Bochs/bochs/cpu/access32.cc

1585 lines
56 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2008-2013 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_byte_32(unsigned s, Bit32u offset, Bit8u data)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset <= seg->cache.u.segment.limit_scaled) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, CPL, BX_WRITE, (Bit8u*) &data);
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 1);
*hostAddr = data;
return;
}
}
access_write_linear(laddr, 1, CPL, (void *) &data);
return;
}
else {
BX_ERROR(("write_virtual_byte_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 1))
exception(int_number(s), 0);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_word_32(unsigned s, Bit32u offset, Bit16u data)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset < seg->cache.u.segment.limit_scaled) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, CPL, BX_WRITE, (Bit8u*) &data);
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 2);
WriteHostWordToLittleEndian(hostAddr, data);
return;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 1) {
BX_ERROR(("write_virtual_word_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_write_linear(laddr, 2, CPL, (void *) &data);
return;
}
else {
BX_ERROR(("write_virtual_word_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 2))
exception(int_number(s), 0);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_dword_32(unsigned s, Bit32u offset, Bit32u data)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset < (seg->cache.u.segment.limit_scaled-2)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, CPL, BX_WRITE, (Bit8u*) &data);
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 4);
WriteHostDWordToLittleEndian(hostAddr, data);
return;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 3) {
BX_ERROR(("write_virtual_dword_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_write_linear(laddr, 4, CPL, (void *) &data);
return;
}
else {
BX_ERROR(("write_virtual_dword_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 4))
exception(int_number(s), 0);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_qword_32(unsigned s, Bit32u offset, Bit64u data)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset <= (seg->cache.u.segment.limit_scaled-7)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, CPL, BX_WRITE, (Bit8u*) &data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 8);
WriteHostQWordToLittleEndian(hostAddr, data);
return;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 7) {
BX_ERROR(("write_virtual_qword_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_write_linear(laddr, 8, CPL, (void *) &data);
return;
}
else {
BX_ERROR(("write_virtual_qword_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 8))
exception(int_number(s), 0);
goto accessOK;
}
#if BX_CPU_LEVEL >= 6
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_xmmword_32(unsigned s, Bit32u offset, const BxPackedXmmRegister *data)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset <= (seg->cache.u.segment.limit_scaled-15)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 15);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 16, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 16);
WriteHostQWordToLittleEndian(hostAddr, data->xmm64u(0));
WriteHostQWordToLittleEndian(hostAddr+1, data->xmm64u(1));
return;
}
}
access_write_linear(laddr, 16, CPL, (void *) data);
return;
}
else {
BX_ERROR(("write_virtual_xmmword_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 16))
exception(int_number(s), 0);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_xmmword_aligned_32(unsigned s, Bit32u offset, const BxPackedXmmRegister *data)
{
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
Bit32u laddr = get_laddr32(s, offset);
// must check alignment here because #GP on misaligned access is higher
// priority than other segment related faults
if (laddr & 15) {
BX_ERROR(("write_virtual_xmmword_aligned_32(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (seg->cache.valid & SegAccessWOK) {
if (offset <= (seg->cache.u.segment.limit_scaled-15)) {
accessOK:
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 16, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 16);
WriteHostQWordToLittleEndian(hostAddr, data->xmm64u(0));
WriteHostQWordToLittleEndian(hostAddr+1, data->xmm64u(1));
return;
}
}
access_write_linear(laddr, 16, CPL, (void *) data);
return;
}
else {
BX_ERROR(("write_virtual_xmmword_aligned_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 16))
exception(int_number(s), 0);
goto accessOK;
}
#if BX_SUPPORT_AVX
void BX_CPU_C::write_virtual_ymmword_32(unsigned s, Bit32u offset, const BxPackedYmmRegister *data)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset <= (seg->cache.u.segment.limit_scaled-31)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 31);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 32, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 32);
for (unsigned n=0; n < 4; n++) {
WriteHostQWordToLittleEndian(hostAddr+n, data->ymm64u(n));
}
return;
}
}
access_write_linear(laddr, 32, CPL, (void *) data);
return;
}
else {
BX_ERROR(("write_virtual_ymmword_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 32))
exception(int_number(s), 0);
goto accessOK;
}
void BX_CPU_C::write_virtual_ymmword_aligned_32(unsigned s, Bit32u offset, const BxPackedYmmRegister *data)
{
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
Bit32u laddr = get_laddr32(s, offset);
// must check alignment here because #GP on misaligned access is higher
// priority than other segment related faults
if (laddr & 31) {
BX_ERROR(("write_virtual_ymmword_aligned_32(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (seg->cache.valid & SegAccessWOK) {
if (offset <= (seg->cache.u.segment.limit_scaled-31)) {
accessOK:
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 32, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 32);
for (unsigned n=0; n < 4; n++) {
WriteHostQWordToLittleEndian(hostAddr+n, data->ymm64u(n));
}
return;
}
}
access_write_linear(laddr, 32, CPL, (void *) data);
return;
}
else {
BX_ERROR(("write_virtual_ymmword_aligned_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 32))
exception(int_number(s), 0);
goto accessOK;
}
#endif // BX_SUPPORT_AVX
#if BX_SUPPORT_EVEX
void BX_CPU_C::write_virtual_zmmword_32(unsigned s, Bit32u offset, const BxPackedZmmRegister *data)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset <= (seg->cache.u.segment.limit_scaled-63)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 63);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 64, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 64);
for (unsigned n=0; n < 8; n++) {
WriteHostQWordToLittleEndian(hostAddr+n, data->zmm64u(n));
}
return;
}
}
access_write_linear(laddr, 64, CPL, (void *) data);
return;
}
else {
BX_ERROR(("write_virtual_zmmword_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 64))
exception(int_number(s), 0);
goto accessOK;
}
void BX_CPU_C::write_virtual_zmmword_aligned_32(unsigned s, Bit32u offset, const BxPackedZmmRegister *data)
{
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
Bit32u laddr = get_laddr32(s, offset);
// must check alignment here because #GP on misaligned access is higher
// priority than other segment related faults
if (laddr & 63) {
BX_ERROR(("write_virtual_zmmword_aligned_32(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (seg->cache.valid & SegAccessWOK) {
if (offset <= (seg->cache.u.segment.limit_scaled-63)) {
accessOK:
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 64, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 64);
for (unsigned n=0; n < 8; n++) {
WriteHostQWordToLittleEndian(hostAddr+n, data->zmm64u(n));
}
return;
}
}
access_write_linear(laddr, 64, CPL, (void *) data);
return;
}
else {
BX_ERROR(("write_virtual_zmmword_aligned_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 64))
exception(int_number(s), 0);
goto accessOK;
}
#endif // BX_SUPPORT_AVX
#endif
Bit8u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_virtual_byte_32(unsigned s, Bit32u offset)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
Bit8u data;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessROK) {
if (offset <= seg->cache.u.segment.limit_scaled) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
data = *hostAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 1, CPL, BX_READ, (Bit8u*) &data);
return data;
}
}
access_read_linear(laddr, 1, CPL, BX_READ, (void *) &data);
return data;
}
else {
BX_ERROR(("read_virtual_byte_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!read_virtual_checks(seg, offset, 1))
exception(int_number(s), 0);
goto accessOK;
}
Bit16u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_virtual_word_32(unsigned s, Bit32u offset)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
Bit16u data;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessROK) {
if (offset < seg->cache.u.segment.limit_scaled) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
ReadHostWordFromLittleEndian(hostAddr, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 2, CPL, BX_READ, (Bit8u*) &data);
return data;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 1) {
BX_ERROR(("read_virtual_word_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_read_linear(laddr, 2, CPL, BX_READ, (void *) &data);
return data;
}
else {
BX_ERROR(("read_virtual_word_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!read_virtual_checks(seg, offset, 2))
exception(int_number(s), 0);
goto accessOK;
}
Bit32u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_virtual_dword_32(unsigned s, Bit32u offset)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
Bit32u data;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessROK) {
if (offset < (seg->cache.u.segment.limit_scaled-2)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
ReadHostDWordFromLittleEndian(hostAddr, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 4, CPL, BX_READ, (Bit8u*) &data);
return data;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 3) {
BX_ERROR(("read_virtual_dword_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_read_linear(laddr, 4, CPL, BX_READ, (void *) &data);
return data;
}
else {
BX_ERROR(("read_virtual_dword_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!read_virtual_checks(seg, offset, 4))
exception(int_number(s), 0);
goto accessOK;
}
Bit64u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_virtual_qword_32(unsigned s, Bit32u offset)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
Bit64u data;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessROK) {
if (offset <= (seg->cache.u.segment.limit_scaled-7)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
ReadHostQWordFromLittleEndian(hostAddr, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 8, CPL, BX_READ, (Bit8u*) &data);
return data;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 7) {
BX_ERROR(("read_virtual_qword_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_read_linear(laddr, 8, CPL, BX_READ, (void *) &data);
return data;
}
else {
BX_ERROR(("read_virtual_qword_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!read_virtual_checks(seg, offset, 8))
exception(int_number(s), 0);
goto accessOK;
}
#if BX_CPU_LEVEL >= 6
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_xmmword_32(unsigned s, Bit32u offset, BxPackedXmmRegister *data)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessROK) {
if (offset <= (seg->cache.u.segment.limit_scaled-15)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 15);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
ReadHostQWordFromLittleEndian(hostAddr, data->xmm64u(0));
ReadHostQWordFromLittleEndian(hostAddr+1, data->xmm64u(1));
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 16, CPL, BX_READ, (Bit8u*) data);
return;
}
}
access_read_linear(laddr, 16, CPL, BX_READ, (void *) data);
return;
}
else {
BX_ERROR(("read_virtual_xmmword_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!read_virtual_checks(seg, offset, 16))
exception(int_number(s), 0);
goto accessOK;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_xmmword_aligned_32(unsigned s, Bit32u offset, BxPackedXmmRegister *data)
{
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
Bit32u laddr = get_laddr32(s, offset);
// must check alignment here because #GP on misaligned access is higher
// priority than other segment related faults
if (laddr & 15) {
BX_ERROR(("read_virtual_xmmword_aligned_32(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (seg->cache.valid & SegAccessROK) {
if (offset <= (seg->cache.u.segment.limit_scaled-15)) {
accessOK:
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
ReadHostQWordFromLittleEndian(hostAddr, data->xmm64u(0));
ReadHostQWordFromLittleEndian(hostAddr+1, data->xmm64u(1));
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 16, CPL, BX_READ, (Bit8u*) data);
return;
}
}
access_read_linear(laddr, 16, CPL, BX_READ, (void *) data);
return;
}
else {
BX_ERROR(("read_virtual_xmmword_aligned_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!read_virtual_checks(seg, offset, 16))
exception(int_number(s), 0);
goto accessOK;
}
#if BX_SUPPORT_AVX
void BX_CPU_C::read_virtual_ymmword_32(unsigned s, Bit32u offset, BxPackedYmmRegister *data)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessROK) {
if (offset <= (seg->cache.u.segment.limit_scaled-31)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 31);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
for (unsigned n=0; n < 4; n++) {
ReadHostQWordFromLittleEndian(hostAddr+n, data->ymm64u(n));
}
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 32, CPL, BX_READ, (Bit8u*) data);
return;
}
}
access_read_linear(laddr, 32, CPL, BX_READ, (void *) data);
return;
}
else {
BX_ERROR(("read_virtual_ymmword_32: segment limit violation"));
exception(int_number(s), 0);
}
}
if (!read_virtual_checks(seg, offset, 32))
exception(int_number(s), 0);
goto accessOK;
}
void BX_CPU_C::read_virtual_ymmword_aligned_32(unsigned s, Bit32u offset, BxPackedYmmRegister *data)
{
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
Bit32u laddr = get_laddr32(s, offset);
// must check alignment here because #GP on misaligned access is higher
// priority than other segment related faults
if (laddr & 31) {
BX_ERROR(("read_virtual_ymmword_aligned_32(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (seg->cache.valid & SegAccessROK) {
if (offset <= (seg->cache.u.segment.limit_scaled-31)) {
accessOK:
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
for (unsigned n=0; n < 4; n++) {
ReadHostQWordFromLittleEndian(hostAddr+n, data->ymm64u(n));
}
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 32, CPL, BX_READ, (Bit8u*) data);
return;
}
}
access_read_linear(laddr, 32, CPL, BX_READ, (void *) data);
return;
}
else {
BX_ERROR(("read_virtual_ymmword_aligned_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!read_virtual_checks(seg, offset, 32))
exception(int_number(s), 0);
goto accessOK;
}
#endif
#if BX_SUPPORT_EVEX
void BX_CPU_C::read_virtual_zmmword_32(unsigned s, Bit32u offset, BxPackedZmmRegister *data)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessROK) {
if (offset <= (seg->cache.u.segment.limit_scaled-63)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 63);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
for (unsigned n=0; n < 8; n++) {
ReadHostQWordFromLittleEndian(hostAddr+n, data->zmm64u(n));
}
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 64, CPL, BX_READ, (Bit8u*) data);
return;
}
}
access_read_linear(laddr, 64, CPL, BX_READ, (void *) data);
return;
}
else {
BX_ERROR(("read_virtual_zmmword_32: segment limit violation"));
exception(int_number(s), 0);
}
}
if (!read_virtual_checks(seg, offset, 64))
exception(int_number(s), 0);
goto accessOK;
}
void BX_CPU_C::read_virtual_zmmword_aligned_32(unsigned s, Bit32u offset, BxPackedZmmRegister *data)
{
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
Bit32u laddr = get_laddr32(s, offset);
// must check alignment here because #GP on misaligned access is higher
// priority than other segment related faults
if (laddr & 63) {
BX_ERROR(("read_virtual_zmmword_aligned_32(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (seg->cache.valid & SegAccessROK) {
if (offset <= (seg->cache.u.segment.limit_scaled-63)) {
accessOK:
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
for (unsigned n=0; n < 8; n++) {
ReadHostQWordFromLittleEndian(hostAddr+n, data->zmm64u(n));
}
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 64, CPL, BX_READ, (Bit8u*) data);
return;
}
}
access_read_linear(laddr, 64, CPL, BX_READ, (void *) data);
return;
}
else {
BX_ERROR(("read_virtual_zmmword_aligned_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!read_virtual_checks(seg, offset, 64))
exception(int_number(s), 0);
goto accessOK;
}
#endif
#endif
//////////////////////////////////////////////////////////////
// special Read-Modify-Write operations //
// address translation info is kept across read/write calls //
//////////////////////////////////////////////////////////////
Bit8u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_RMW_virtual_byte_32(unsigned s, Bit32u offset)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
Bit8u data;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset <= seg->cache.u.segment.limit_scaled) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit32u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 1);
data = *hostAddr;
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, CPL, BX_RW, (Bit8u*) &data);
return data;
}
}
access_read_linear(laddr, 1, CPL, BX_RW, (void *) &data);
return data;
}
else {
BX_ERROR(("read_RMW_virtual_byte_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 1))
exception(int_number(s), 0);
goto accessOK;
}
Bit16u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_RMW_virtual_word_32(unsigned s, Bit32u offset)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
Bit16u data;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset < seg->cache.u.segment.limit_scaled) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 2);
ReadHostWordFromLittleEndian(hostAddr, data);
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, CPL, BX_RW, (Bit8u*) &data);
return data;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 1) {
BX_ERROR(("read_RMW_virtual_word_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_read_linear(laddr, 2, CPL, BX_RW, (void *) &data);
return data;
}
else {
BX_ERROR(("read_RMW_virtual_word_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 2))
exception(int_number(s), 0);
goto accessOK;
}
Bit32u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_RMW_virtual_dword_32(unsigned s, Bit32u offset)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
Bit32u data;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset < (seg->cache.u.segment.limit_scaled-2)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 4);
ReadHostDWordFromLittleEndian(hostAddr, data);
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, CPL, BX_RW, (Bit8u*) &data);
return data;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 3) {
BX_ERROR(("read_RMW_virtual_dword_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_read_linear(laddr, 4, CPL, BX_RW, (void *) &data);
return data;
}
else {
BX_ERROR(("read_RMW_virtual_dword_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 4))
exception(int_number(s), 0);
goto accessOK;
}
Bit64u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_RMW_virtual_qword_32(unsigned s, Bit32u offset)
{
Bit32u laddr;
bx_segment_reg_t *seg = &BX_CPU_THIS_PTR sregs[s];
Bit64u data;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
if (seg->cache.valid & SegAccessWOK) {
if (offset <= (seg->cache.u.segment.limit_scaled-7)) {
accessOK:
laddr = get_laddr32(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 8);
ReadHostQWordFromLittleEndian(hostAddr, data);
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, CPL, BX_RW, (Bit8u*) &data);
return data;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
if (laddr & 7) {
BX_ERROR(("read_RMW_virtual_qword_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_read_linear(laddr, 8, CPL, BX_RW, (void *) &data);
return data;
}
else {
BX_ERROR(("read_RMW_virtual_qword_32(): segment limit violation"));
exception(int_number(s), 0);
}
}
if (!write_virtual_checks(seg, offset, 8))
exception(int_number(s), 0);
goto accessOK;
}
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::write_RMW_virtual_byte(Bit8u val8)
{
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE, 0, (Bit8u*) &val8);
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit8u *hostAddr = (Bit8u *) BX_CPU_THIS_PTR address_xlation.pages;
*hostAddr = val8;
}
else {
// address_xlation.pages must be 1
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8);
}
}
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::write_RMW_virtual_word(Bit16u val16)
{
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit16u *hostAddr = (Bit16u *) BX_CPU_THIS_PTR address_xlation.pages;
WriteHostWordToLittleEndian(hostAddr, val16);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1, 2, BX_WRITE, 0, (Bit8u*) &val16);
}
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1, 2, BX_WRITE, 0, (Bit8u*) &val16);
}
else {
#ifdef BX_LITTLE_ENDIAN
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val16);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE, 0, (Bit8u*) &val16);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2, 1, ((Bit8u *) &val16) + 1);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress2, 1, BX_WRITE, 0, ((Bit8u*) &val16)+1);
#else
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 1, ((Bit8u *) &val16) + 1);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1, 1, BX_WRITE, 0, ((Bit8u*) &val16)+1);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2, 1, &val16);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress2, 1, BX_WRITE, 0, (Bit8u*) &val16);
#endif
}
}
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::write_RMW_virtual_dword(Bit32u val32)
{
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit32u *hostAddr = (Bit32u *) BX_CPU_THIS_PTR address_xlation.pages;
WriteHostDWordToLittleEndian(hostAddr, val32);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1, 4, BX_WRITE, 0, (Bit8u*) &val32);
}
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1, 4, BX_WRITE, 0, (Bit8u*) &val32);
}
else {
#ifdef BX_LITTLE_ENDIAN
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, &val32);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, 0, (Bit8u*) &val32);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, 0,
((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1);
#else
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1));
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, 0,
((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1));
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, &val32);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, 0, (Bit8u*) &val32);
#endif
}
}
void BX_CPP_AttrRegparmN(1)
BX_CPU_C::write_RMW_virtual_qword(Bit64u val64)
{
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access.
Bit64u *hostAddr = (Bit64u *) BX_CPU_THIS_PTR address_xlation.pages;
WriteHostQWordToLittleEndian(hostAddr, val64);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1, 8, BX_WRITE, 0, (Bit8u*) &val64);
}
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 8, &val64);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1, 8, BX_WRITE, 0, (Bit8u*) &val64);
}
else {
#ifdef BX_LITTLE_ENDIAN
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, &val64);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, 0, (Bit8u*) &val64);
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2,
((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, 0,
((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1);
#else
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1,
((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1));
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress1,
BX_CPU_THIS_PTR address_xlation.len1, BX_WRITE, 0,
((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1));
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, &val64);
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
BX_CPU_THIS_PTR address_xlation.paddress2,
BX_CPU_THIS_PTR address_xlation.len2, BX_WRITE, 0, (Bit8u*) &val64);
#endif
}
}
//
// Write data to new stack, these methods are required for emulation
// correctness but not performance critical.
//
// assuming the write happens in legacy mode
void BX_CPU_C::write_new_stack_word_32(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit16u data)
{
Bit32u laddr;
if (seg->cache.valid & SegAccessWOK) {
if (offset < seg->cache.u.segment.limit_scaled) {
accessOK:
laddr = (Bit32u)(seg->cache.u.segment.base) + offset;
bx_bool user = (curr_pl == 3);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << user)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, curr_pl, BX_WRITE, (Bit8u*) &data);
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 2);
WriteHostWordToLittleEndian(hostAddr, data);
return;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check() && user) {
if (laddr & 1) {
BX_ERROR(("write_new_stack_word_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_write_linear(laddr, 2, curr_pl, (void *) &data);
return;
}
else {
BX_ERROR(("write_new_stack_word_32(): segment limit violation"));
exception(BX_SS_EXCEPTION,
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
}
}
// add error code when segment violation occurs when pushing into new stack
if (!write_virtual_checks(seg, offset, 2))
exception(BX_SS_EXCEPTION,
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
goto accessOK;
}
// assuming the write happens in legacy mode
void BX_CPU_C::write_new_stack_dword_32(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit32u data)
{
Bit32u laddr;
if (seg->cache.valid & SegAccessWOK) {
if (offset < (seg->cache.u.segment.limit_scaled-2)) {
accessOK:
laddr = (Bit32u)(seg->cache.u.segment.base) + offset;
bx_bool user = (curr_pl == 3);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << user)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, curr_pl, BX_WRITE, (Bit8u*) &data);
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 4);
WriteHostDWordToLittleEndian(hostAddr, data);
return;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check() && user) {
if (laddr & 3) {
BX_ERROR(("write_new_stack_dword_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_write_linear(laddr, 4, curr_pl, (void *) &data);
return;
}
else {
BX_ERROR(("write_new_stack_dword_32(): segment limit violation"));
exception(BX_SS_EXCEPTION,
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
}
}
// add error code when segment violation occurs when pushing into new stack
if (!write_virtual_checks(seg, offset, 4))
exception(BX_SS_EXCEPTION,
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
goto accessOK;
}
// assuming the write happens in legacy mode
void BX_CPU_C::write_new_stack_qword_32(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit64u data)
{
Bit32u laddr;
if (seg->cache.valid & SegAccessWOK) {
if (offset <= (seg->cache.u.segment.limit_scaled-7)) {
accessOK:
laddr = (Bit32u)(seg->cache.u.segment.base) + offset;
bx_bool user = (curr_pl == 3);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit32u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit32u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << user)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, curr_pl, BX_WRITE, (Bit8u*) &data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 8);
WriteHostQWordToLittleEndian(hostAddr, data);
return;
}
}
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check() && user) {
if (laddr & 7) {
BX_ERROR(("write_new_stack_qword_32(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
access_write_linear(laddr, 8, curr_pl, (void *) &data);
return;
}
else {
BX_ERROR(("write_new_stack_qword_32(): segment limit violation"));
exception(BX_SS_EXCEPTION,
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
}
}
// add error code when segment violation occurs when pushing into new stack
if (!write_virtual_checks(seg, offset, 8))
exception(BX_SS_EXCEPTION,
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
goto accessOK;
}