b8f38eb8d3
MONITOR relies on tickle_read_virtual to set the physical address, but it was only doing so on TLB miss. So a MONITOR with a TLB hit would arm the most recently accessed address instead of the requested one. TLB invalidations disarmed the monitoring range, but didn't wake a CPU that had already MWAIT-ed. Any instruction that invalidated TLB entries on other CPUs could have caused an MWAIT-ing CPU to never wake.
1246 lines
47 KiB
C++
1246 lines
47 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id$
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2008-2019 Stanislav Shwartsman
|
|
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_linear_byte(unsigned s, bx_address laddr, Bit8u data)
|
|
{
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 1);
|
|
*hostAddr = data;
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 1, CPL, BX_WRITE, 0x0, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_linear_word(unsigned s, bx_address laddr, Bit16u data)
|
|
{
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 1);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 2);
|
|
WriteHostWordToLittleEndian(hostAddr, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 2, CPL, BX_WRITE, 0x1, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_linear_dword(unsigned s, bx_address laddr, Bit32u data)
|
|
{
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 3);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 4);
|
|
WriteHostDWordToLittleEndian(hostAddr, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 4, CPL, BX_WRITE, 0x3, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_linear_qword(unsigned s, bx_address laddr, Bit64u data)
|
|
{
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 7);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 8);
|
|
WriteHostQWordToLittleEndian(hostAddr, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 8, CPL, BX_WRITE, 0x7, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
#if BX_CPU_LEVEL >= 6
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_linear_xmmword(unsigned s, bx_address laddr, const BxPackedXmmRegister *data)
|
|
{
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 15);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 16, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) data);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 16);
|
|
WriteHostQWordToLittleEndian(hostAddr, data->xmm64u(0));
|
|
WriteHostQWordToLittleEndian(hostAddr+1, data->xmm64u(1));
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 16, CPL, BX_WRITE, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_linear_xmmword_aligned(unsigned s, bx_address laddr, const BxPackedXmmRegister *data)
|
|
{
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, 15);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 16, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) data);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 16);
|
|
WriteHostQWordToLittleEndian(hostAddr, data->xmm64u(0));
|
|
WriteHostQWordToLittleEndian(hostAddr+1, data->xmm64u(1));
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (laddr & 15) {
|
|
BX_ERROR(("write_linear_xmmword_aligned(): #GP misaligned access"));
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
if (access_write_linear(laddr, 16, CPL, BX_WRITE, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_linear_ymmword(unsigned s, bx_address laddr, const BxPackedYmmRegister *data)
|
|
{
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 31);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 32, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) data);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 32);
|
|
for (unsigned n = 0; n < 4; n++) {
|
|
WriteHostQWordToLittleEndian(hostAddr+n, data->ymm64u(n));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 32, CPL, BX_WRITE, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_linear_ymmword_aligned(unsigned s, bx_address laddr, const BxPackedYmmRegister *data)
|
|
{
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, 31);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 32, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) data);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 32);
|
|
for (unsigned n = 0; n < 4; n++) {
|
|
WriteHostQWordToLittleEndian(hostAddr+n, data->ymm64u(n));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (laddr & 31) {
|
|
BX_ERROR(("write_linear_ymmword_aligned(): #GP misaligned access"));
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
if (access_write_linear(laddr, 32, CPL, BX_WRITE, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_linear_zmmword(unsigned s, bx_address laddr, const BxPackedZmmRegister *data)
|
|
{
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 63);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 64, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) data);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 64);
|
|
for (unsigned n = 0; n < 8; n++) {
|
|
WriteHostQWordToLittleEndian(hostAddr+n, data->zmm64u(n));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 64, CPL, BX_WRITE, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::write_linear_zmmword_aligned(unsigned s, bx_address laddr, const BxPackedZmmRegister *data)
|
|
{
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, 63);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 64, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) data);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 64);
|
|
for (unsigned n = 0; n < 8; n++) {
|
|
WriteHostQWordToLittleEndian(hostAddr+n, data->zmm64u(n));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (laddr & 63) {
|
|
BX_ERROR(("write_linear_zmmword_aligned(): #GP misaligned access"));
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
if (access_write_linear(laddr, 64, CPL, BX_WRITE, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
#endif
|
|
|
|
void BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::tickle_read_linear(unsigned s, bx_address laddr)
|
|
{
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = tlbEntry->ppf | PAGE_OFFSET(laddr);
|
|
BX_CPU_THIS_PTR address_xlation.pages = 1;
|
|
#if BX_SUPPORT_MEMTYPE
|
|
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
|
|
#endif
|
|
return;
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (! IsCanonical(laddr)) {
|
|
BX_ERROR(("tickle_read_linear(): canonical failure"));
|
|
exception(int_number(s), 0);
|
|
}
|
|
#endif
|
|
|
|
// Access within single page
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = translate_linear(tlbEntry, laddr, USER_PL, BX_READ);
|
|
BX_CPU_THIS_PTR address_xlation.pages = 1;
|
|
#if BX_SUPPORT_MEMTYPE
|
|
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
|
|
#endif
|
|
|
|
#if BX_X86_DEBUGGER
|
|
hwbreakpoint_match(laddr, 1, BX_READ);
|
|
#endif
|
|
}
|
|
|
|
Bit8u BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::read_linear_byte(unsigned s, bx_address laddr)
|
|
{
|
|
Bit8u data;
|
|
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
data = *hostAddr;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 1, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 1, CPL, BX_READ, 0x0, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
Bit16u BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::read_linear_word(unsigned s, bx_address laddr)
|
|
{
|
|
Bit16u data;
|
|
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 1);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
|
data = ReadHostWordFromLittleEndian(hostAddr);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 2, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 2, CPL, BX_READ, 0x1, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
Bit32u BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::read_linear_dword(unsigned s, bx_address laddr)
|
|
{
|
|
Bit32u data;
|
|
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 3);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
data = ReadHostDWordFromLittleEndian(hostAddr);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 4, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 4, CPL, BX_READ, 0x3, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
Bit64u BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::read_linear_qword(unsigned s, bx_address laddr)
|
|
{
|
|
Bit64u data;
|
|
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 7);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
data = ReadHostQWordFromLittleEndian(hostAddr);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 8, tlbEntry->get_memtype(), BX_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 8, CPL, BX_READ, 0x7, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
#if BX_CPU_LEVEL >= 6
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_linear_xmmword(unsigned s, bx_address laddr, BxPackedXmmRegister *data)
|
|
{
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 15);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
data->xmm64u(0) = ReadHostQWordFromLittleEndian(hostAddr);
|
|
data->xmm64u(1) = ReadHostQWordFromLittleEndian(hostAddr+1);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 16, tlbEntry->get_memtype(), BX_READ, (Bit8u*) data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 16, CPL, BX_READ, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_linear_xmmword_aligned(unsigned s, bx_address laddr, BxPackedXmmRegister *data)
|
|
{
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, 15);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
data->xmm64u(0) = ReadHostQWordFromLittleEndian(hostAddr);
|
|
data->xmm64u(1) = ReadHostQWordFromLittleEndian(hostAddr+1);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 16, tlbEntry->get_memtype(), BX_READ, (Bit8u*) data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (laddr & 15) {
|
|
BX_ERROR(("read_linear_xmmword_aligned(): #GP misaligned access"));
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
if (access_read_linear(laddr, 16, CPL, BX_READ, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_linear_ymmword(unsigned s, bx_address laddr, BxPackedYmmRegister *data)
|
|
{
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 31);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
for (unsigned n=0; n < 4; n++) {
|
|
data->ymm64u(n) = ReadHostQWordFromLittleEndian(hostAddr+n);
|
|
}
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 32, tlbEntry->get_memtype(), BX_READ, (Bit8u*) data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 32, CPL, BX_READ, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_linear_ymmword_aligned(unsigned s, bx_address laddr, BxPackedYmmRegister *data)
|
|
{
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, 31);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
for (unsigned n=0; n < 4; n++) {
|
|
data->ymm64u(n) = ReadHostQWordFromLittleEndian(hostAddr+n);
|
|
}
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 32, tlbEntry->get_memtype(), BX_READ, (Bit8u*) data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (laddr & 31) {
|
|
BX_ERROR(("read_linear_ymmword_aligned(): #GP misaligned access"));
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
if (access_read_linear(laddr, 32, CPL, BX_READ, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_linear_zmmword(unsigned s, bx_address laddr, BxPackedZmmRegister *data)
|
|
{
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 63);
|
|
bx_address lpf = LPFOf(laddr);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
for (unsigned n=0; n < 8; n++) {
|
|
data->zmm64u(n) = ReadHostQWordFromLittleEndian(hostAddr+n);
|
|
}
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 64, tlbEntry->get_memtype(), BX_READ, (Bit8u*) data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 64, CPL, BX_READ, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3)
|
|
BX_CPU_C::read_linear_zmmword_aligned(unsigned s, bx_address laddr, BxPackedZmmRegister *data)
|
|
{
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, 63);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isReadOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
for (unsigned n=0; n < 8; n++) {
|
|
data->zmm64u(n) = ReadHostQWordFromLittleEndian(hostAddr+n);
|
|
}
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 64, tlbEntry->get_memtype(), BX_READ, (Bit8u*) data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (laddr & 63) {
|
|
BX_ERROR(("read_linear_zmmword_aligned(): #GP misaligned access"));
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
if (access_read_linear(laddr, 64, CPL, BX_READ, 0x0, (void *) data) < 0)
|
|
exception(int_number(s), 0);
|
|
}
|
|
|
|
#endif
|
|
|
|
//////////////////////////////////////////////////////////////
|
|
// special Read-Modify-Write operations //
|
|
// address translation info is kept across read/write calls //
|
|
//////////////////////////////////////////////////////////////
|
|
|
|
Bit8u BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::read_RMW_linear_byte(unsigned s, bx_address laddr)
|
|
{
|
|
Bit8u data;
|
|
bx_address lpf = LPFOf(laddr);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 1);
|
|
data = *hostAddr;
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
|
|
#if BX_SUPPORT_MEMTYPE
|
|
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
|
|
#endif
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, tlbEntry->get_memtype(), BX_RW, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 1, CPL, BX_RW, 0x0, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
Bit16u BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::read_RMW_linear_word(unsigned s, bx_address laddr)
|
|
{
|
|
Bit16u data;
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 1);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 2);
|
|
data = ReadHostWordFromLittleEndian(hostAddr);
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
|
|
#if BX_SUPPORT_MEMTYPE
|
|
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
|
|
#endif
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, tlbEntry->get_memtype(), BX_RW, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 2, CPL, BX_RW, 0x1, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
Bit32u BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::read_RMW_linear_dword(unsigned s, bx_address laddr)
|
|
{
|
|
Bit32u data;
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 3);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 4);
|
|
data = ReadHostDWordFromLittleEndian(hostAddr);
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
|
|
#if BX_SUPPORT_MEMTYPE
|
|
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
|
|
#endif
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, tlbEntry->get_memtype(), BX_RW, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 4, CPL, BX_RW, 0x3, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
Bit64u BX_CPP_AttrRegparmN(2)
|
|
BX_CPU_C::read_RMW_linear_qword(unsigned s, bx_address laddr)
|
|
{
|
|
Bit64u data;
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 7);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 8);
|
|
data = ReadHostQWordFromLittleEndian(hostAddr);
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
|
|
#if BX_SUPPORT_MEMTYPE
|
|
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
|
|
#endif
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, tlbEntry->get_memtype(), BX_RW, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(laddr, 8, CPL, BX_RW, 0x7, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::write_RMW_linear_byte(Bit8u val8)
|
|
{
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 1, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1), BX_WRITE, 0, (Bit8u*) &val8);
|
|
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
|
// Pages > 2 means it stores a host address for direct access.
|
|
Bit8u *hostAddr = (Bit8u *) BX_CPU_THIS_PTR address_xlation.pages;
|
|
*hostAddr = val8;
|
|
}
|
|
else {
|
|
// address_xlation.pages must be 1
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val8);
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::write_RMW_linear_word(Bit16u val16)
|
|
{
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
|
// Pages > 2 means it stores a host address for direct access.
|
|
Bit16u *hostAddr = (Bit16u *) BX_CPU_THIS_PTR address_xlation.pages;
|
|
WriteHostWordToLittleEndian(hostAddr, val16);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 2, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, (Bit8u*) &val16);
|
|
}
|
|
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 2, &val16);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 2, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, (Bit8u*) &val16);
|
|
}
|
|
else {
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 1, &val16);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 1, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, (Bit8u*) &val16);
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2, 1, ((Bit8u *) &val16) + 1);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2, 1, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype2),
|
|
BX_WRITE, 0, ((Bit8u*) &val16)+1);
|
|
#else
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 1, ((Bit8u *) &val16) + 1);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 1, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, ((Bit8u*) &val16)+1);
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2, 1, &val16);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2, 1, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype2),
|
|
BX_WRITE, 0, (Bit8u*) &val16);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::write_RMW_linear_dword(Bit32u val32)
|
|
{
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
|
// Pages > 2 means it stores a host address for direct access.
|
|
Bit32u *hostAddr = (Bit32u *) BX_CPU_THIS_PTR address_xlation.pages;
|
|
WriteHostDWordToLittleEndian(hostAddr, val32);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 4, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, (Bit8u*) &val32);
|
|
}
|
|
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 4, &val32);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 4, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, (Bit8u*) &val32);
|
|
}
|
|
else {
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1, &val32);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, (Bit8u*) &val32);
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2,
|
|
((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype2),
|
|
BX_WRITE, 0, ((Bit8u *) &val32) + BX_CPU_THIS_PTR address_xlation.len1);
|
|
#else
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1,
|
|
((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1));
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, ((Bit8u *) &val32) + (4 - BX_CPU_THIS_PTR address_xlation.len1));
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2, &val32);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype2),
|
|
BX_WRITE, 0, (Bit8u*) &val32);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1)
|
|
BX_CPU_C::write_RMW_linear_qword(Bit64u val64)
|
|
{
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
|
// Pages > 2 means it stores a host address for direct access.
|
|
Bit64u *hostAddr = (Bit64u *) BX_CPU_THIS_PTR address_xlation.pages;
|
|
WriteHostQWordToLittleEndian(hostAddr, val64);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 8, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, (Bit8u*) &val64);
|
|
}
|
|
else if (BX_CPU_THIS_PTR address_xlation.pages == 1) {
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1, 8, &val64);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1, 8, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, (Bit8u*) &val64);
|
|
}
|
|
else {
|
|
#ifdef BX_LITTLE_ENDIAN
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1, &val64);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, (Bit8u*) &val64);
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2,
|
|
((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype2),
|
|
BX_WRITE, 0, ((Bit8u *) &val64) + BX_CPU_THIS_PTR address_xlation.len1);
|
|
#else
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1,
|
|
((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1));
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress1,
|
|
BX_CPU_THIS_PTR address_xlation.len1, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype1),
|
|
BX_WRITE, 0, ((Bit8u *) &val64) + (8 - BX_CPU_THIS_PTR address_xlation.len1));
|
|
access_write_physical(BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2, &val64);
|
|
BX_DBG_PHY_MEMORY_ACCESS(BX_CPU_ID,
|
|
BX_CPU_THIS_PTR address_xlation.paddress2,
|
|
BX_CPU_THIS_PTR address_xlation.len2, MEMTYPE(BX_CPU_THIS_PTR address_xlation.memtype2),
|
|
BX_WRITE, 0, (Bit8u*) &val64);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
|
|
void BX_CPU_C::read_RMW_linear_dqword_aligned_64(unsigned s, bx_address laddr, Bit64u *hi, Bit64u *lo)
|
|
{
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, 15);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 0);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, USER_PL)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 16);
|
|
*lo = ReadHostQWordFromLittleEndian(hostAddr);
|
|
*hi = ReadHostQWordFromLittleEndian(hostAddr + 1);
|
|
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
|
|
#if BX_SUPPORT_MEMTYPE
|
|
BX_CPU_THIS_PTR address_xlation.memtype1 = tlbEntry->get_memtype();
|
|
#endif
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, tlbEntry->get_memtype(), BX_RW, (Bit8u*) lo);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr + 8, pAddr + 8, 8, tlbEntry->get_memtype(), BX_RW, (Bit8u*) hi);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (laddr & 15) {
|
|
BX_ERROR(("read_RMW_virtual_dqword_aligned_64(): #GP misaligned access"));
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
BxPackedXmmRegister data;
|
|
if (access_read_linear(laddr, 16, CPL, BX_RW, 0x0, (void *) &data) < 0)
|
|
exception(int_number(s), 0);
|
|
|
|
*lo = data.xmm64u(0);
|
|
*hi = data.xmm64u(1);
|
|
}
|
|
|
|
void BX_CPU_C::write_RMW_linear_dqword(Bit64u hi, Bit64u lo)
|
|
{
|
|
write_RMW_linear_qword(lo);
|
|
|
|
BX_CPU_THIS_PTR address_xlation.paddress1 += 8;
|
|
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
|
|
// Pages > 2 means it stores a host address for direct access
|
|
BX_CPU_THIS_PTR address_xlation.pages += 8;
|
|
}
|
|
else {
|
|
BX_ASSERT(BX_CPU_THIS_PTR address_xlation.pages == 1);
|
|
}
|
|
|
|
write_RMW_linear_qword(hi);
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// Write data to new stack, these methods are required for emulation
|
|
// correctness but not performance critical.
|
|
//
|
|
|
|
void BX_CPU_C::write_new_stack_word(bx_address laddr, unsigned curr_pl, Bit16u data)
|
|
{
|
|
bool user = (curr_pl == 3);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 1);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, user)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
|
|
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 2);
|
|
WriteHostWordToLittleEndian(hostAddr, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 2, curr_pl, BX_WRITE, 0x1, (void *) &data) < 0)
|
|
exception(BX_SS_EXCEPTION, 0);
|
|
}
|
|
|
|
void BX_CPU_C::write_new_stack_dword(bx_address laddr, unsigned curr_pl, Bit32u data)
|
|
{
|
|
bool user = (curr_pl == 3);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 3);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, user)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 4);
|
|
WriteHostDWordToLittleEndian(hostAddr, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 4, curr_pl, BX_WRITE, 0x3, (void *) &data) < 0)
|
|
exception(BX_SS_EXCEPTION, 0);
|
|
}
|
|
|
|
void BX_CPU_C::write_new_stack_qword(bx_address laddr, unsigned curr_pl, Bit64u data)
|
|
{
|
|
bool user = (curr_pl == 3);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(laddr, 7);
|
|
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
|
|
bx_address lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
|
|
#else
|
|
bx_address lpf = LPFOf(laddr);
|
|
#endif
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isWriteOK(tlbEntry, user)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(laddr);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, tlbEntry->get_memtype(), BX_WRITE, (Bit8u*) &data);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 8);
|
|
WriteHostQWordToLittleEndian(hostAddr, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(laddr, 8, curr_pl, BX_WRITE, 0x7, (void *) &data) < 0)
|
|
exception(BX_SS_EXCEPTION, 0);
|
|
}
|
|
|
|
// assuming the write happens in 32-bit mode
|
|
void BX_CPU_C::write_new_stack_word(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit16u data)
|
|
{
|
|
Bit32u laddr;
|
|
|
|
if (seg->cache.valid & SegAccessWOK4G) {
|
|
goto accessOK;
|
|
}
|
|
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if (offset < seg->cache.u.segment.limit_scaled) {
|
|
accessOK:
|
|
laddr = (Bit32u)(seg->cache.u.segment.base) + offset;
|
|
write_new_stack_word(laddr, curr_pl, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// add error code when segment violation occurs when pushing into new stack
|
|
if (!write_virtual_checks(seg, offset, 2)) {
|
|
BX_ERROR(("write_new_stack_word(): segment limit violation"));
|
|
exception(BX_SS_EXCEPTION,
|
|
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
|
|
}
|
|
goto accessOK;
|
|
}
|
|
|
|
// assuming the write happens in 32-bit mode
|
|
void BX_CPU_C::write_new_stack_dword(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit32u data)
|
|
{
|
|
Bit32u laddr;
|
|
|
|
if (seg->cache.valid & SegAccessWOK4G) {
|
|
goto accessOK;
|
|
}
|
|
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if (offset < (seg->cache.u.segment.limit_scaled-2)) {
|
|
accessOK:
|
|
laddr = (Bit32u)(seg->cache.u.segment.base) + offset;
|
|
write_new_stack_dword(laddr, curr_pl, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// add error code when segment violation occurs when pushing into new stack
|
|
if (!write_virtual_checks(seg, offset, 4)) {
|
|
BX_ERROR(("write_new_stack_dword(): segment limit violation"));
|
|
exception(BX_SS_EXCEPTION,
|
|
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
|
|
}
|
|
goto accessOK;
|
|
}
|
|
|
|
// assuming the write happens in 32-bit mode
|
|
void BX_CPU_C::write_new_stack_qword(bx_segment_reg_t *seg, Bit32u offset, unsigned curr_pl, Bit64u data)
|
|
{
|
|
Bit32u laddr;
|
|
|
|
if (seg->cache.valid & SegAccessWOK4G) {
|
|
goto accessOK;
|
|
}
|
|
|
|
if (seg->cache.valid & SegAccessWOK) {
|
|
if (offset <= (seg->cache.u.segment.limit_scaled-7)) {
|
|
accessOK:
|
|
laddr = (Bit32u)(seg->cache.u.segment.base) + offset;
|
|
write_new_stack_qword(laddr, curr_pl, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// add error code when segment violation occurs when pushing into new stack
|
|
if (!write_virtual_checks(seg, offset, 8)) {
|
|
BX_ERROR(("write_new_stack_qword(): segment limit violation"));
|
|
exception(BX_SS_EXCEPTION,
|
|
seg->selector.rpl != CPL ? (seg->selector.value & 0xfffc) : 0);
|
|
}
|
|
goto accessOK;
|
|
}
|
|
|
|
#if BX_SUPPORT_CET
|
|
Bit32u BX_CPP_AttrRegparmN(2) BX_CPU_C::shadow_stack_read_dword(bx_address offset, unsigned curr_pl)
|
|
{
|
|
Bit32u data;
|
|
|
|
bool user = (curr_pl == 3);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(offset, 3);
|
|
bx_address lpf = AlignedAccessLPFOf(offset, 3);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isShadowStackReadOK(tlbEntry, user)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(offset);
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
data = ReadHostDWordFromLittleEndian(hostAddr);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(offset, (tlbEntry->ppf | pageOffset), 4, tlbEntry->get_memtype(), BX_SHADOW_STACK_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(offset, 4, curr_pl, BX_SHADOW_STACK_READ, 0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
Bit64u BX_CPP_AttrRegparmN(2) BX_CPU_C::shadow_stack_read_qword(bx_address offset, unsigned curr_pl)
|
|
{
|
|
Bit64u data;
|
|
|
|
bool user = (curr_pl == 3);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(offset, 7);
|
|
bx_address lpf = AlignedAccessLPFOf(offset, 7);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us read access from this CPL
|
|
if (isShadowStackReadOK(tlbEntry, user)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(offset);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
data = ReadHostQWordFromLittleEndian(hostAddr);
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(offset, (tlbEntry->ppf | pageOffset), 8, tlbEntry->get_memtype(), BX_SHADOW_STACK_READ, (Bit8u*) &data);
|
|
return data;
|
|
}
|
|
}
|
|
|
|
if (access_read_linear(offset, 8, curr_pl, BX_SHADOW_STACK_READ, 0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
|
|
return data;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3) BX_CPU_C::shadow_stack_write_dword(bx_address offset, unsigned curr_pl, Bit32u data)
|
|
{
|
|
bool user = (curr_pl == 3);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(offset, 3);
|
|
bx_address lpf = AlignedAccessLPFOf(offset, 3);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isShadowStackWriteOK(tlbEntry, user)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(offset);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(offset, pAddr, 4, tlbEntry->get_memtype(), BX_SHADOW_STACK_WRITE, (Bit8u*) &data);
|
|
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 4);
|
|
WriteHostDWordToLittleEndian(hostAddr, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(offset, 4, curr_pl, BX_SHADOW_STACK_WRITE, 0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(3) BX_CPU_C::shadow_stack_write_qword(bx_address offset, unsigned curr_pl, Bit64u data)
|
|
{
|
|
bool user = (curr_pl == 3);
|
|
bx_TLB_entry *tlbEntry = BX_DTLB_ENTRY_OF(offset, 7);
|
|
bx_address lpf = AlignedAccessLPFOf(offset, 7);
|
|
if (tlbEntry->lpf == lpf) {
|
|
// See if the TLB entry privilege level allows us write access from this CPL
|
|
if (isShadowStackWriteOK(tlbEntry, user)) {
|
|
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
|
|
Bit32u pageOffset = PAGE_OFFSET(offset);
|
|
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
|
|
BX_NOTIFY_LIN_MEMORY_ACCESS(offset, pAddr, 8, tlbEntry->get_memtype(), BX_SHADOW_STACK_WRITE, (Bit8u*) &data);
|
|
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
|
|
pageWriteStampTable.decWriteStamp(pAddr, 8);
|
|
WriteHostQWordToLittleEndian(hostAddr, data);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (access_write_linear(offset, 8, curr_pl, BX_SHADOW_STACK_WRITE, 0, (void *) &data) < 0)
|
|
exception(BX_GP_EXCEPTION, 0);
|
|
}
|
|
|
|
bool BX_CPP_AttrRegparmN(4) BX_CPU_C::shadow_stack_lock_cmpxchg8b(bx_address offset, unsigned curr_pl, Bit64u data, Bit64u expected_data)
|
|
{
|
|
Bit64u val64 = shadow_stack_read_qword(offset, curr_pl);
|
|
if (val64 == expected_data) {
|
|
shadow_stack_write_qword(offset, curr_pl, data);
|
|
return true;
|
|
}
|
|
else {
|
|
shadow_stack_write_qword(offset, curr_pl, val64);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool BX_CPP_AttrRegparmN(2) BX_CPU_C::shadow_stack_atomic_set_busy(bx_address offset, unsigned curr_pl)
|
|
{
|
|
return shadow_stack_lock_cmpxchg8b(offset, curr_pl, offset | 0x1, offset);
|
|
}
|
|
|
|
bool BX_CPP_AttrRegparmN(2) BX_CPU_C::shadow_stack_atomic_clear_busy(bx_address offset, unsigned curr_pl)
|
|
{
|
|
return shadow_stack_lock_cmpxchg8b(offset, curr_pl, offset, offset | 0x1);
|
|
}
|
|
#endif
|