Bochs/bochs/cpu/vm8086.cc
Todd T.Fries bdb89cd364 merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.

In general this provides a generic interface for logging.

logfunctions:: is a class that is inherited by some classes, and also
.   allocated as a standalone global called 'genlog'.  All logging uses
.   one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
.   class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
.   respectively.
.
.   An example usage:
.     BX_INFO(("Hello, World!\n"));

iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance.  It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf().  At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.

More cleanup is coming, but this works for now.  If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.

Comments, bugs, flames, to me: todd@fries.net
2001-05-15 14:49:57 +00:00

301 lines
12 KiB
C++

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
// Notes:
//
// The high bits of the 32bit eip image are ignored by
// the IRET to VM. The high bits of the 32bit esp image
// are loaded into ESP. A subsequent push uses
// only the low 16bits since it's in VM. In neither case
// did a protection fault occur during actual tests. This
// is contrary to the Intel docs which claim a #GP for
// eIP out of code limits.
//
// IRET to VM does affect IOPL, IF, VM, and RF
#if BX_SUPPORT_V8086_MODE
#if BX_CPU_LEVEL >= 3
void
BX_CPU_C::stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector,
Bit32u flags32)
{
Bit32u temp_ESP, new_esp, esp_laddr;
Bit16u raw_es_selector, raw_ds_selector, raw_fs_selector,
raw_gs_selector, raw_ss_selector;
// Must be 32bit effective opsize, VM is in upper 16bits of eFLAGS
// CPL = 0 to get here
// ----------------
// | | OLD GS | eSP+32
// | | OLD FS | eSP+28
// | | OLD DS | eSP+24
// | | OLD ES | eSP+20
// | | OLD SS | eSP+16
// | OLD ESP | eSP+12
// | OLD EFLAGS | eSP+8
// | | OLD CS | eSP+4
// | OLD EIP | eSP+0
// ----------------
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
// top 36 bytes of stack must be within stack limits, else #GP(0)
if ( !can_pop(36) ) {
BX_PANIC(("iret: VM: top 36 bytes not within limits\n"));
exception(BX_SS_EXCEPTION, 0, 0);
return;
}
if ( new_eip & 0xffff0000 ) {
BX_INFO(("IRET to V86-mode: ignoring upper 16-bits\n"));
new_eip = new_eip & 0xffff;
}
esp_laddr = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base +
temp_ESP;
// load SS:ESP from stack
access_linear(esp_laddr + 12, 4, 0, BX_READ, &new_esp);
access_linear(esp_laddr + 16, 2, 0, BX_READ, &raw_ss_selector);
// load ES,DS,FS,GS from stack
access_linear(esp_laddr + 20, 2, 0, BX_READ, &raw_es_selector);
access_linear(esp_laddr + 24, 2, 0, BX_READ, &raw_ds_selector);
access_linear(esp_laddr + 28, 2, 0, BX_READ, &raw_fs_selector);
access_linear(esp_laddr + 32, 2, 0, BX_READ, &raw_gs_selector);
write_eflags(flags32, /*change IOPL*/ 1, /*change IF*/ 1,
/*change VM*/ 1, /*change RF*/ 1);
// load CS:EIP from stack; already read and passed as args
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = raw_cs_selector;
EIP = new_eip;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = raw_es_selector;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = raw_ds_selector;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = raw_fs_selector;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = raw_gs_selector;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = raw_ss_selector;
ESP = new_esp; // Full 32bits are loaded.
init_v8086_mode();
}
void
BX_CPU_C::stack_return_from_v86(BxInstruction_t *i)
{
//BX_INFO(("stack_return_from_v86:\n"));
exception(BX_GP_EXCEPTION, 0, 0);
#if 0
if (IOPL != 3) {
// trap to virtual 8086 monitor
BX_INFO(("stack_return_from_v86: IOPL != 3\n"));
exception(BX_GP_EXCEPTION, 0, 0);
}
if (i->os_32) {
Bit32u eip, ecs_raw, eflags;
// ??? should be some stack checks here
pop_32(&eip);
pop_32(&ecs_raw);
pop_32(&eflags);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], (Bit16u) ecs_raw);
BX_CPU_THIS_PTR eip = eip;
write_eflags(eflags, /*IOPL*/ CPL==0, /*IF*/ 1, /*VM*/ 0, /*RF*/ 1);
}
else {
Bit16u ip, cs_raw, flags;
// ??? should be some stack checks here
pop_16(&ip);
pop_16(&cs_raw);
pop_16(&flags);
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS], cs_raw);
BX_CPU_THIS_PTR eip = (Bit32u) ip;
write_flags(flags, /*IOPL*/ CPL==0, /*IF*/ 1);
}
#endif
}
void
BX_CPU_C::init_v8086_mode(void)
{
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value << 4;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value << 4;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value << 4;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit_scaled = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.d_b = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.avl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value << 4;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.avl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.dpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.executable = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.c_ed = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.r_w = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.a = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value << 4;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit_scaled = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.d_b = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.avl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.rpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.dpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.executable = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.c_ed = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.r_w = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.a = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value << 4;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit_scaled = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.d_b = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.avl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.rpl = 3;
}
#endif /* BX_CPU_LEVEL >= 3 */
#else // BX_SUPPORT_V8086_MODE
// non-support of v8086 mode
void
BX_CPU_C::stack_return_to_v86(Bit32u new_eip, Bit32u raw_cs_selector, Bit32u flags32)
{
BX_INFO(("stack_return_to_v86: VM bit set in EFLAGS stack image\n"));
v8086_message();
}
void
BX_CPU_C::stack_return_from_v86(void)
{
BX_INFO(("stack_return_from_v86:\n"));
v8086_message();
}
void
BX_CPU_C::v8086_message(void)
{
BX_INFO(("Program compiled with BX_SUPPORT_V8086_MODE = 0\n"));
BX_INFO(("You need to rerun the configure script and recompile\n"));
BX_INFO((" to use virtual-8086 mode features.\n"));
BX_PANIC(("Bummer!\n"));
}
#endif // BX_SUPPORT_V8086_MODE