Bochs/bochs/cpu/iret.cc
Stanislav Shwartsman 670395f1be VME support - beta #1
2005-10-17 13:06:09 +00:00

643 lines
22 KiB
C++
Executable File

////////////////////////////////////////////////////////////////////////
// $Id: iret.cc,v 1.9 2005-10-17 13:06:09 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64==0
// Make life easier merging cpu64 & cpu code.
#define RIP EIP
#endif
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::iret_protected(bxInstruction_c *i)
{
Bit16u raw_cs_selector, raw_ss_selector;
bx_selector_t cs_selector, ss_selector;
Bit32u dword1, dword2;
bx_descriptor_t cs_descriptor, ss_descriptor;
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR msr.lma)
{
long_iret(i);
return;
}
#endif
if ( BX_CPU_THIS_PTR get_NT () ) { /* NT = 1: RETURN FROM NESTED TASK */
/* what's the deal with NT & VM ? */
Bit32u base32;
Bit16u raw_link_selector;
bx_selector_t link_selector;
bx_descriptor_t tss_descriptor;
if ( BX_CPU_THIS_PTR get_VM () )
BX_PANIC(("iret_protected: VM sholdn't be set here !"));
//BX_INFO(("IRET: nested task return"));
if (BX_CPU_THIS_PTR tr.cache.valid==0)
BX_PANIC(("IRET: TR not valid"));
if (BX_CPU_THIS_PTR tr.cache.type == BX_SYS_SEGMENT_AVAIL_286_TSS)
base32 = BX_CPU_THIS_PTR tr.cache.u.tss286.base;
else if (BX_CPU_THIS_PTR tr.cache.type == BX_SYS_SEGMENT_AVAIL_386_TSS)
base32 = BX_CPU_THIS_PTR tr.cache.u.tss386.base;
else {
BX_PANIC(("IRET: TR not valid"));
base32 = 0; // keep compiler happy
}
// examine back link selector in TSS addressed by current TR:
access_linear(base32, 2, 0, BX_READ, &raw_link_selector);
// must specify global, else #TS(new TSS selector)
parse_selector(raw_link_selector, &link_selector);
if (link_selector.ti) {
BX_ERROR(("iret: link selector.ti=1"));
exception(BX_TS_EXCEPTION, raw_link_selector & 0xfffc, 0);
}
// index must be within GDT limits, else #TS(new TSS selector)
fetch_raw_descriptor(&link_selector, &dword1, &dword2, BX_TS_EXCEPTION);
// AR byte must specify TSS, else #TS(new TSS selector)
// new TSS must be busy, else #TS(new TSS selector)
parse_descriptor(dword1, dword2, &tss_descriptor);
if (tss_descriptor.valid==0 || tss_descriptor.segment) {
BX_INFO(("iret: TSS selector points to bad TSS"));
exception(BX_TS_EXCEPTION, raw_link_selector & 0xfffc, 0);
}
if ((tss_descriptor.type!=11) && (tss_descriptor.type!=3)) {
BX_INFO(("iret: TSS selector points to bad TSS"));
exception(BX_TS_EXCEPTION, raw_link_selector & 0xfffc, 0);
}
// TSS must be present, else #NP(new TSS selector)
if (! IS_PRESENT(tss_descriptor)) {
BX_ERROR(("iret: task descriptor.p == 0"));
exception(BX_NP_EXCEPTION, raw_link_selector & 0xfffc, 0);
}
// switch tasks (without nesting) to TSS specified by back link selector
task_switch(&link_selector, &tss_descriptor,
BX_TASK_FROM_IRET, dword1, dword2);
// mark the task just abandoned as not busy
// EIP must be within code seg limit, else #GP(0)
if (EIP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled) {
BX_ERROR(("iret: EIP > CS.limit"));
exception(BX_GP_EXCEPTION, 0, 0);
}
return;
}
/* NT = 0: INTERRUPT RETURN ON STACK -or STACK_RETURN_TO_V86 */
unsigned top_nbytes_same, top_nbytes_outer;
Bit32u new_eip, new_esp, temp_ESP, new_eflags;
Bit16u new_ip, new_flags;
Bit32u ss_offset;
/* 16bit opsize | 32bit opsize
* ==============================
* SS eSP+8 | SS eSP+16
* SP eSP+6 | ESP eSP+12
* -------------------------------
* FLAGS eSP+4 | EFLAGS eSP+8
* CS eSP+2 | CS eSP+4
* IP eSP+0 | EIP eSP+0
*/
if (i->os32L()) {
top_nbytes_same = 12;
top_nbytes_outer = 20;
ss_offset = 16;
}
else {
top_nbytes_same = 6;
top_nbytes_outer = 10;
ss_offset = 8;
}
/* CS on stack must be within stack limits, else #SS(0) */
if ( !can_pop(top_nbytes_same) ) {
BX_ERROR(("iret: CS not within stack limits"));
exception(BX_SS_EXCEPTION, 0, 0);
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
temp_ESP = ESP;
else
temp_ESP = SP;
if (i->os32L()) {
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 4,
2, CPL==3, BX_READ, &raw_cs_selector);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 0,
4, CPL==3, BX_READ, &new_eip);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 8,
4, CPL==3, BX_READ, &new_eflags);
// if VM=1 in flags image on stack then STACK_RETURN_TO_V86
if (new_eflags & EFlagsVMMask) {
if (CPL == 0) {
BX_CPU_THIS_PTR stack_return_to_v86(new_eip, raw_cs_selector, new_eflags);
return;
}
else BX_INFO(("iret: VM set on stack, CPL!=0"));
}
}
else {
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 2,
2, CPL==3, BX_READ, &raw_cs_selector);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 0,
2, CPL==3, BX_READ, &new_ip);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 4,
2, CPL==3, BX_READ, &new_flags);
}
parse_selector(raw_cs_selector, &cs_selector);
// return CS selector must be non-null, else #GP(0)
if ( (raw_cs_selector & 0xfffc) == 0 ) {
BX_ERROR(("iret: return CS selector null"));
exception(BX_GP_EXCEPTION, 0, 0);
}
// selector index must be within descriptor table limits,
// else #GP(return selector)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
// return CS selector RPL must be >= CPL, else #GP(return selector)
if (cs_selector.rpl < CPL) {
BX_ERROR(("iret: return selector RPL < CPL"));
exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
}
// check code-segment descriptor
check_cs(&cs_descriptor, raw_cs_selector, 0, cs_selector.rpl);
if (cs_selector.rpl == CPL) { /* INTERRUPT RETURN TO SAME LEVEL */
/* top 6/12 bytes on stack must be within limits, else #SS(0) */
/* satisfied above */
if (i->os32L()) {
/* load CS-cache with new code segment descriptor */
branch_far32(&cs_selector, &cs_descriptor, new_eip, cs_selector.rpl);
// ID,VIP,VIF,AC,VM,RF,x,NT,IOPL,OF,DF,IF,TF,SF,ZF,x,AF,x,PF,x,CF
Bit32u changeMask = EFlagsOSZAPCMask | EFlagsTFMask |
EFlagsDFMask | EFlagsNTMask | EFlagsRFMask;
#if BX_CPU_LEVEL >= 4
changeMask |= (EFlagsIDMask | EFlagsACMask); // ID/AC
#endif
if (CPL <= BX_CPU_THIS_PTR get_IOPL())
changeMask |= EFlagsIFMask;
if (CPL == 0)
changeMask |= EFlagsVIPMask | EFlagsVIFMask | EFlagsIOPLMask;
// IF only changed if (CPL <= EFLAGS.IOPL)
// VIF, VIP, IOPL only changed if CPL == 0
// VM unaffected
writeEFlags(new_eflags, changeMask);
}
else {
/* load CS-cache with new code segment descriptor */
branch_far32(&cs_selector, &cs_descriptor, (Bit32u) new_ip, cs_selector.rpl);
/* load flags with third word on stack */
write_flags(new_flags, CPL==0, CPL<=BX_CPU_THIS_PTR get_IOPL ());
}
/* increment stack by 6/12 */
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP += top_nbytes_same;
else
SP += top_nbytes_same;
return;
}
else { /* INTERRUPT RETURN TO OUTER PRIVILEGE LEVEL */
/* 16bit opsize | 32bit opsize
* ==============================
* SS eSP+8 | SS eSP+16
* SP eSP+6 | ESP eSP+12
* FLAGS eSP+4 | EFLAGS eSP+8
* CS eSP+2 | CS eSP+4
* IP eSP+0 | EIP eSP+0
*/
/* top 10/20 bytes on stack must be within limits else #SS(0) */
if ( !can_pop(top_nbytes_outer) ) {
BX_ERROR(("iret: top 10/20 bytes not within stack limits"));
exception(BX_SS_EXCEPTION, 0, 0);
}
/* examine return SS selector and associated descriptor */
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + ss_offset,
2, 0, BX_READ, &raw_ss_selector);
/* selector must be non-null, else #GP(0) */
if ( (raw_ss_selector & 0xfffc) == 0 ) {
BX_ERROR(("iret: SS selector null"));
exception(BX_GP_EXCEPTION, 0, 0);
}
parse_selector(raw_ss_selector, &ss_selector);
/* selector RPL must = RPL of return CS selector,
* else #GP(SS selector) */
if (ss_selector.rpl != cs_selector.rpl) {
BX_ERROR(("iret: SS.rpl != CS.rpl"));
exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
/* selector index must be within its descriptor table limits,
* else #GP(SS selector) */
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
/* AR byte must indicate a writable data segment,
* else #GP(SS selector) */
if ( ss_descriptor.valid==0 ||
ss_descriptor.segment==0 ||
ss_descriptor.u.segment.executable ||
ss_descriptor.u.segment.r_w==0 )
{
BX_ERROR(("iret: SS AR byte not writable code segment"));
exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
/* stack segment DPL must equal the RPL of the return CS selector,
* else #GP(SS selector) */
if (ss_descriptor.dpl != cs_selector.rpl) {
BX_ERROR(("iret: SS.dpl != CS selector RPL"));
exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
/* SS must be present, else #NP(SS selector) */
if (! IS_PRESENT(ss_descriptor)) {
BX_ERROR(("iret: SS not present!"));
exception(BX_NP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
if (i->os32L()) {
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 0,
4, 0, BX_READ, &new_eip);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 8,
4, 0, BX_READ, &new_eflags);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 12,
4, 0, BX_READ, &new_esp);
}
else {
Bit16u new_sp = 0;
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 0,
2, 0, BX_READ, &new_ip);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 4,
2, 0, BX_READ, &new_flags);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_ESP + 6,
2, 0, BX_READ, &new_sp);
new_eip = new_ip;
new_esp = new_sp;
new_eflags = new_flags;
}
Bit8u prev_cpl = CPL; /* previous CPL */
/* load CS:EIP from stack */
/* load the CS-cache with CS descriptor */
/* set CPL to the RPL of the return CS selector */
branch_far32(&cs_selector, &cs_descriptor, new_eip, cs_selector.rpl);
// ID,VIP,VIF,AC,VM,RF,x,NT,IOPL,OF,DF,IF,TF,SF,ZF,x,AF,x,PF,x,CF
Bit32u changeMask = EFlagsOSZAPCMask | EFlagsTFMask |
EFlagsDFMask | EFlagsNTMask | EFlagsRFMask;
#if BX_CPU_LEVEL >= 4
changeMask |= (EFlagsIDMask | EFlagsACMask); // ID/AC
#endif
if (prev_cpl <= BX_CPU_THIS_PTR get_IOPL())
changeMask |= EFlagsIFMask;
if (prev_cpl == 0)
changeMask |= EFlagsVIPMask | EFlagsVIFMask | EFlagsIOPLMask;
if (cs_descriptor.u.segment.d_b)
changeMask &= 0xffff;
// IF only changed if (prev_CPL <= EFLAGS.IOPL)
// VIF, VIP, IOPL only changed if prev_CPL == 0
// VM unaffected
writeEFlags(new_eflags, changeMask);
// load SS:eSP from stack
// load the SS-cache with SS descriptor
load_ss(&ss_selector, &ss_descriptor, cs_selector.rpl);
if (ss_descriptor.u.segment.d_b)
ESP = new_esp;
else
SP = new_esp;
validate_seg_regs();
}
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::long_iret(bxInstruction_c *i)
{
Bit16u raw_cs_selector, raw_ss_selector;
bx_selector_t cs_selector, ss_selector;
Bit32u dword1, dword2;
bx_descriptor_t cs_descriptor, ss_descriptor;
Bit32u new_eflags;
Bit64u new_rip, new_rsp, temp_RSP;
unsigned top_nbytes_outer, ss_offset;
BX_DEBUG (("LONG MODE IRET"));
if ( BX_CPU_THIS_PTR get_NT () ) {
BX_ERROR(("iret64: return from nested task not supported in x86-64 mode !"));
exception(BX_GP_EXCEPTION, 0, 0);
}
/* 64bit opsize
* ============
* SS eSP+32
* ESP eSP+24
* -------------
* EFLAGS eSP+16
* CS eSP+8
* EIP eSP+0
*/
if (StackAddrSize64()) temp_RSP = RSP;
else {
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) temp_RSP = ESP;
else temp_RSP = SP;
}
unsigned top_nbytes_same = 0; /* stop compiler warnings */
if (i->os64L()) {
Bit64u new_rflags = 0;
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 8,
2, CPL==3, BX_READ, &raw_cs_selector);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 0,
8, CPL==3, BX_READ, &new_rip);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 16,
8, CPL==3, BX_READ, &new_rflags);
new_eflags = (Bit32u) new_rflags;
top_nbytes_outer = 40;
ss_offset = 32;
}
else if (i->os32L()) {
/* CS on stack must be within stack limits, else #SS(0) */
if ( !can_pop(12) ) {
BX_ERROR(("iret64: CS not within stack limits"));
exception(BX_SS_EXCEPTION, 0, 0);
}
Bit32u return_EIP = 0;
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 4,
2, CPL==3, BX_READ, &raw_cs_selector);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 0,
4, CPL==3, BX_READ, &return_EIP);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 8,
4, CPL==3, BX_READ, &new_eflags);
new_rip = return_EIP;
top_nbytes_outer = 20;
top_nbytes_same = 12;
ss_offset = 16;
}
else {
/* CS on stack must be within stack limits, else #SS(0) */
if ( !can_pop(6) ) {
BX_ERROR(("iret64: CS not within stack limits"));
exception(BX_SS_EXCEPTION, 0, 0);
}
Bit16u return_IP = 0, new_flags = 0;
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 2,
2, CPL==3, BX_READ, &raw_cs_selector);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 0,
2, CPL==3, BX_READ, &return_IP);
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 4,
2, CPL==3, BX_READ, &new_flags);
new_rip = return_IP;
new_eflags = (Bit32u) new_flags;
top_nbytes_outer = 10;
top_nbytes_same = 6;
ss_offset = 8;
}
// if VM=1 in flags image on stack then STACK_RETURN_TO_V86
if (new_eflags & EFlagsVMMask) {
BX_PANIC(("iret64: no V86 mode in x86-64 LONG mode"));
new_eflags &= ~EFlagsVMMask;
}
parse_selector(raw_cs_selector, &cs_selector);
// return CS selector must be non-null, else #GP(0)
if ( (raw_cs_selector & 0xfffc) == 0 ) {
BX_ERROR(("iret64: return CS selector null"));
exception(BX_GP_EXCEPTION, 0, 0);
}
// selector index must be within descriptor table limits,
// else #GP(return selector)
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
// return CS selector RPL must be >= CPL, else #GP(return selector)
if (cs_selector.rpl < CPL) {
BX_ERROR(("iret64: return selector RPL < CPL"));
exception(BX_GP_EXCEPTION, raw_cs_selector & 0xfffc, 0);
}
// check code-segment descriptor
check_cs(&cs_descriptor, raw_cs_selector, 0, cs_selector.rpl);
/* INTERRUPT RETURN TO SAME PRIVILEGE LEVEL */
if ((cs_selector.rpl == CPL) && (BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64))
{
/* top 24 bytes on stack must be within limits, else #SS(0) */
/* satisfied above */
/* load CS:EIP from stack */
/* load CS-cache with new code segment descriptor */
branch_far32(&cs_selector, &cs_descriptor, new_rip, CPL);
// ID,VIP,VIF,AC,VM,RF,x,NT,IOPL,OF,DF,IF,TF,SF,ZF,x,AF,x,PF,x,CF
Bit32u changeMask = EFlagsOSZAPCMask | EFlagsTFMask | EFlagsDFMask |
EFlagsNTMask | EFlagsRFMask | EFlagsIDMask | EFlagsACMask;
if (CPL <= BX_CPU_THIS_PTR get_IOPL())
changeMask |= EFlagsIFMask;
if (CPL == 0)
changeMask |= EFlagsVIPMask | EFlagsVIFMask | EFlagsIOPLMask;
// IF only changed if (CPL <= EFLAGS.IOPL)
// VIF, VIP, IOPL only changed if CPL == 0
// VM unaffected
writeEFlags(new_eflags, changeMask);
/* we are NOT in 64-bit mode */
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
ESP += top_nbytes_same;
else
SP += top_nbytes_same;
}
else { /* INTERRUPT RETURN TO OUTER PRIVILEGE LEVEL or 64 BIT MODE */
/* 64bit opsize
* ============
* SS eSP+32
* ESP eSP+24
* EFLAGS eSP+16
* CS eSP+8
* EIP eSP+0
*/
/* top 10/20 bytes on stack must be within limits else #SS(0) */
if ( !can_pop(top_nbytes_outer) ) {
BX_PANIC(("iret64: top bytes not within stack limits"));
exception(BX_SS_EXCEPTION, 0, 0);
}
/* examine return SS selector and associated descriptor */
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + ss_offset,
2, 0, BX_READ, &raw_ss_selector);
if ((raw_ss_selector & 0xfffc) == 0) {
if (! IS_LONG64_SEGMENT(cs_descriptor) || (cs_selector.rpl == 3)) {
BX_ERROR(("iret64: SS selector null"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
else {
parse_selector(raw_ss_selector, &ss_selector);
/* selector RPL must = RPL of return CS selector,
* else #GP(SS selector) */
if (ss_selector.rpl != cs_selector.rpl) {
BX_ERROR(("iret64: SS.rpl != CS.rpl"));
exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
/* selector index must be within its descriptor table limits,
* else #GP(SS selector) */
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
/* AR byte must indicate a writable data segment,
* else #GP(SS selector) */
if ( ss_descriptor.valid==0 ||
ss_descriptor.segment==0 ||
ss_descriptor.u.segment.executable ||
ss_descriptor.u.segment.r_w==0 )
{
BX_ERROR(("iret64: SS AR byte not writable code segment"));
exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
/* stack segment DPL must equal the RPL of the return CS selector,
* else #GP(SS selector) */
if ( ss_descriptor.dpl != cs_selector.rpl ) {
BX_ERROR(("iret64: SS.dpl != CS selector RPL"));
exception(BX_GP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
/* SS must be present, else #NP(SS selector) */
if (! IS_PRESENT(ss_descriptor)) {
BX_ERROR(("iret64: SS not present!"));
exception(BX_NP_EXCEPTION, raw_ss_selector & 0xfffc, 0);
}
}
if (i->os64L()) {
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 24,
8, CPL==3, BX_READ, &new_rsp);
}
else if (i->os32L()) {
Bit32u return_ESP;
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 12,
4, CPL==3, BX_READ, &return_ESP);
new_rsp = return_ESP;
}
else {
Bit16u return_SP;
access_linear(BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_SS) + temp_RSP + 6,
2, CPL==3, BX_READ, &return_SP);
new_rsp = return_SP;
}
Bit8u prev_cpl = CPL; /* previous CPL */
/* set CPL to the RPL of the return CS selector */
branch_far64(&cs_selector, &cs_descriptor, new_rip, cs_selector.rpl);
// ID,VIP,VIF,AC,VM,RF,x,NT,IOPL,OF,DF,IF,TF,SF,ZF,x,AF,x,PF,x,CF
Bit32u changeMask = EFlagsOSZAPCMask | EFlagsTFMask | EFlagsDFMask |
EFlagsNTMask | EFlagsRFMask | EFlagsIDMask | EFlagsACMask;
if (prev_cpl <= BX_CPU_THIS_PTR get_IOPL())
changeMask |= EFlagsIFMask;
if (prev_cpl == 0)
changeMask |= EFlagsVIPMask | EFlagsVIFMask | EFlagsIOPLMask;
if (cs_descriptor.u.segment.d_b)
changeMask &= 0xffff;
// IF only changed if (prev_CPL <= EFLAGS.IOPL)
// VIF, VIP, IOPL only changed if prev_CPL == 0
// VM unaffected
writeEFlags(new_eflags, changeMask);
if ( (raw_ss_selector & 0xfffc) != 0 ) {
// load SS:RSP from stack
// load the SS-cache with SS descriptor
load_ss(&ss_selector, &ss_descriptor, cs_selector.rpl);
}
else {
// we are in 64-bit mode !
loadSRegLMNominal(BX_SEG_REG_SS, raw_ss_selector, 0, cs_selector.rpl);
}
if (StackAddrSize64()) RSP = new_rsp;
else {
if (ss_descriptor.u.segment.d_b) ESP = (Bit32u) new_rsp;
else SP = (Bit16u) new_rsp;
}
if (prev_cpl != CPL) validate_seg_regs();
}
}
#endif