_c *i)
{
Bit8u op1, op2, result;
op1 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
/* op2 is a register or memory reference */
if (i->modC0()) {
op2 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_virtual_byte(i->seg(), RMAddr(i), &op2);
}
result = op1 | op2;
/* now write result back to destination, which is a register */
BX_WRITE_8BIT_REGx(i->nnn(), i->extend8bitL(), result);
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_OR8);
}
void
BX_CPU_C::OR_ALIb(bxInstruction_c *i)
{
Bit8u op1, op2, sum;
op1 = AL;
op2 = i->Ib();
sum = op1 | op2;
/* now write sum back to destination, which is a register */
AL = sum;
SET_FLAGS_OSZAPC_8(op1, op2, sum, BX_INSTR_OR8);
}
void
BX_CPU_C::AND_EbGb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
op2 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
}
result = op1 & op2;
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
Write_RMW_virtual_byte(result);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andb %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=q" (result)
: "1" (op1), "mq" (op2)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_AND8);
#endif
}
void
BX_CPU_C::AND_GbEb(bxInstruction_c *i)
{
Bit8u op1, op2, result;
op1 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
if (i->modC0()) {
op2 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
read_virtual_byte(i->seg(), RMAddr(i), &op2);
}
result = op1 & op2;
BX_WRITE_8BIT_REGx(i->nnn(), i->extend8bitL(), result);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andb %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=q" (result)
: "1" (op1), "mq" (op2)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_AND8);
#endif
}
void
BX_CPU_C::AND_ALIb(bxInstruction_c *i)
{
Bit8u op1, op2, result;
op1 = AL;
op2 = i->Ib();
result = op1 & op2;
AL = result;
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andb %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=q" (result)
: "1" (op1), "mq" (op2)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_AND8);
#endif
}
void
BX_CPU_C::AND_EbIb(bxInstruction_c *i)
{
Bit8u op2, op1, result;
op2 = i->Ib();
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
read_RMW_virtual_byte(i->seg(), RMAddr(i), &op1);
}
result = op1 & op2;
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result);
}
else {
Write_RMW_virtual_byte(result);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"andb %3, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32), "=q" (result)
: "1" (op1), "mq" (op2)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_AND8);
#endif
}
void
BX_CPU_C::TEST_EbGb(bxInstruction_c *i)
{
Bit8u op2, op1;
/* op2 is a register, op2_addr is an index of a register */
op2 = BX_READ_8BIT_REGx(i->nnn(),i->extend8bitL());
/* op1 is a register or memory reference */
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_virtual_byte(i->seg(), RMAddr(i), &op1);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"testb %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "q" (op1), "mq" (op2)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit8u result;
result = op1 & op2;
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_TEST8);
#endif
}
void
BX_CPU_C::TEST_ALIb(bxInstruction_c *i)
{
Bit8u op2, op1;
/* op1 is the AL register */
op1 = AL;
/* op2 is imm8 */
op2 = i->Ib();
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"testb %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "q" (op1), "mq" (op2)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit8u result;
result = op1 & op2;
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_TEST8);
#endif
}
void
BX_CPU_C::TEST_EbIb(bxInstruction_c *i)
{
Bit8u op2, op1;
op2 = i->Ib();
/* op1 is a register or memory reference */
if (i->modC0()) {
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_virtual_byte(i->seg(), RMAddr(i), &op1);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asm (
"testb %2, %1\n\t"
"pushfl \n\t"
"popl %0"
: "=g" (flags32)
: "q" (op1), "mq" (op2)
: "cc"
);
BX_CPU_THIS_PTR eflags.val32 =
(BX_CPU_THIS_PTR eflags.val32 & ~EFlagsOSZAPCMask) |
(flags32 & EFlagsOSZAPCMask);
BX_CPU_THIS_PTR lf_flags_status = 0;
#else
Bit8u result;
result = op1 & op2;
SET_FLAGS_OSZAPC_8(op1, op2, result, BX_INSTR_TEST8);
#endif
}