8d1e3b2ac1
implemented important CPU statistics which were used for Bochs CPU model performance analysis. old statistics code from paging.cc and cpu.cc is replaced with new infrastructure. In order to enale statitics collection in Bochs CPU: - Enable statistics @ compilation time in cpu/cpustats.h - Dump statistics periodically by adding -dumpstats N into Bochs command line
585 lines
17 KiB
C++
585 lines
17 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id$
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001-2014 The Bochs Project
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#include "bochs.h"
|
|
#include "cpu/cpu.h"
|
|
#include "iodev/iodev.h"
|
|
#define LOG_THIS bx_pc_system.
|
|
|
|
#if defined(PROVIDE_M_IPS)
|
|
double m_ips; // Millions of Instructions Per Second
|
|
#endif
|
|
|
|
// Option for turning off BX_TIMER_DEBUG?
|
|
// Check out m_ips and ips
|
|
|
|
#define SpewPeriodicTimerInfo 0
|
|
#define MinAllowableTimerPeriod 1
|
|
|
|
const Bit64u bx_pc_system_c::NullTimerInterval = 0xffffffff;
|
|
|
|
// constructor
|
|
bx_pc_system_c::bx_pc_system_c()
|
|
{
|
|
this->put("pc_system", "SYS");
|
|
|
|
BX_ASSERT(numTimers == 0);
|
|
|
|
// Timer[0] is the null timer. It is initialized as a special
|
|
// case here. It should never be turned off or modified, and its
|
|
// duration should always remain the same.
|
|
ticksTotal = 0; // Reset ticks since emulator started.
|
|
timer[0].inUse = 1;
|
|
timer[0].period = NullTimerInterval;
|
|
timer[0].active = 1;
|
|
timer[0].continuous = 1;
|
|
timer[0].funct = nullTimer;
|
|
timer[0].this_ptr = this;
|
|
numTimers = 1; // So far, only the nullTimer.
|
|
}
|
|
|
|
void bx_pc_system_c::initialize(Bit32u ips)
|
|
{
|
|
ticksTotal = 0;
|
|
timer[0].timeToFire = NullTimerInterval;
|
|
currCountdown = NullTimerInterval;
|
|
currCountdownPeriod = NullTimerInterval;
|
|
lastTimeUsec = 0;
|
|
usecSinceLast = 0;
|
|
triggeredTimer = 0;
|
|
HRQ = 0;
|
|
kill_bochs_request = 0;
|
|
|
|
// parameter 'ips' is the processor speed in Instructions-Per-Second
|
|
m_ips = double(ips) / 1000000.0L;
|
|
|
|
BX_DEBUG(("ips = %u", (unsigned) ips));
|
|
}
|
|
|
|
void bx_pc_system_c::set_HRQ(bx_bool val)
|
|
{
|
|
HRQ = val;
|
|
if (val)
|
|
BX_CPU(0)->async_event = 1;
|
|
}
|
|
|
|
void bx_pc_system_c::raise_INTR(void)
|
|
{
|
|
if (bx_dbg.interrupts)
|
|
BX_INFO(("pc_system: Setting INTR=1 on bootstrap processor %d", BX_BOOTSTRAP_PROCESSOR));
|
|
|
|
BX_CPU(BX_BOOTSTRAP_PROCESSOR)->raise_INTR();
|
|
}
|
|
|
|
void bx_pc_system_c::clear_INTR(void)
|
|
{
|
|
if (bx_dbg.interrupts)
|
|
BX_INFO(("pc_system: Setting INTR=0 on bootstrap processor %d", BX_BOOTSTRAP_PROCESSOR));
|
|
|
|
BX_CPU(BX_BOOTSTRAP_PROCESSOR)->clear_INTR();
|
|
}
|
|
|
|
//
|
|
// Read from the IO memory address space
|
|
//
|
|
|
|
Bit32u BX_CPP_AttrRegparmN(2)
|
|
bx_pc_system_c::inp(Bit16u addr, unsigned io_len)
|
|
{
|
|
Bit32u ret = bx_devices.inp(addr, io_len);
|
|
return ret;
|
|
}
|
|
|
|
//
|
|
// Write to the IO memory address space.
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
bx_pc_system_c::outp(Bit16u addr, Bit32u value, unsigned io_len)
|
|
{
|
|
bx_devices.outp(addr, value, io_len);
|
|
}
|
|
|
|
void bx_pc_system_c::set_enable_a20(bx_bool value)
|
|
{
|
|
#if BX_SUPPORT_A20
|
|
bx_bool old_enable_a20 = enable_a20;
|
|
|
|
if (value) {
|
|
enable_a20 = 1;
|
|
#if BX_CPU_LEVEL < 2
|
|
a20_mask = 0xfffff;
|
|
#elif BX_CPU_LEVEL == 2
|
|
a20_mask = 0xffffff;
|
|
#elif BX_PHY_ADDRESS_LONG
|
|
a20_mask = BX_CONST64(0xffffffffffffffff);
|
|
#else /* 386+ */
|
|
a20_mask = 0xffffffff;
|
|
#endif
|
|
}
|
|
else {
|
|
enable_a20 = 0;
|
|
/* mask off A20 address line */
|
|
#if BX_PHY_ADDRESS_LONG
|
|
a20_mask = BX_CONST64(0xffffffffffefffff);
|
|
#else
|
|
a20_mask = 0xffefffff;
|
|
#endif
|
|
}
|
|
|
|
BX_DBG_A20_REPORT(enable_a20);
|
|
|
|
BX_DEBUG(("A20: set() = %u", (unsigned) enable_a20));
|
|
|
|
// If there has been a transition, we need to notify the CPUs so
|
|
// they can potentially invalidate certain cache info based on
|
|
// A20-line-applied physical addresses.
|
|
if (old_enable_a20 != enable_a20) MemoryMappingChanged();
|
|
#else
|
|
BX_DEBUG(("set_enable_a20: ignoring: BX_SUPPORT_A20 = 0"));
|
|
#endif
|
|
}
|
|
|
|
bx_bool bx_pc_system_c::get_enable_a20(void)
|
|
{
|
|
#if BX_SUPPORT_A20
|
|
BX_DEBUG(("A20: get() = %u", (unsigned) enable_a20));
|
|
|
|
return enable_a20;
|
|
#else
|
|
BX_DEBUG(("get_enable_a20: ignoring: BX_SUPPORT_A20 = 0"));
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
void bx_pc_system_c::MemoryMappingChanged(void)
|
|
{
|
|
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++)
|
|
BX_CPU(i)->TLB_flush();
|
|
}
|
|
|
|
void bx_pc_system_c::invlpg(bx_address addr)
|
|
{
|
|
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++)
|
|
BX_CPU(i)->TLB_invlpg(addr);
|
|
}
|
|
|
|
int bx_pc_system_c::Reset(unsigned type)
|
|
{
|
|
// type is BX_RESET_HARDWARE or BX_RESET_SOFTWARE
|
|
BX_INFO(("bx_pc_system_c::Reset(%s) called",type==BX_RESET_HARDWARE?"HARDWARE":"SOFTWARE"));
|
|
|
|
set_enable_a20(1);
|
|
|
|
// Always reset cpu
|
|
for (int i=0; i<BX_SMP_PROCESSORS; i++) {
|
|
BX_CPU(i)->reset(type);
|
|
}
|
|
|
|
// Reset devices only on Hardware resets
|
|
if (type==BX_RESET_HARDWARE) {
|
|
DEV_reset_devices(type);
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
Bit8u bx_pc_system_c::IAC(void)
|
|
{
|
|
return DEV_pic_iac();
|
|
}
|
|
|
|
void bx_pc_system_c::exit(void)
|
|
{
|
|
// delete all registered timers (exception: null timer and APIC timer)
|
|
numTimers = 1 + BX_SUPPORT_APIC;
|
|
bx_devices.exit();
|
|
if (bx_gui) {
|
|
bx_gui->cleanup();
|
|
bx_gui->exit();
|
|
}
|
|
}
|
|
|
|
void bx_pc_system_c::register_state(void)
|
|
{
|
|
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "pc_system", "PC System State");
|
|
BXRS_PARAM_BOOL(list, enable_a20, enable_a20);
|
|
BXRS_HEX_PARAM_SIMPLE(list, a20_mask);
|
|
BXRS_DEC_PARAM_SIMPLE(list, currCountdown);
|
|
BXRS_DEC_PARAM_SIMPLE(list, currCountdownPeriod);
|
|
BXRS_DEC_PARAM_SIMPLE(list, ticksTotal);
|
|
BXRS_DEC_PARAM_SIMPLE(list, lastTimeUsec);
|
|
BXRS_DEC_PARAM_SIMPLE(list, usecSinceLast);
|
|
BXRS_PARAM_BOOL(list, HRQ, HRQ);
|
|
|
|
bx_list_c *timers = new bx_list_c(list, "timer");
|
|
for (unsigned i = 0; i < numTimers; i++) {
|
|
char name[4];
|
|
sprintf(name, "%d", i);
|
|
bx_list_c *bxtimer = new bx_list_c(timers, name);
|
|
BXRS_PARAM_BOOL(bxtimer, inUse, timer[i].inUse);
|
|
BXRS_DEC_PARAM_FIELD(bxtimer, period, timer[i].period);
|
|
BXRS_DEC_PARAM_FIELD(bxtimer, timeToFire, timer[i].timeToFire);
|
|
BXRS_PARAM_BOOL(bxtimer, active, timer[i].active);
|
|
BXRS_PARAM_BOOL(bxtimer, continuous, timer[i].continuous);
|
|
BXRS_DEC_PARAM_FIELD(bxtimer, param, timer[i].param);
|
|
}
|
|
}
|
|
|
|
// ================================================
|
|
// Bochs internal timer delivery framework features
|
|
// ================================================
|
|
|
|
int bx_pc_system_c::register_timer(void *this_ptr, void (*funct)(void *),
|
|
Bit32u useconds, bx_bool continuous, bx_bool active, const char *id)
|
|
{
|
|
// Convert useconds to number of ticks.
|
|
Bit64u ticks = (Bit64u) (double(useconds) * m_ips);
|
|
|
|
return register_timer_ticks(this_ptr, funct, ticks, continuous, active, id);
|
|
}
|
|
|
|
int bx_pc_system_c::register_timer_ticks(void* this_ptr, bx_timer_handler_t funct,
|
|
Bit64u ticks, bx_bool continuous, bx_bool active, const char *id)
|
|
{
|
|
unsigned i;
|
|
|
|
// If the timer frequency is rediculously low, make it more sane.
|
|
// This happens when 'ips' is too low.
|
|
if (ticks < MinAllowableTimerPeriod) {
|
|
//BX_INFO(("register_timer_ticks: adjusting ticks of %llu to min of %u",
|
|
// ticks, MinAllowableTimerPeriod));
|
|
ticks = MinAllowableTimerPeriod;
|
|
}
|
|
|
|
// search for new timer (i = 0 is reserved for NullTimer)
|
|
for (i = 1; i < numTimers; i++) {
|
|
if (timer[i].inUse == 0)
|
|
break;
|
|
}
|
|
|
|
if (numTimers >= BX_MAX_TIMERS) {
|
|
BX_PANIC(("register_timer: too many registered timers"));
|
|
return -1;
|
|
}
|
|
#if BX_TIMER_DEBUG
|
|
if (this_ptr == NULL)
|
|
BX_PANIC(("register_timer_ticks: this_ptr is NULL!"));
|
|
if (funct == NULL)
|
|
BX_PANIC(("register_timer_ticks: funct is NULL!"));
|
|
#endif
|
|
|
|
timer[i].inUse = 1;
|
|
timer[i].period = ticks;
|
|
timer[i].timeToFire = (ticksTotal + Bit64u(currCountdownPeriod-currCountdown)) + ticks;
|
|
timer[i].active = active;
|
|
timer[i].continuous = continuous;
|
|
timer[i].funct = funct;
|
|
timer[i].this_ptr = this_ptr;
|
|
strncpy(timer[i].id, id, BxMaxTimerIDLen);
|
|
timer[i].id[BxMaxTimerIDLen-1] = 0; // Null terminate if not already.
|
|
timer[i].param = 0;
|
|
|
|
if (active) {
|
|
if (ticks < Bit64u(currCountdown)) {
|
|
// This new timer needs to fire before the current countdown.
|
|
// Skew the current countdown and countdown period to be smaller
|
|
// by the delta.
|
|
currCountdownPeriod -= (currCountdown - Bit32u(ticks));
|
|
currCountdown = Bit32u(ticks);
|
|
}
|
|
}
|
|
|
|
BX_DEBUG(("timer id %d registered for '%s'", i, id));
|
|
// If we didn't find a free slot, increment the bound, numTimers.
|
|
if (i==numTimers)
|
|
numTimers++; // One new timer installed.
|
|
|
|
// Return timer id.
|
|
return i;
|
|
}
|
|
|
|
void bx_pc_system_c::countdownEvent(void)
|
|
{
|
|
unsigned i, first = numTimers, last = 0;
|
|
Bit64u minTimeToFire;
|
|
bx_bool triggered[BX_MAX_TIMERS];
|
|
|
|
// The countdown decremented to 0. We need to service all the active
|
|
// timers, and invoke callbacks from those timers which have fired.
|
|
#if BX_TIMER_DEBUG
|
|
if (currCountdown != 0)
|
|
BX_PANIC(("countdownEvent: ticks!=0"));
|
|
#endif
|
|
|
|
// Increment global ticks counter by number of ticks which have
|
|
// elapsed since the last update.
|
|
ticksTotal += Bit64u(currCountdownPeriod);
|
|
minTimeToFire = (Bit64u) -1;
|
|
|
|
for (i = 0; i < numTimers; i++) {
|
|
triggered[i] = 0; // Reset triggered flag.
|
|
if (timer[i].active) {
|
|
#if BX_TIMER_DEBUG
|
|
if (ticksTotal > timer[i].timeToFire)
|
|
BX_PANIC(("countdownEvent: ticksTotal > timeToFire[%u], D " FMT_LL "u", i,
|
|
timer[i].timeToFire-ticksTotal));
|
|
#endif
|
|
if (ticksTotal == timer[i].timeToFire) {
|
|
// This timer is ready to fire.
|
|
triggered[i] = 1;
|
|
|
|
if (timer[i].continuous==0) {
|
|
// If triggered timer is one-shot, deactive.
|
|
timer[i].active = 0;
|
|
} else {
|
|
// Continuous timer, increment time-to-fire by period.
|
|
timer[i].timeToFire += timer[i].period;
|
|
if (timer[i].timeToFire < minTimeToFire)
|
|
minTimeToFire = timer[i].timeToFire;
|
|
}
|
|
if (i < first) first = i;
|
|
last = i;
|
|
} else {
|
|
// This timer is not ready to fire yet.
|
|
if (timer[i].timeToFire < minTimeToFire)
|
|
minTimeToFire = timer[i].timeToFire;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate next countdown period. We need to do this before calling
|
|
// any of the callbacks, as they may call timer features, which need
|
|
// to be advanced to the next countdown cycle.
|
|
currCountdown = currCountdownPeriod =
|
|
Bit32u(minTimeToFire - ticksTotal);
|
|
|
|
for (i = first; i <= last; i++) {
|
|
// Call requested timer function. It may request a different
|
|
// timer period or deactivate etc.
|
|
if (triggered[i] && (timer[i].funct != NULL)) {
|
|
triggeredTimer = i;
|
|
timer[i].funct(timer[i].this_ptr);
|
|
triggeredTimer = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void bx_pc_system_c::nullTimer(void* this_ptr)
|
|
{
|
|
// This function is always inserted in timer[0]. It is sort of
|
|
// a heartbeat timer. It ensures that at least one timer is
|
|
// always active to make the timer logic more simple, and has
|
|
// a duration of less than the maximum 32-bit integer, so that
|
|
// a 32-bit size can be used for the hot countdown timer. The
|
|
// rest of the timer info can be 64-bits. This is also a good
|
|
// place for some logic to report actual emulated
|
|
// instructions-per-second (IPS) data when measured relative to
|
|
// the host computer's wall clock.
|
|
|
|
UNUSED(this_ptr);
|
|
|
|
#if SpewPeriodicTimerInfo
|
|
BX_INFO(("==================================="));
|
|
for (unsigned i=0; i < bx_pc_system.numTimers; i++) {
|
|
if (bx_pc_system.timer[i].active) {
|
|
BX_INFO(("BxTimer(%s): period=" FMT_LL "u, continuous=%u",
|
|
bx_pc_system.timer[i].id, bx_pc_system.timer[i].period,
|
|
bx_pc_system.timer[i].continuous));
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void bx_pc_system_c::benchmarkTimer(void* this_ptr)
|
|
{
|
|
bx_pc_system_c *class_ptr = (bx_pc_system_c *) this_ptr;
|
|
class_ptr->kill_bochs_request = 1;
|
|
bx_user_quit = 1;
|
|
}
|
|
|
|
#if BX_ENABLE_STATISTICS
|
|
void bx_pc_system_c::dumpStatsTimer(void* this_ptr)
|
|
{
|
|
printf("=== statistics dump " FMT_LL "u ===\n", bx_pc_system.time_ticks());
|
|
print_statistics_tree(SIM->get_statistics_root());
|
|
fflush(stdout);
|
|
}
|
|
#endif
|
|
|
|
#if BX_DEBUGGER
|
|
void bx_pc_system_c::timebp_handler(void* this_ptr)
|
|
{
|
|
BX_CPU(0)->break_point = BREAK_POINT_TIME;
|
|
BX_DEBUG(("Time breakpoint triggered"));
|
|
|
|
if (timebp_queue_size > 1) {
|
|
Bit64s new_diff = timebp_queue[1] - bx_pc_system.time_ticks();
|
|
bx_pc_system.activate_timer_ticks(timebp_timer, new_diff, 0);
|
|
}
|
|
timebp_queue_size--;
|
|
for (int i = 0; i < timebp_queue_size; i++)
|
|
timebp_queue[i] = timebp_queue[i+1];
|
|
}
|
|
#endif // BX_DEBUGGER
|
|
|
|
Bit64u bx_pc_system_c::time_usec_sequential()
|
|
{
|
|
Bit64u this_time_usec = time_usec();
|
|
if(this_time_usec != lastTimeUsec) {
|
|
Bit64u diff_usec = this_time_usec-lastTimeUsec;
|
|
lastTimeUsec = this_time_usec;
|
|
if(diff_usec >= usecSinceLast) {
|
|
usecSinceLast = 0;
|
|
} else {
|
|
usecSinceLast -= diff_usec;
|
|
}
|
|
}
|
|
usecSinceLast++;
|
|
return (this_time_usec+usecSinceLast);
|
|
}
|
|
|
|
Bit64u bx_pc_system_c::time_usec()
|
|
{
|
|
return (Bit64u) (((double)(Bit64s)time_ticks()) / m_ips);
|
|
}
|
|
|
|
void bx_pc_system_c::start_timers(void) { }
|
|
|
|
void bx_pc_system_c::activate_timer_ticks(unsigned i, Bit64u ticks, bx_bool continuous)
|
|
{
|
|
#if BX_TIMER_DEBUG
|
|
if (i >= numTimers)
|
|
BX_PANIC(("activate_timer_ticks: timer %u OOB", i));
|
|
if (i == 0)
|
|
BX_PANIC(("activate_timer_ticks: timer 0 is the NullTimer!"));
|
|
if (timer[i].period < MinAllowableTimerPeriod)
|
|
BX_PANIC(("activate_timer_ticks: timer[%u].period of " FMT_LL "u < min of %u",
|
|
i, timer[i].period, MinAllowableTimerPeriod));
|
|
#endif
|
|
|
|
// If the timer frequency is rediculously low, make it more sane.
|
|
// This happens when 'ips' is too low.
|
|
if (ticks < MinAllowableTimerPeriod) {
|
|
//BX_INFO(("activate_timer_ticks: adjusting ticks of %llu to min of %u",
|
|
// ticks, MinAllowableTimerPeriod));
|
|
ticks = MinAllowableTimerPeriod;
|
|
}
|
|
|
|
timer[i].period = ticks;
|
|
timer[i].timeToFire = (ticksTotal + Bit64u(currCountdownPeriod-currCountdown)) + ticks;
|
|
timer[i].active = 1;
|
|
timer[i].continuous = continuous;
|
|
|
|
if (ticks < Bit64u(currCountdown)) {
|
|
// This new timer needs to fire before the current countdown.
|
|
// Skew the current countdown and countdown period to be smaller
|
|
// by the delta.
|
|
currCountdownPeriod -= (currCountdown - Bit32u(ticks));
|
|
currCountdown = Bit32u(ticks);
|
|
}
|
|
}
|
|
|
|
void bx_pc_system_c::activate_timer(unsigned i, Bit32u useconds, bx_bool continuous)
|
|
{
|
|
Bit64u ticks;
|
|
|
|
#if BX_TIMER_DEBUG
|
|
if (i >= numTimers)
|
|
BX_PANIC(("activate_timer: timer %u OOB", i));
|
|
if (i == 0)
|
|
BX_PANIC(("activate_timer: timer 0 is the nullTimer!"));
|
|
#endif
|
|
|
|
// if useconds = 0, use default stored in period field
|
|
// else set new period from useconds
|
|
if (useconds==0) {
|
|
ticks = timer[i].period;
|
|
} else {
|
|
// convert useconds to number of ticks
|
|
ticks = (Bit64u) (double(useconds) * m_ips);
|
|
|
|
// If the timer frequency is rediculously low, make it more sane.
|
|
// This happens when 'ips' is too low.
|
|
if (ticks < MinAllowableTimerPeriod) {
|
|
//BX_INFO(("activate_timer: adjusting ticks of %llu to min of %u",
|
|
// ticks, MinAllowableTimerPeriod));
|
|
ticks = MinAllowableTimerPeriod;
|
|
}
|
|
|
|
timer[i].period = ticks;
|
|
}
|
|
|
|
activate_timer_ticks(i, ticks, continuous);
|
|
}
|
|
|
|
void bx_pc_system_c::deactivate_timer(unsigned i)
|
|
{
|
|
#if BX_TIMER_DEBUG
|
|
if (i >= numTimers)
|
|
BX_PANIC(("deactivate_timer: timer %u OOB", i));
|
|
if (i == 0)
|
|
BX_PANIC(("deactivate_timer: timer 0 is the nullTimer!"));
|
|
#endif
|
|
|
|
timer[i].active = 0;
|
|
}
|
|
|
|
bx_bool bx_pc_system_c::unregisterTimer(unsigned timerIndex)
|
|
{
|
|
#if BX_TIMER_DEBUG
|
|
if (timerIndex >= numTimers)
|
|
BX_PANIC(("unregisterTimer: timer %u OOB", timerIndex));
|
|
if (timerIndex == 0)
|
|
BX_PANIC(("unregisterTimer: timer 0 is the nullTimer!"));
|
|
if (timer[timerIndex].inUse == 0)
|
|
BX_PANIC(("unregisterTimer: timer %u is not in-use!", timerIndex));
|
|
#endif
|
|
|
|
if (timer[timerIndex].active) {
|
|
BX_PANIC(("unregisterTimer: timer '%s' is still active!", timer[timerIndex].id));
|
|
return 0; // Fail.
|
|
}
|
|
|
|
// Reset timer fields for good measure.
|
|
timer[timerIndex].inUse = 0; // No longer registered.
|
|
timer[timerIndex].period = BX_MAX_BIT64S; // Max value (invalid)
|
|
timer[timerIndex].timeToFire = BX_MAX_BIT64S; // Max value (invalid)
|
|
timer[timerIndex].continuous = 0;
|
|
timer[timerIndex].funct = NULL;
|
|
timer[timerIndex].this_ptr = NULL;
|
|
memset(timer[timerIndex].id, 0, BxMaxTimerIDLen);
|
|
|
|
if (timerIndex == (numTimers - 1)) numTimers--;
|
|
|
|
return 1; // OK
|
|
}
|
|
|
|
void bx_pc_system_c::setTimerParam(unsigned timerIndex, Bit32u param)
|
|
{
|
|
#if BX_TIMER_DEBUG
|
|
if (timerIndex >= numTimers)
|
|
BX_PANIC(("setTimerParam: timer %u OOB", timerIndex));
|
|
#endif
|
|
timer[timerIndex].param = param;
|
|
}
|