Bochs/bochs/cpu/paging.cc
2009-05-31 07:49:04 +00:00

1648 lines
58 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: paging.cc,v 1.176 2009-05-31 07:49:04 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
// X86 Registers Which Affect Paging:
// ==================================
//
// CR0:
// bit 31: PG, Paging (386+)
// bit 16: WP, Write Protect (486+)
// 0: allow supervisor level writes into user level RO pages
// 1: inhibit supervisor level writes into user level RO pages
//
// CR3:
// bit 31..12: PDBR, Page Directory Base Register (386+)
// bit 4: PCD, Page level Cache Disable (486+)
// Controls caching of current page directory. Affects only the processor's
// internal caches (L1 and L2).
// This flag ignored if paging disabled (PG=0) or cache disabled (CD=1).
// Values:
// 0: Page Directory can be cached
// 1: Page Directory not cached
// bit 3: PWT, Page level Writes Transparent (486+)
// Controls write-through or write-back caching policy of current page
// directory. Affects only the processor's internal caches (L1 and L2).
// This flag ignored if paging disabled (PG=0) or cache disabled (CD=1).
// Values:
// 0: write-back caching enabled
// 1: write-through caching enabled
//
// CR4:
// bit 4: PSE, Page Size Extension (Pentium+)
// 0: 4KByte pages (typical)
// 1: 4MByte or 2MByte pages
// bit 5: PAE, Physical Address Extension (Pentium Pro+)
// 0: 32bit physical addresses
// 1: 36bit physical addresses
// bit 7: PGE, Page Global Enable (Pentium Pro+)
// The global page feature allows frequently used or shared pages
// to be marked as global (PDE or PTE bit 8). Global pages are
// not flushed from TLB on a task switch or write to CR3.
// Values:
// 0: disables global page feature
// 1: enables global page feature
//
// page size extention and physical address size extention matrix (legacy mode)
// ==============================================================================
// CR0.PG CR4.PAE CR4.PSE PDPE.PS PDE.PS | page size physical address size
// ==============================================================================
// 0 X X R X | -- paging disabled
// 1 0 0 R X | 4K 32bits
// 1 0 1 R 0 | 4K 32bits
// 1 0 1 R 1 | 4M 32bits
// 1 1 X R 0 | 4K 36bits
// 1 1 X R 1 | 2M 36bits
// page size extention and physical address size extention matrix (long mode)
// ==============================================================================
// CR0.PG CR4.PAE CR4.PSE PDPE.PS PDE.PS | page size physical address size
// ==============================================================================
// 1 1 X 0 0 | 4K 52bits
// 1 1 X 0 1 | 2M 52bits
// 1 1 X 1 - | 1G 52bits
// Page Directory/Table Entry format when P=0:
// ===========================================
//
// 31.. 1: available
// 0: P=0
// Page Directory Entry format when P=1 (4-Kbyte Page Table):
// ==========================================================
//
// 31..12: page table base address
// 11.. 9: available
// 8: G (Pentium Pro+), 0=reserved otherwise
// 7: PS (Pentium+), 0=reserved otherwise
// 6: 0=reserved
// 5: A (386+)
// 4: PCD (486+), 0=reserved otherwise
// 3: PWT (486+), 0=reserved otherwise
// 2: U/S (386+)
// 1: R/W (386+)
// 0: P=1 (386+)
// Page Table Entry format when P=1 (4-Kbyte Page):
// ================================================
//
// 63..63: NX |
// 62..52: available | Long mode
// 51..32: page base address |
// 31..12: page base address
// 11.. 9: available
// 8: G (Pentium Pro+), 0=reserved otherwise
// 7: PAT
// 6: D (386+)
// 5: A (386+)
// 4: PCD (486+), 0=reserved otherwise
// 3: PWT (486+), 0=reserved otherwise
// 2: U/S (386+)
// 1: R/W (386+)
// 0: P=1 (386+)
// Page Directory/Table Entry Fields Defined:
// ==========================================
// NX: No Execute
// This bit controls the ability to execute code from all physical
// pages mapped by the table entry.
// 0: Code can be executed from the mapped physical pages
// 1: Code cannot be executed
// The NX bit can only be set when the no-execute page-protection
// feature is enabled by setting EFER.NXE=1, If EFER.NXE=0, the
// NX bit is treated as reserved. In this case, #PF occurs if the
// NX bit is not cleared to zero.
//
// G: Global flag
// Indiciates a global page when set. When a page is marked
// global and the PGE flag in CR4 is set, the page table or
// directory entry for the page is not invalidated in the TLB
// when CR3 is loaded or a task switch occurs. Only software
// clears and sets this flag. For page directory entries that
// point to page tables, this flag is ignored and the global
// characteristics of a page are set in the page table entries.
//
// PS: Page Size flag
// Only used in page directory entries. When PS=0, the page
// size is 4KBytes and the page directory entry points to a
// page table. When PS=1, the page size is 4MBytes for
// normal 32-bit addressing and 2MBytes if extended physical
// addressing.
//
// PAT: Page-Attribute Table
// This bit is only present in the lowest level of the page
// translation hierarchy. The PAT bit is the high-order bit
// of a 3-bit index into the PAT register. The other two
// bits involved in forming the index are the PCD and PWT
// bits.
//
// D: Dirty bit:
// Processor sets the Dirty bit in the 2nd-level page table before a
// write operation to an address mapped by that page table entry.
// Dirty bit in directory entries is undefined.
//
// A: Accessed bit:
// Processor sets the Accessed bits in both levels of page tables before
// a read/write operation to a page.
//
// PCD: Page level Cache Disable
// Controls caching of individual pages or page tables.
// This allows a per-page based mechanism to disable caching, for
// those pages which contained memory mapped IO, or otherwise
// should not be cached. Processor ignores this flag if paging
// is not used (CR0.PG=0) or the cache disable bit is set (CR0.CD=1).
// Values:
// 0: page or page table can be cached
// 1: page or page table is not cached (prevented)
//
// PWT: Page level Write Through
// Controls the write-through or write-back caching policy of individual
// pages or page tables. Processor ignores this flag if paging
// is not used (CR0.PG=0) or the cache disable bit is set (CR0.CD=1).
// Values:
// 0: write-back caching
// 1: write-through caching
//
// U/S: User/Supervisor level
// 0: Supervisor level - for the OS, drivers, etc.
// 1: User level - application code and data
//
// R/W: Read/Write access
// 0: read-only access
// 1: read/write access
//
// P: Present
// 0: Not present
// 1: Present
// ==========================================
// Combined page directory/page table protection:
// ==============================================
// There is one column for the combined effect on a 386
// and one column for the combined effect on a 486+ CPU.
//
// +----------------+-----------------+----------------+----------------+
// | Page Directory| Page Table | Combined 386 | Combined 486+ |
// |Privilege Type | Privilege Type | Privilege Type| Privilege Type|
// |----------------+-----------------+----------------+----------------|
// |User R | User R | User R | User R |
// |User R | User RW | User R | User R |
// |User RW | User R | User R | User R |
// |User RW | User RW | User RW | User RW |
// |User R | Supervisor R | User R | Supervisor RW |
// |User R | Supervisor RW | User R | Supervisor RW |
// |User RW | Supervisor R | User R | Supervisor RW |
// |User RW | Supervisor RW | User RW | Supervisor RW |
// |Supervisor R | User R | User R | Supervisor RW |
// |Supervisor R | User RW | User R | Supervisor RW |
// |Supervisor RW | User R | User R | Supervisor RW |
// |Supervisor RW | User RW | User RW | Supervisor RW |
// |Supervisor R | Supervisor R | Supervisor RW | Supervisor RW |
// |Supervisor R | Supervisor RW | Supervisor RW | Supervisor RW |
// |Supervisor RW | Supervisor R | Supervisor RW | Supervisor RW |
// |Supervisor RW | Supervisor RW | Supervisor RW | Supervisor RW |
// +----------------+-----------------+----------------+----------------+
// Page Fault Error Code Format:
// =============================
//
// bits 31..4: Reserved
// bit 3: RSVD (Pentium Pro+)
// 0: fault caused by reserved bits set to 1 in a page directory
// when the PSE or PAE flags in CR4 are set to 1
// 1: fault was not caused by reserved bit violation
// bit 2: U/S (386+)
// 0: fault originated when in supervior mode
// 1: fault originated when in user mode
// bit 1: R/W (386+)
// 0: access causing the fault was a read
// 1: access causing the fault was a write
// bit 0: P (386+)
// 0: fault caused by a nonpresent page
// 1: fault caused by a page level protection violation
// Some paging related notes:
// ==========================
//
// - When the processor is running in supervisor level, all pages are both
// readable and writable (write-protect ignored). When running at user
// level, only pages which belong to the user level are accessible;
// read/write & read-only are readable, read/write are writable.
//
// - If the Present bit is 0 in either level of page table, an
// access which uses these entries will generate a page fault.
//
// - (A)ccess bit is used to report read or write access to a page
// or 2nd level page table.
//
// - (D)irty bit is used to report write access to a page.
//
// - Processor running at CPL=0,1,2 maps to U/S=0
// Processor running at CPL=3 maps to U/S=1
#if BX_SUPPORT_X86_64
#define BX_INVALID_TLB_ENTRY BX_CONST64(0xffffffffffffffff)
#else
#define BX_INVALID_TLB_ENTRY 0xffffffff
#endif
// bit [11] of the TLB lpf used for TLB_HostPtr valid indication
#define TLB_LPFOf(laddr) AlignedAccessLPFOf(laddr, 0x7ff)
#if BX_CPU_LEVEL >= 4
# define BX_PRIV_CHECK_SIZE 32
#else
# define BX_PRIV_CHECK_SIZE 16
#endif
static unsigned priv_check[BX_PRIV_CHECK_SIZE];
// The 'priv_check' array is used to decide if the current access
// has the proper paging permissions. An index is formed, based
// on parameters such as the access type and level, the write protect
// flag and values cached in the TLB. The format of the index into this
// array is:
//
// |4 |3 |2 |1 |0 |
// |wp|us|us|rw|rw|
// | | | | |
// | | | | +---> r/w of current access
// | | +--+------> u/s,r/w combined of page dir & table (cached)
// | +------------> u/s of current access
// +---------------> Current CR0.WP value
/* PAE PML4: bits [51 .. physical address width] */
#define PAGING_PAE_PML4_RESERVED_BITS \
(BX_PHY_ADDRESS_RESERVED_BITS | BX_CONST64(0x80))
/* PAE PDPE: bits [51 .. physical address width] */
#define PAGING_LONG_MODE_PDPE_RESERVED_BITS \
(BX_PHY_ADDRESS_RESERVED_BITS)
#define PAGING_PAE_PDPE1G_RESERVED_BITS \
(BX_PHY_ADDRESS_RESERVED_BITS | BX_CONST64(0x3FFFE000))
/* PAE PDPE: bits [51 .. physical address width] */
#define PAGING_PAE_PDPE_RESERVED_BITS \
(BX_PHY_ADDRESS_RESERVED_BITS | BX_CONST64(0x1E6))
/* PAE PDE: bits [51 .. physical address width] */
#define PAGING_PAE_PDE_RESERVED_BITS (BX_PHY_ADDRESS_RESERVED_BITS)
/* PAE PTE: bits [51 .. physical address width] */
#define PAGING_PAE_PTE_RESERVED_BITS (BX_PHY_ADDRESS_RESERVED_BITS)
/* PAE PDE2M: bits [51 .. physical address width], [20:13] */
#define PAGING_PAE_PDE2M_RESERVED_BITS \
(PAGING_PAE_PDE_RESERVED_BITS | BX_CONST64(0x001FE000))
/* PSE PDE4M: bits [21:17] */
#define PAGING_PSE_PDE4M_RESERVED_BITS \
(BX_PHY_ADDRESS_RESERVED_BITS | BX_CONST64(0x003E0000))
#define PAGE_DIRECTORY_NX_BIT (BX_CONST64(0x8000000000000000))
// Each entry in the TLB cache has 3 entries:
//
// lpf: Linear Page Frame (page aligned linear address of page)
// bits 32..12 Linear page frame
// bit 11 0: TLB HostPtr access allowed, 1: not allowed
// bit 10...0 Invalidate index
//
// ppf: Physical Page Frame (page aligned phy address of page)
//
// hostPageAddr:
// Host Page Frame address used for direct access to
// the mem.vector[] space allocated for the guest physical
// memory. If this is zero, it means that a pointer
// to the host space could not be generated, likely because
// that page of memory is not standard memory (it might
// be memory mapped IO, ROM, etc).
//
// accessBits:
//
// bit 31: Page is a global page.
//
// The following bits are used for a very efficient permissions
// check. The goal is to be able, using only the current privilege
// level and access type, to determine if the page tables allow the
// access to occur or at least should rewalk the page tables. On
// the first read access, permissions are set to only read, so a
// rewalk is necessary when a subsequent write fails the tests.
// This allows for the dirty bit to be set properly, but for the
// test to be efficient. Note that the CR0.WP flag is not present.
// The values in the following flags is based on the current CR0.WP
// value, necessitating a TLB flush when CR0.WP changes.
//
// The test is:
// OK = (accessBits & ((W<<1) | U)) <> 0 [W:1=Write, 0=Read, U:1=CPL3,0=CPL0-2]
//
// Thus for reads, it is:
// OK = ( U )
// And for writes:
// OK = 0x2 | ( U )
//
// Note, that the TLB should have TLB_HostPtr bit set when direct
// access through host pointer is NOT allowed for the page. A memory
// operation asking for a direct access through host pointer will
// set TLB_HostPtr bit in its lpf field and thus get TLB miss result
// when the direct access is not allowed.
//
#define TLB_SysOnly (0x1)
#define TLB_ReadOnly (0x2)
#define TLB_HostPtr (0x800) /* set this bit when direct access is NOT allowed */
#define TLB_GlobalPage (0x80000000)
// === TLB Instrumentation section ==============================
// Note: this is an approximation of what Peter Tattam had.
#define InstrumentTLB 0
#if InstrumentTLB
static unsigned tlbLookups=0;
static unsigned tlbMisses=0;
static unsigned tlbGlobalFlushes=0;
static unsigned tlbNonGlobalFlushes=0;
#define InstrTLB_StatsMask 0xfffff
#define InstrTLB_Stats() {\
if ((tlbLookups & InstrTLB_StatsMask) == 0) { \
BX_INFO(("TLB lookup:%8d miss:%8d %6.2f%% flush:%8d %6.2f%%", \
tlbLookups, \
tlbMisses, \
tlbMisses * 100.0 / tlbLookups, \
(tlbGlobalFlushes+tlbNonGlobalFlushes), \
(tlbGlobalFlushes+tlbNonGlobalFlushes) * 100.0 / tlbLookups \
)); \
tlbLookups = tlbMisses = tlbGlobalFlushes = tlbNonGlobalFlushes = 0; \
} \
}
#define InstrTLB_Increment(v) (v)++
#else
#define InstrTLB_Stats()
#define InstrTLB_Increment(v)
#endif
// ==============================================================
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::pagingCR0Changed(Bit32u oldCR0, Bit32u newCR0)
{
// Modification of PG,PE flushes TLB cache according to docs.
// Additionally, the TLB strategy is based on the current value of
// WP, so if that changes we must also flush the TLB.
if ((oldCR0 & 0x80010001) != (newCR0 & 0x80010001))
TLB_flush(); // Flush Global entries also.
}
void BX_CPP_AttrRegparmN(2)
BX_CPU_C::pagingCR4Changed(Bit32u oldCR4, Bit32u newCR4)
{
// Modification of PGE,PAE,PSE flushes TLB cache according to docs.
if ((oldCR4 & 0x000000b0) != (newCR4 & 0x000000b0))
TLB_flush(); // Flush Global entries also.
#if BX_SUPPORT_PAE
if ((oldCR4 & 0x00000020) != (newCR4 & 0x00000020)) {
if (BX_CPU_THIS_PTR cr4.get_PAE() && !long_mode())
BX_CPU_THIS_PTR cr3_masked = BX_CPU_THIS_PTR cr3 & 0xffffffe0;
else
BX_CPU_THIS_PTR cr3_masked = BX_CPU_THIS_PTR cr3 & BX_CONST64(0x000ffffffffff000);
}
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SetCR3(bx_address val)
{
// flush TLB even if value does not change
#if BX_SUPPORT_GLOBAL_PAGES
if (BX_CPU_THIS_PTR cr4.get_PGE())
TLB_flushNonGlobal(); // Don't flush Global entries.
else
#endif
TLB_flush(); // Flush Global entries also.
#if BX_SUPPORT_PAE
if (BX_CPU_THIS_PTR cr4.get_PAE()) {
#if BX_SUPPORT_X86_64
if (long_mode()) {
#if BX_PHY_ADDRESS_WIDTH == 32
if (val & BX_CONST64(0x000fffff00000000)) {
BX_PANIC(("SetCR3() 0x%08x%08x: Only 32 bit physical address space is emulated !", GET32H(val), GET32L(val)));
}
#endif
// bits [63-52], [11-5], [2-0] are reserved
if (val & (BX_CONST64(0xfff0000000000000) | BX_PHY_ADDRESS_RESERVED_BITS)) {
BX_ERROR(("SetCR3(): Attempt to write to reserved bits of CR3"));
exception(BX_GP_EXCEPTION, 0, 0);
}
BX_CPU_THIS_PTR cr3_masked = val & BX_CONST64(0x000ffffffffff000);
}
else
#endif
{
BX_CPU_THIS_PTR cr3_masked = val & 0xffffffe0;
}
}
else
#endif
BX_CPU_THIS_PTR cr3_masked = val & 0xfffff000;
BX_CPU_THIS_PTR cr3 = val;
}
#if BX_SUPPORT_PAE
bx_bool BX_CPP_AttrRegparmN(1) BX_CPU_C::CheckPDPTR(Bit32u cr3_val)
{
cr3_val &= 0xffffffe0;
for (int n=0; n<4; n++) {
// read PDPE cache entry
bx_phy_address entry_pdpe_addr = (bx_phy_address) (cr3_val | (n << 3));
access_read_physical(entry_pdpe_addr, 8, &(BX_CPU_THIS_PTR PDPE_CACHE.entry[n]));
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_pdpe_addr, 8,
BX_READ, (Bit8u*)(&BX_CPU_THIS_PTR PDPE_CACHE.entry[n]));
Bit64u pdptr = BX_CPU_THIS_PTR PDPE_CACHE.entry[n];
if (pdptr & 0x1) {
if (pdptr & PAGING_PAE_PDPE_RESERVED_BITS) {
BX_CPU_THIS_PTR PDPE_CACHE.valid = 0;
return 0;
}
}
}
BX_CPU_THIS_PTR PDPE_CACHE.valid = 1;
return 1; /* PDPTRs are fine */
}
#endif
// Called to initialize the TLB upon startup.
// Unconditional initialization of all TLB entries.
void BX_CPU_C::TLB_init(void)
{
unsigned n, wp, us_combined, rw_combined, us_current, rw_current;
//
// Setup privilege check matrix.
//
for (n=0; n<BX_PRIV_CHECK_SIZE; n++) {
wp = (n & 0x10) >> 4;
us_current = (n & 0x08) >> 3;
us_combined = (n & 0x04) >> 2;
rw_combined = (n & 0x02) >> 1;
rw_current = (n & 0x01) >> 0;
if (wp) { // when write protect on
if (us_current > us_combined) // user access, supervisor page
priv_check[n] = 0;
else if (rw_current > rw_combined) // RW access, RO page
priv_check[n] = 0;
else
priv_check[n] = 1;
}
else { // when write protect off
if (us_current == 0) // Supervisor mode access, anything goes
priv_check[n] = 1;
else {
// user mode access
if (us_combined == 0) // user access, supervisor Page
priv_check[n] = 0;
else if (rw_current > rw_combined) // RW access, RO page
priv_check[n] = 0;
else
priv_check[n] = 1;
}
}
}
TLB_flush();
}
void BX_CPU_C::TLB_flush(void)
{
#if InstrumentTLB
InstrTLB_Increment(tlbGlobalFlushes);
#endif
invalidate_prefetch_q();
for (unsigned n=0; n<BX_TLB_SIZE; n++) {
BX_CPU_THIS_PTR TLB.entry[n].lpf = BX_INVALID_TLB_ENTRY;
}
#if BX_SUPPORT_PAE
BX_CPU_THIS_PTR PDPE_CACHE.valid = 0;
#endif
#if BX_SUPPORT_LARGE_PAGES || BX_SUPPORT_PAE
BX_CPU_THIS_PTR TLB.split_large = 0; // flush whole TLB
#endif
#if BX_SUPPORT_MONITOR_MWAIT
// invalidating of the TLB might change translation for monitored page
// and cause subsequent MWAIT instruction to wait forever
BX_CPU_THIS_PTR monitor.reset_monitor();
#endif
}
#if BX_SUPPORT_GLOBAL_PAGES
void BX_CPU_C::TLB_flushNonGlobal(void)
{
#if InstrumentTLB
InstrTLB_Increment(tlbNonGlobalFlushes);
#endif
invalidate_prefetch_q();
for (unsigned n=0; n<BX_TLB_SIZE; n++) {
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[n];
if (!(tlbEntry->accessBits & TLB_GlobalPage)) {
tlbEntry->lpf = BX_INVALID_TLB_ENTRY;
}
#if BX_SUPPORT_LARGE_PAGES || BX_SUPPORT_PAE
else if (~tlbEntry->lpf_mask > 0xfff)
BX_CPU_THIS_PTR TLB.split_large = 1;
#endif
}
#if BX_SUPPORT_PAE
BX_CPU_THIS_PTR PDPE_CACHE.valid = 0;
#endif
#if BX_SUPPORT_MONITOR_MWAIT
// invalidating of the TLB might change translation for monitored page
// and cause subsequent MWAIT instruction to wait forever
BX_CPU_THIS_PTR monitor.reset_monitor();
#endif
}
#endif
void BX_CPU_C::TLB_invlpg(bx_address laddr)
{
invalidate_prefetch_q();
BX_DEBUG(("TLB_invlpg(0x"FMT_ADDRX"): invalidate TLB entry", laddr));
#if BX_SUPPORT_LARGE_PAGES || BX_SUPPORT_PAE
bx_bool large = 0;
if (BX_CPU_THIS_PTR TLB.split_large) {
// make sure INVLPG handles correctly large pages
for (unsigned n=0; n<BX_TLB_SIZE; n++) {
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[n];
if ((laddr & tlbEntry->lpf_mask) == (tlbEntry->lpf & tlbEntry->lpf_mask)) {
tlbEntry->lpf = BX_INVALID_TLB_ENTRY;
}
else if (~tlbEntry->lpf_mask > 0xfff) large = 1;
}
BX_CPU_THIS_PTR TLB.split_large = large;
}
else
#endif
{
unsigned TLB_index = BX_TLB_INDEX_OF(laddr, 0);
bx_address lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index];
if (TLB_LPFOf(tlbEntry->lpf) == lpf) {
tlbEntry->lpf = BX_INVALID_TLB_ENTRY;
}
}
#if BX_SUPPORT_PAE
BX_CPU_THIS_PTR PDPE_CACHE.valid = 0;
#endif
#if BX_SUPPORT_MONITOR_MWAIT
// invalidating of the TLB entry might change translation for monitored
// page and cause subsequent MWAIT instruction to wait forever
BX_CPU_THIS_PTR monitor.reset_monitor();
#endif
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INVLPG(bxInstruction_c* i)
{
#if BX_CPU_LEVEL >= 4
if (!real_mode() && CPL!=0) {
BX_ERROR(("INVLPG: priveledge check failed, generate #GP(0)"));
exception(BX_GP_EXCEPTION, 0, 0);
}
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
bx_address laddr = get_laddr(i->seg(), eaddr);
#if BX_SUPPORT_VMX
VMexit_INVLPG(i, laddr);
#endif
#if BX_SUPPORT_X86_64
if (! IsCanonical(laddr)) {
BX_ERROR(("INVLPG: non-canonical access !"));
exception(int_number(i->seg()), 0, 0);
}
#endif
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_INVLPG, laddr);
TLB_invlpg(laddr);
#else
BX_INFO(("INVLPG: required i486, use --enable-cpu=4 option"));
exception(BX_UD_EXCEPTION, 0, 0);
#endif
}
// error checking order - page not present, reserved bits, protection
#define ERROR_NOT_PRESENT 0x00
#define ERROR_PROTECTION 0x01
#define ERROR_RESERVED 0x08
#define ERROR_CODE_ACCESS 0x10
void BX_CPU_C::page_fault(unsigned fault, bx_address laddr, unsigned user, unsigned rw)
{
unsigned error_code = fault;
unsigned isWrite = rw & 1;
error_code |= (user << 2) | (isWrite << 1);
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR efer.get_NXE() && (rw == BX_EXECUTE))
error_code |= ERROR_CODE_ACCESS; // I/D = 1
#endif
#if BX_SUPPORT_VMX
VMexit_Event(0, BX_HARDWARE_EXCEPTION, BX_PF_EXCEPTION, error_code, 1, laddr); // before the CR2 was modified
#endif
BX_CPU_THIS_PTR cr2 = laddr;
#if BX_SUPPORT_X86_64
BX_DEBUG(("page fault for address %08x%08x @ %08x%08x",
GET32H(laddr), GET32L(laddr), GET32H(RIP), GET32L(RIP)));
#else
BX_DEBUG(("page fault for address %08x @ %08x", laddr, EIP));
#endif
exception(BX_PF_EXCEPTION, error_code, 0);
}
#if BX_SUPPORT_PAE
int BX_CPU_C::check_entry_PAE(const char *s, Bit64u entry, Bit64u reserved, unsigned rw, bx_bool *nx_fault)
{
if (!(entry & 0x1)) {
BX_DEBUG(("%s: entry not present", s));
return ERROR_NOT_PRESENT;
}
#if BX_PHY_ADDRESS_WIDTH == 32
if (entry & BX_CONST64(0x000fffff00000000)) {
BX_PANIC(("%s: 0x%08x%08x: Only 32 bit physical address space is emulated !", s, GET32H(entry), GET32L(entry)));
}
#endif
if (entry & reserved) {
BX_DEBUG(("%s: reserved bit is set %08x:%08x", s, GET32H(entry), GET32L(entry)));
return ERROR_RESERVED | ERROR_PROTECTION;
}
#if BX_SUPPORT_X86_64
if (entry & PAGE_DIRECTORY_NX_BIT) {
if (! BX_CPU_THIS_PTR efer.get_NXE()) {
BX_DEBUG(("%s: NX bit set when EFER.NXE is disabled", s));
return ERROR_RESERVED | ERROR_PROTECTION;
}
if (rw == BX_EXECUTE) {
BX_DEBUG(("%s: non-executable page fault occured", s));
*nx_fault = 1;
}
}
#endif
return -1;
}
// Translate a linear address to a physical address in PAE paging mode
bx_phy_address BX_CPU_C::translate_linear_PAE(bx_address laddr, bx_address &lpf_mask, Bit32u &combined_access, unsigned curr_pl, unsigned rw)
{
bx_phy_address pdpe_addr, ppf;
Bit64u pdpe, pde, pte;
#if BX_SUPPORT_X86_64
Bit64u pml4;
bx_phy_address pml4_addr = 0;
#endif
unsigned priv_index;
bx_bool nx_fault = 0, isWrite = (rw & 1); // write or r-m-w
unsigned pl = (curr_pl == 3);
int fault;
combined_access = 0x06;
#if BX_SUPPORT_X86_64
if (long_mode()) {
// Get PML4 entry
pml4_addr = (bx_phy_address)(BX_CPU_THIS_PTR cr3_masked |
((laddr & BX_CONST64(0x0000ff8000000000)) >> 36));
access_read_physical(pml4_addr, 8, &pml4);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_READ, (Bit8u*)(&pml4));
fault = check_entry_PAE("PML4", pml4, PAGING_PAE_PML4_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
pdpe_addr = (bx_phy_address)((pml4 & BX_CONST64(0x000ffffffffff000)) |
((laddr & BX_CONST64(0x0000007fc0000000)) >> 27));
access_read_physical(pdpe_addr, 8, &pdpe);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_READ, (Bit8u*)(&pdpe));
}
else
#endif
{
pdpe_addr = (bx_phy_address) (BX_CPU_THIS_PTR cr3_masked | ((laddr & 0xc0000000) >> 27));
if (! BX_CPU_THIS_PTR PDPE_CACHE.valid) {
for (int n=0; n<4; n++) {
// read PDPE cache entry
bx_phy_address entry_pdpe_addr = (bx_phy_address) (BX_CPU_THIS_PTR cr3_masked | (n << 3));
access_read_physical(entry_pdpe_addr, 8, &(BX_CPU_THIS_PTR PDPE_CACHE.entry[n]));
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, entry_pdpe_addr, 8,
BX_READ, (Bit8u*)(&BX_CPU_THIS_PTR PDPE_CACHE.entry[n]));
}
BX_CPU_THIS_PTR PDPE_CACHE.valid = 1;
}
pdpe = BX_CPU_THIS_PTR PDPE_CACHE.entry[(laddr >> 30) & 3];
}
fault = check_entry_PAE("PDPE", pdpe, long_mode() ? BX_PHY_ADDRESS_RESERVED_BITS : PAGING_PAE_PDPE_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
#if BX_SUPPORT_X86_64
if (long_mode()) {
#if BX_SUPPORT_1G_PAGES
if (pdpe & 0x80) {
if (pdpe & PAGING_PAE_PDPE1G_RESERVED_BITS) {
BX_DEBUG(("PAE 1G PDPE: reserved bit is set: PDPE=%08x:%08x", GET32H(pdpe), GET32L(pdpe)));
page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, rw);
}
// Combined access is just access from the pde (no pte involved).
combined_access = (pml4 & pdpe) & 0x06; // U/S and R/W
priv_index =
(BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4
(pl<<3) | // bit 3
(combined_access | isWrite); // bit 2,1,0
if (!priv_check[priv_index] || nx_fault)
page_fault(ERROR_PROTECTION, laddr, pl, rw);
if (BX_CPU_THIS_PTR cr4.get_PGE())
combined_access |= (pdpe & 0x100); // G
// Update PML4 A bit if needed.
if (!(pml4 & 0x20)) {
pml4 |= 0x20;
access_write_physical(pml4_addr, 8, &pml4);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_WRITE, (Bit8u*)(&pml4));
}
// Update PDPE A bit if needed.
if (!(pdpe & 0x20)) {
pdpe |= 0x20;
access_write_physical(pdpe_addr, 8, &pdpe);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_WRITE, (Bit8u*)(&pdpe));
}
// Make up the physical page frame address.
ppf = (bx_phy_address)((pdpe & BX_CONST64(0x000fffffc0000000)) | (laddr & 0x3ffff000));
lpf_mask = 0x3fffffff;
return ppf;
}
#else
if (pdpe & 0x80) {
BX_DEBUG(("PAE PDPE: page size bit set when reserved"));
page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, rw);
}
#endif
}
#endif
bx_phy_address pde_addr = (bx_phy_address)((pdpe & BX_CONST64(0x000ffffffffff000))
| ((laddr & 0x3fe00000) >> 18));
access_read_physical(pde_addr, 8, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_READ, (Bit8u*)(&pde));
fault = check_entry_PAE("PDE", pde, PAGING_PAE_PDE_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
// Ignore CR4.PSE in PAE mode
if (pde & 0x80) {
if (pde & PAGING_PAE_PDE2M_RESERVED_BITS) {
BX_DEBUG(("PAE PDE2M: reserved bit is set PDE=%08x:%08x", GET32H(pde), GET32L(pde)));
page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, rw);
}
// Combined access is just access from the pde (no pte involved).
combined_access = (pde) & 0x06; // U/S and R/W
#if BX_SUPPORT_X86_64
if (long_mode()) {
combined_access &= (pml4 & pdpe) & 0x06;
}
#endif
priv_index =
(BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4
(pl<<3) | // bit 3
(combined_access | isWrite); // bit 2,1,0
if (!priv_check[priv_index] || nx_fault)
page_fault(ERROR_PROTECTION, laddr, pl, rw);
#if BX_SUPPORT_GLOBAL_PAGES
if (BX_CPU_THIS_PTR cr4.get_PGE())
combined_access |= (pde & 0x100); // G
#endif
#if BX_SUPPORT_X86_64
if (long_mode()) {
// Update PML4 A bit if needed.
if (!(pml4 & 0x20)) {
pml4 |= 0x20;
access_write_physical(pml4_addr, 8, &pml4);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_WRITE, (Bit8u*)(&pml4));
}
// Update PDPE A bit if needed.
if (!(pdpe & 0x20)) {
pdpe |= 0x20;
access_write_physical(pdpe_addr, 8, &pdpe);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_WRITE, (Bit8u*)(&pdpe));
}
}
#endif
// Update PDE A/D bits if needed.
if (((pde & 0x20)==0) || (isWrite && ((pde & 0x40)==0))) {
pde |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pde_addr, 8, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_WRITE, (Bit8u*)(&pde));
}
// Make up the physical page frame address.
ppf = (bx_phy_address)((pde & BX_CONST64(0x000fffffffe00000)) | (laddr & 0x001ff000));
lpf_mask = 0x1fffff;
return ppf;
}
// 4k pages, Get page table entry
bx_phy_address pte_addr = (bx_phy_address)((pde & BX_CONST64(0x000ffffffffff000)) |
((laddr & 0x001ff000) >> 9));
access_read_physical(pte_addr, 8, &pte);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 8, BX_READ, (Bit8u*)(&pte));
fault = check_entry_PAE("PTE", pte, PAGING_PAE_PTE_RESERVED_BITS, rw, &nx_fault);
if (fault >= 0)
page_fault(fault, laddr, pl, rw);
combined_access = (pde & pte) & 0x06; // U/S and R/W
#if BX_SUPPORT_X86_64
if (long_mode()) {
combined_access &= (pml4 & pdpe) & 0x06;
}
#endif
priv_index =
(BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4
(pl<<3) | // bit 3
(combined_access | isWrite); // bit 2,1,0
if (!priv_check[priv_index] || nx_fault)
page_fault(ERROR_PROTECTION, laddr, pl, rw);
#if BX_SUPPORT_GLOBAL_PAGES
if (BX_CPU_THIS_PTR cr4.get_PGE())
combined_access |= (pte & 0x100); // G
#endif
#if BX_SUPPORT_X86_64
if (long_mode()) {
// Update PML4 A bit if needed.
if (!(pml4 & 0x20)) {
pml4 |= 0x20;
access_write_physical(pml4_addr, 8, &pml4);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pml4_addr, 8, BX_WRITE, (Bit8u*)(&pml4));
}
// Update PDPE A bit if needed.
if (!(pdpe & 0x20)) {
pdpe |= 0x20;
access_write_physical(pdpe_addr, 8, &pdpe);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pdpe_addr, 8, BX_WRITE, (Bit8u*)(&pdpe));
}
}
#endif
// Update PDE A bit if needed.
if (!(pde & 0x20)) {
pde |= 0x20;
access_write_physical(pde_addr, 8, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 8, BX_WRITE, (Bit8u*)(&pde));
}
// Update PTE A/D bits if needed.
if (((pte & 0x20)==0) || (isWrite && ((pte & 0x40)==0))) {
pte |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pte_addr, 8, &pte);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 8, BX_WRITE, (Bit8u*)(&pte));
}
// Make up the physical page frame address.
ppf = (bx_phy_address)(pte & BX_CONST64(0x000ffffffffff000));
return ppf;
}
#endif // BX_SUPPORT_PAE
// Translate a linear address to a physical address
bx_phy_address BX_CPU_C::translate_linear(bx_address laddr, unsigned curr_pl, unsigned rw)
{
Bit32u combined_access = 0;
bx_address lpf_mask = 0xfff; // 4K pages
unsigned priv_index;
// note - we assume physical memory < 4gig so for brevity & speed, we'll use
// 32 bit entries although cr3 is expanded to 64 bits.
bx_phy_address paddress, ppf, poffset = PAGE_OFFSET(laddr);
bx_bool isWrite = rw & 1; // write or r-m-w
unsigned pl = (curr_pl == 3);
BX_ASSERT(BX_CPU_THIS_PTR cr0.get_PG());
InstrTLB_Increment(tlbLookups);
InstrTLB_Stats();
bx_address lpf = LPFOf(laddr);
unsigned TLB_index = BX_TLB_INDEX_OF(lpf, 0);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index];
// already looked up TLB for code access
if (TLB_LPFOf(tlbEntry->lpf) == lpf)
{
paddress = tlbEntry->ppf | poffset;
if (! (tlbEntry->accessBits & ((isWrite<<1) | pl)))
return paddress;
// The current access does not have permission according to the info
// in our TLB cache entry. Re-walk the page tables, in case there is
// updated information in the memory image, and let the long path code
// generate an exception if one is warranted.
}
BX_DEBUG(("page walk for address 0x" FMT_LIN_ADDRX, laddr));
InstrTLB_Increment(tlbMisses);
#if BX_SUPPORT_PAE
if (BX_CPU_THIS_PTR cr4.get_PAE())
{
ppf = translate_linear_PAE(laddr, lpf_mask, combined_access, curr_pl, rw);
}
else
#endif // #if BX_SUPPORT_PAE
{
// CR4.PAE==0 (and EFER.LMA==0)
Bit32u pde, pte;
bx_phy_address pde_addr = (bx_phy_address) (BX_CPU_THIS_PTR cr3_masked |
((laddr & 0xffc00000) >> 20));
access_read_physical(pde_addr, 4, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 4, BX_READ, (Bit8u*)(&pde));
if (!(pde & 0x1)) {
BX_DEBUG(("PDE: entry not present"));
page_fault(ERROR_NOT_PRESENT, laddr, pl, rw);
}
#if BX_SUPPORT_LARGE_PAGES
if ((pde & 0x80) && BX_CPU_THIS_PTR cr4.get_PSE())
{
// 4M paging
if (pde & PAGING_PSE_PDE4M_RESERVED_BITS) {
BX_DEBUG(("PSE PDE4M: reserved bit is set: PDE=0x%08x", pde));
page_fault(ERROR_RESERVED | ERROR_PROTECTION, laddr, pl, rw);
}
#if BX_PHY_ADDRESS_WIDTH == 32
if (pde & 0x0001e000) {
BX_PANIC(("PSE PDE4M 0x%08x: Only 32 bit physical address space is emulated !", pde));
}
#endif
// Combined access is just access from the pde (no pte involved).
combined_access = pde & 0x06; // U/S and R/W
priv_index =
#if BX_CPU_LEVEL >= 4
(BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4
#endif
(pl<<3) | // bit 3
(combined_access | isWrite); // bit 2,1,0
if (!priv_check[priv_index])
page_fault(ERROR_PROTECTION, laddr, pl, rw);
#if BX_SUPPORT_GLOBAL_PAGES
if (BX_CPU_THIS_PTR cr4.get_PGE())
combined_access |= pde & 0x100; // G
#endif
// Update PDE A/D bits if needed.
if (((pde & 0x20)==0) || (isWrite && ((pde & 0x40)==0))) {
pde |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pde_addr, 4, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 4, BX_WRITE, (Bit8u*)(&pde));
}
// make up the physical frame number
ppf = (pde & 0xffc00000) | (laddr & 0x003ff000);
lpf_mask = 0x3fffff;
}
else // else normal 4K page...
#endif
{
// Get page table entry
bx_phy_address pte_addr = (bx_phy_address)((pde & 0xfffff000) | ((laddr & 0x003ff000) >> 10));
access_read_physical(pte_addr, 4, &pte);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 4, BX_READ, (Bit8u*)(&pte));
if (!(pte & 0x1)) {
BX_DEBUG(("PTE: entry not present"));
page_fault(ERROR_NOT_PRESENT, laddr, pl, rw);
}
// 386 and 486+ have different behaviour for combining
// privilege from PDE and PTE.
#if BX_CPU_LEVEL == 3
combined_access = (pde | pte) & 0x04; // U/S
combined_access |= (pde & pte) & 0x02; // R/W
#else // 486+
combined_access = (pde & pte) & 0x06; // U/S and R/W
#endif
priv_index =
#if BX_CPU_LEVEL >= 4
(BX_CPU_THIS_PTR cr0.get_WP() << 4) | // bit 4
#endif
(pl<<3) | // bit 3
(combined_access | isWrite); // bit 2,1,0
if (!priv_check[priv_index])
page_fault(ERROR_PROTECTION, laddr, pl, rw);
#if BX_SUPPORT_GLOBAL_PAGES
if (BX_CPU_THIS_PTR cr4.get_PGE())
combined_access |= (pte & 0x100); // G
#endif
// Update PDE A bit if needed.
if (!(pde & 0x20)) {
pde |= 0x20;
access_write_physical(pde_addr, 4, &pde);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pde_addr, 4, BX_WRITE, (Bit8u*)(&pde));
}
// Update PTE A/D bits if needed.
if (((pte & 0x20)==0) || (isWrite && ((pte & 0x40)==0))) {
pte |= (0x20 | (isWrite<<6)); // Update A and possibly D bits
access_write_physical(pte_addr, 4, &pte);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID, pte_addr, 4, BX_WRITE, (Bit8u*)(&pte));
}
// Make up the physical page frame address.
ppf = pte & 0xfffff000;
}
}
// Calculate physical memory address and fill in TLB cache entry
paddress = ppf | poffset;
#if BX_SUPPORT_LARGE_PAGES || BX_SUPPORT_PAE
if (lpf_mask > 0xfff)
BX_CPU_THIS_PTR TLB.split_large = 1;
#endif
// direct memory access is NOT allowed by default
tlbEntry->lpf = lpf | TLB_HostPtr;
tlbEntry->lpf_mask = ~((bx_address) lpf_mask);
tlbEntry->ppf = ppf;
tlbEntry->accessBits = 0;
if ((combined_access & 4) == 0) { // System
tlbEntry->accessBits |= TLB_SysOnly;
if (! isWrite)
tlbEntry->accessBits |= TLB_ReadOnly;
}
else {
// Current operation is a read or a page is read only
// Not efficient handling of system write to user read only page:
// hopefully it is very rare case, optimize later
if (! isWrite || (combined_access & 2) == 0) {
tlbEntry->accessBits |= TLB_ReadOnly;
}
}
#if BX_SUPPORT_GLOBAL_PAGES
if (combined_access & 0x100) // Global bit
tlbEntry->accessBits |= TLB_GlobalPage;
#endif
// Attempt to get a host pointer to this physical page. Put that
// pointer in the TLB cache. Note if the request is vetoed, NULL
// will be returned, and it's OK to OR zero in anyways.
tlbEntry->hostPageAddr = (bx_hostpageaddr_t) BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, ppf, rw);
if (tlbEntry->hostPageAddr) {
// All access allowed also via direct pointer
#if BX_X86_DEBUGGER
if (! hwbreakpoint_check(laddr))
#endif
tlbEntry->lpf = lpf; // allow direct access with HostPtr
}
return paddress;
}
#if BX_DEBUGGER || BX_DISASM || BX_INSTRUMENTATION || BX_GDBSTUB
bx_bool BX_CPU_C::dbg_xlate_linear2phy(bx_address laddr, bx_phy_address *phy)
{
if (BX_CPU_THIS_PTR cr0.get_PG() == 0) {
*phy = (bx_phy_address) laddr;
return 1;
}
bx_phy_address paddress;
// see if page is in the TLB first
bx_address lpf = LPFOf(laddr);
unsigned TLB_index = BX_TLB_INDEX_OF(lpf, 0);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[TLB_index];
if (TLB_LPFOf(tlbEntry->lpf) == lpf) {
paddress = tlbEntry->ppf | PAGE_OFFSET(laddr);
*phy = paddress;
return 1;
}
bx_phy_address pt_address = BX_CPU_THIS_PTR cr3_masked;
bx_address offset_mask = 0xfff;
#if BX_SUPPORT_PAE
if (BX_CPU_THIS_PTR cr4.get_PAE()) {
int levels = 3;
#if BX_SUPPORT_X86_64
if (long_mode())
levels = 4;
#endif
for (int level = levels - 1; level >= 0; --level) {
Bit64u pte;
pt_address += 8 * ((laddr >> (12 + 9*level)) & 511);
access_read_physical(pt_address, 8, &pte);
if(!(pte & 1))
goto page_fault;
if (pte & BX_PHY_ADDRESS_RESERVED_BITS)
goto page_fault;
pt_address = bx_phy_address(pte & BX_CONST64(0x000ffffffffff000));
if (level == 1 && (pte & 0x80)) { // PSE page
offset_mask = 0x1fffff;
break;
}
}
paddress = pt_address + (bx_phy_address)(laddr & offset_mask);
}
else // not PAE
#endif
{
for (int level = 1; level >= 0; --level) {
Bit32u pte;
pt_address += 4 * ((laddr >> (12 + 10*level)) & 1023);
access_read_physical(pt_address, 4, &pte);
if (!(pte & 1))
goto page_fault;
pt_address = pte & 0xfffff000;
if (level == 1 && (pte & 0x80)) { // PSE page
offset_mask = 0x3fffff;
break;
}
}
paddress = pt_address + (bx_phy_address)(laddr & offset_mask);
}
*phy = paddress;
return 1;
page_fault:
*phy = 0;
return 0;
}
#endif
void BX_CPU_C::access_write_linear(bx_address laddr, unsigned len, unsigned curr_pl, void *data)
{
#if BX_X86_DEBUGGER
hwbreakpoint_match(laddr, len, BX_WRITE);
#endif
Bit32u pageOffset = PAGE_OFFSET(laddr);
if (BX_CPU_THIS_PTR cr0.get_PG()) {
/* check for reference across multiple pages */
if ((pageOffset + len) <= 4096) {
// Access within single page.
BX_CPU_THIS_PTR address_xlation.paddress1 =
dtranslate_linear(laddr, curr_pl, BX_WRITE);
BX_CPU_THIS_PTR address_xlation.pages = 1;
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1, len, BX_WRITE);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, BX_CPU_THIS_PTR address_xlation.paddress1,
len, curr_pl, BX_WRITE, (Bit8u*) data);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, len, data);
}
else {
// access across 2 pages
BX_CPU_THIS_PTR address_xlation.paddress1 =
dtranslate_linear(laddr, curr_pl, BX_WRITE);
BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset;
BX_CPU_THIS_PTR address_xlation.len2 = len -
BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.pages = 2;
bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.paddress2 =
dtranslate_linear(laddr2, curr_pl, BX_WRITE);
#ifdef BX_LITTLE_ENDIAN
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, curr_pl,
BX_WRITE, (Bit8u*) data);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, data);
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, curr_pl,
BX_WRITE, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
#else // BX_BIG_ENDIAN
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, curr_pl,
BX_WRITE, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, curr_pl,
BX_WRITE, (Bit8u*) data);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, data);
#endif
}
}
else {
// Paging off.
if ((pageOffset + len) <= 4096) {
// Access within single page.
BX_CPU_THIS_PTR address_xlation.paddress1 = (bx_phy_address) laddr;
BX_CPU_THIS_PTR address_xlation.pages = 1;
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, (bx_phy_address) laddr, len, BX_WRITE);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, (bx_phy_address) laddr, len,
curr_pl, BX_WRITE, (Bit8u*) data);
// do not replace to the TLB if there is a breakpoint defined
// in the same page
#if BX_X86_DEBUGGER
if (! hwbreakpoint_check(laddr))
#endif
{
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
bx_address lpf = LPFOf(laddr);
if (TLB_LPFOf(tlbEntry->lpf) != lpf) {
// We haven't seen this page, or it's been bumped before.
// Request a direct write pointer so we can do either R or W.
bx_hostpageaddr_t hostPageAddr = (bx_hostpageaddr_t)
BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, lpf, BX_WRITE);
if (hostPageAddr) {
tlbEntry->lpf = lpf; // Got direct write pointer OK
tlbEntry->ppf = (bx_phy_address) lpf;
tlbEntry->hostPageAddr = hostPageAddr;
// Mark for any operation to succeed.
tlbEntry->accessBits = 0;
}
}
}
access_write_physical((bx_phy_address) laddr, len, data);
}
else {
// Access spans two pages.
BX_CPU_THIS_PTR address_xlation.paddress1 = (bx_phy_address) laddr;
BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset;
BX_CPU_THIS_PTR address_xlation.len2 = len -
BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.pages = 2;
bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.paddress2 = (bx_phy_address) laddr2;
#ifdef BX_LITTLE_ENDIAN
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, curr_pl,
BX_WRITE, (Bit8u*) data);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, data);
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, curr_pl,
BX_WRITE, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
#else // BX_BIG_ENDIAN
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, curr_pl,
BX_WRITE, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, curr_pl,
BX_WRITE, (Bit8u*) data);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, data);
#endif
}
}
}
void BX_CPU_C::access_read_linear(bx_address laddr, unsigned len, unsigned curr_pl, unsigned xlate_rw, void *data)
{
BX_ASSERT(xlate_rw == BX_READ || xlate_rw == BX_RW);
#if BX_X86_DEBUGGER
hwbreakpoint_match(laddr, len, xlate_rw);
#endif
Bit32u pageOffset = PAGE_OFFSET(laddr);
if (BX_CPU_THIS_PTR cr0.get_PG()) {
/* check for reference across multiple pages */
if ((pageOffset + len) <= 4096) {
// Access within single page.
BX_CPU_THIS_PTR address_xlation.paddress1 =
dtranslate_linear(laddr, curr_pl, xlate_rw);
BX_CPU_THIS_PTR address_xlation.pages = 1;
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1, len, data);
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1, len, xlate_rw);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1, len, curr_pl,
BX_READ, (Bit8u*) data);
}
else {
// access across 2 pages
BX_CPU_THIS_PTR address_xlation.paddress1 =
dtranslate_linear(laddr, curr_pl, xlate_rw);
BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset;
BX_CPU_THIS_PTR address_xlation.len2 = len -
BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.pages = 2;
bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.paddress2 =
dtranslate_linear(laddr2, curr_pl, xlate_rw);
#ifdef BX_LITTLE_ENDIAN
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, data);
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, xlate_rw);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, curr_pl,
BX_READ, (Bit8u*) data);
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, xlate_rw);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, curr_pl,
BX_READ, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
#else // BX_BIG_ENDIAN
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, xlate_rw);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, curr_pl,
BX_READ, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, data);
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, xlate_rw);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, curr_pl,
BX_READ, (Bit8u*) data);
#endif
}
}
else {
// Paging off.
if ((pageOffset + len) <= 4096) {
// Access within single page.
BX_CPU_THIS_PTR address_xlation.paddress1 = (bx_phy_address) laddr;
BX_CPU_THIS_PTR address_xlation.pages = 1;
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr, (bx_phy_address) laddr, len, xlate_rw);
// do not replace to the TLB if there is a breakpoint defined
// in the same page
#if BX_X86_DEBUGGER
if (! hwbreakpoint_check(laddr))
#endif
{
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
bx_address lpf = LPFOf(laddr);
if (TLB_LPFOf(tlbEntry->lpf) != lpf) {
// We haven't seen this page, or it's been bumped before.
// Request a direct write pointer so we can do either R or W.
bx_hostpageaddr_t hostPageAddr = (bx_hostpageaddr_t)
BX_MEM(0)->getHostMemAddr(BX_CPU_THIS, lpf, BX_READ);
if (hostPageAddr) {
tlbEntry->lpf = lpf; // Got direct read pointer OK.
tlbEntry->ppf = (bx_phy_address) lpf;
tlbEntry->hostPageAddr = hostPageAddr;
// Mark for any following read to succeed.
tlbEntry->accessBits = TLB_ReadOnly;
}
}
}
access_read_physical((bx_phy_address) laddr, len, data);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr, (bx_phy_address) laddr, len,
curr_pl, BX_READ, (Bit8u*) data);
}
else {
// Access spans two pages.
BX_CPU_THIS_PTR address_xlation.paddress1 = (bx_phy_address) laddr;
BX_CPU_THIS_PTR address_xlation.len1 = 4096 - pageOffset;
BX_CPU_THIS_PTR address_xlation.len2 = len -
BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.pages = 2;
bx_address laddr2 = laddr + BX_CPU_THIS_PTR address_xlation.len1;
BX_CPU_THIS_PTR address_xlation.paddress2 = (bx_phy_address) laddr2;
#ifdef BX_LITTLE_ENDIAN
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, data);
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, xlate_rw);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, curr_pl,
BX_READ, (Bit8u*) data);
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, xlate_rw);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, curr_pl,
BX_READ, ((Bit8u*)data) + BX_CPU_THIS_PTR address_xlation.len1);
#else // BX_BIG_ENDIAN
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, xlate_rw);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, curr_pl,
BX_READ, ((Bit8u*)data) + (len - BX_CPU_THIS_PTR address_xlation.len1));
access_read_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, data);
BX_INSTR_LIN_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, xlate_rw);
BX_DBG_LIN_MEMORY_ACCESS(BX_CPU_ID, laddr2, BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, curr_pl,
BX_READ, (Bit8u*) data);
#endif
}
}
}
void BX_CPU_C::access_write_physical(bx_phy_address paddr, unsigned len, void *data)
{
#if BX_SUPPORT_APIC
if (BX_CPU_THIS_PTR lapic.is_selected(paddr)) {
BX_CPU_THIS_PTR lapic.write(paddr, data, len);
return;
}
#endif
BX_MEM(0)->writePhysicalPage(BX_CPU_THIS, paddr, len, data);
}
void BX_CPU_C::access_read_physical(bx_phy_address paddr, unsigned len, void *data)
{
#if BX_SUPPORT_APIC
if (BX_CPU_THIS_PTR lapic.is_selected(paddr)) {
BX_CPU_THIS_PTR lapic.read(paddr, data, len);
return;
}
#endif
BX_MEM(0)->readPhysicalPage(BX_CPU_THIS, paddr, len, data);
}