Bochs/bochs/cpu/debugstuff.cc
Bryce Denney cec9135e9f - Apply patch.replace-Boolean rev 1.3. Every "Boolean" is now changed to a
"bx_bool" which is always defined as Bit32u on all platforms.  In Carbon
  specific code, Boolean is still used because the Carbon header files
  define it to unsigned char.
- this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95.
  The bug was that some code in Bochs depends on Boolean to be a
  32 bit value.  (This should be fixed, but I don't know all the places
  where it needs to be fixed yet.)  Because Carbon defined Boolean as
  an unsigned char, Bochs just followed along and used the unsigned char
  definition to avoid compile problems.  This exposed the dependency
  on 32 bit Boolean on MacOS X only and led to major simulation problems,
  that could only be reproduced and debugged on that platform.
- On the mailing list we debated whether to make all Booleans into "bool" or
  our own type.  I chose bx_bool for several reasons.
  1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all
     platforms, which makes it much less likely to have more platform-specific
     simulation differences in the future.  (I spent hours on a borrowed
     MacOSX machine chasing bug 618388 before discovering that different sized
     Booleans were the problem, and I don't want to repeat that.)
  2. We still have at least one dependency on 32 bit Booleans which must be
     fixed some time, but I don't want to risk introducing new bugs into the
     simulation just before the 2.0 release.

Modified Files:
    bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc
    pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc
    cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc
    cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc
    cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc
    cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc
    cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc
    cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc
    cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc
    cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc
    cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc
    disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile
    docs-html/cosimulation.html fpu/wmFPUemu_glue.cc
    gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h
    gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc
    gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h
    gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h
    gui/x.cc instrument/example0/instrument.cc
    instrument/example0/instrument.h
    instrument/example1/instrument.cc
    instrument/example1/instrument.h
    instrument/stubs/instrument.cc instrument/stubs/instrument.h
    iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc
    iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc
    iodev/eth_packetmaker.cc iodev/eth_packetmaker.h
    iodev/floppy.cc iodev/floppy.h iodev/guest2host.h
    iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc
    iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h
    iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h
    iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h
    iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h
    iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h
    iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
2002-10-25 11:44:41 +00:00

1009 lines
41 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: debugstuff.cc,v 1.25 2002-10-25 11:44:34 bdenney Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::debug(Bit32u offset)
{
BX_INFO(("| EAX=%08x EBX=%08x ECX=%08x EDX=%08x",
(unsigned) EAX, (unsigned) EBX, (unsigned) ECX, (unsigned) EDX));
BX_INFO(("| ESP=%08x EBP=%08x ESI=%08x EDI=%08x",
(unsigned) ESP, (unsigned) EBP, (unsigned) ESI, (unsigned) EDI));
BX_INFO(("| IOPL=%1u %s %s %s %s %s %s %s %s",
BX_CPU_THIS_PTR get_IOPL (),
BX_CPU_THIS_PTR get_OF() ? "OV" : "NV",
BX_CPU_THIS_PTR get_DF() ? "DW" : "UP",
BX_CPU_THIS_PTR get_IF() ? "EI" : "DI",
BX_CPU_THIS_PTR get_SF() ? "NG" : "PL",
BX_CPU_THIS_PTR get_ZF() ? "ZR" : "NZ",
BX_CPU_THIS_PTR get_AF() ? "AC" : "NA",
BX_CPU_THIS_PTR get_PF() ? "PE" : "PO",
BX_CPU_THIS_PTR get_CF() ? "CY" : "NC"));
BX_INFO(("| SEG selector base limit G D"));
BX_INFO(("| SEG sltr(index|ti|rpl) base limit G D"));
BX_INFO(("| DS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b));
BX_INFO(("| ES:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.d_b));
BX_INFO(("| FS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.d_b));
BX_INFO(("| GS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.d_b));
BX_INFO(("| SS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b));
BX_INFO(("| CS:%04x( %04x| %01u| %1u) %08x %08x %1u %1u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b));
BX_INFO(("| EIP=%08x (%08x)", (unsigned) EIP,
(unsigned) BX_CPU_THIS_PTR prev_eip));
#if BX_CPU_LEVEL >= 2 && BX_CPU_LEVEL < 4
BX_INFO(("| CR0=0x%08x CR1=0x%08x CR2=0x%08x CR3=0x%08x",
BX_CPU_THIS_PTR cr0.val32,
0,
BX_CPU_THIS_PTR cr2,
BX_CPU_THIS_PTR cr3));
#elif BX_CPU_LEVEL >= 4
BX_INFO(("| CR0=0x%08x CR1=0x%08x CR2=0x%08x",
BX_CPU_THIS_PTR cr0.val32,
0,
BX_CPU_THIS_PTR cr2));
BX_INFO(("| CR3=0x%08x CR4=0x%08x",
BX_CPU_THIS_PTR cr3,
BX_CPU_THIS_PTR cr4.getRegister()));
#endif
#if 0
/* (mch) Hack to display the area round EIP and prev_EIP */
char buf[100];
sprintf(buf, "%04x:%08x ", BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP);
for (int i = 0; i < 8; i++) {
Bit8u data;
BX_CPU_THIS_PTR read_virtual_byte(BX_SEG_REG_CS, EIP + i, &data);
sprintf(buf+strlen(buf), "%02x ", data);
}
BX_INFO((buf));
sprintf(buf, "%04x:%08x ", BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, BX_CPU_THIS_PTR prev_eip);
for (int i = 0; i < 8; i++) {
Bit8u data;
BX_CPU_THIS_PTR read_virtual_byte(BX_SEG_REG_CS, BX_CPU_THIS_PTR prev_eip + i, &data);
sprintf(buf+strlen(buf), "%02x ", data);
}
BX_INFO((buf));
#endif
#if BX_DISASM
bx_bool valid;
Bit32u phy_addr;
Bit8u instr_buf[32];
char char_buf[256];
unsigned isize;
dbg_xlate_linear2phy(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base + offset,
&phy_addr, &valid);
if (valid && mem!=NULL) {
BX_CPU_THIS_PTR mem->dbg_fetch_mem(phy_addr, 16, instr_buf);
isize = bx_disassemble.disasm(
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b,
EIP, instr_buf, char_buf);
for (unsigned j=0; j<isize; j++)
BX_INFO((">> %02x", (unsigned) instr_buf[j]));
BX_INFO((">> : %s", char_buf));
}
else {
BX_INFO(("(instruction unavailable) page not present"));
}
#else
UNUSED(offset);
#endif // #if BX_DISASM
}
#if BX_DEBUGGER
Bit32u
BX_CPU_C::dbg_get_reg(unsigned reg)
{
Bit32u return_val32;
switch (reg) {
case BX_DBG_REG_EAX: return(EAX);
case BX_DBG_REG_ECX: return(ECX);
case BX_DBG_REG_EDX: return(EDX);
case BX_DBG_REG_EBX: return(EBX);
case BX_DBG_REG_ESP: return(ESP);
case BX_DBG_REG_EBP: return(EBP);
case BX_DBG_REG_ESI: return(ESI);
case BX_DBG_REG_EDI: return(EDI);
case BX_DBG_REG_EIP: return(EIP);
case BX_DBG_REG_EFLAGS:
return_val32 = dbg_get_eflags();
return(return_val32);
case BX_DBG_REG_CS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
case BX_DBG_REG_SS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
case BX_DBG_REG_DS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
case BX_DBG_REG_ES: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
case BX_DBG_REG_FS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
case BX_DBG_REG_GS: return(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
default:
BX_PANIC(("get_reg: request for unknown register"));
return(0);
}
}
bx_bool
BX_CPU_C::dbg_set_reg(unsigned reg, Bit32u val)
{
// returns 1=OK, 0=can't change
bx_segment_reg_t *seg;
Bit32u current_sys_bits;
switch (reg) {
case BX_DBG_REG_EAX: EAX = val; return(1);
case BX_DBG_REG_ECX: ECX = val; return(1);
case BX_DBG_REG_EDX: EDX = val; return(1);
case BX_DBG_REG_EBX: EBX = val; return(1);
case BX_DBG_REG_ESP: ESP = val; return(1);
case BX_DBG_REG_EBP: EBP = val; return(1);
case BX_DBG_REG_ESI: ESI = val; return(1);
case BX_DBG_REG_EDI: EDI = val; return(1);
case BX_DBG_REG_EIP: EIP = val; return(1);
case BX_DBG_REG_EFLAGS:
BX_INFO(("dbg_set_reg: can not handle eflags yet."));
if ( val & 0xffff0000 ) {
BX_INFO(("dbg_set_reg: can not set upper 16 bits of eflags."));
return(0);
}
// make sure none of the system bits are being changed
current_sys_bits = ((BX_CPU_THIS_PTR getB_NT()) << 14) |
(BX_CPU_THIS_PTR get_IOPL () << 12) |
((BX_CPU_THIS_PTR getB_TF()) << 8);
if ( current_sys_bits != (val & 0x0000f100) ) {
BX_INFO(("dbg_set_reg: can not modify NT, IOPL, or TF."));
return(0);
}
BX_CPU_THIS_PTR set_CF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_PF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_AF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_ZF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_SF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_IF (val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_DF (val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_OF(val & 0x01);
if (BX_CPU_THIS_PTR get_IF ())
BX_CPU_THIS_PTR async_event = 1;
return(1);
case BX_DBG_REG_CS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS];
break;
case BX_DBG_REG_SS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS];
break;
case BX_DBG_REG_DS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
break;
case BX_DBG_REG_ES:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES];
break;
case BX_DBG_REG_FS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS];
break;
case BX_DBG_REG_GS:
seg = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS];
break;
default:
BX_PANIC(("dbg_set_reg: unrecognized register ID (%u)", reg));
return(0);
}
if (BX_CPU_THIS_PTR real_mode()) {
seg->selector.value = val;
seg->cache.valid = 1;
seg->cache.p = 1;
seg->cache.dpl = 0;
seg->cache.segment = 1; // regular segment
if (reg == BX_DBG_REG_CS) {
seg->cache.u.segment.executable = 1; // code segment
}
else {
seg->cache.u.segment.executable = 0; // data segment
}
seg->cache.u.segment.c_ed = 0; // expand up/non-conforming
seg->cache.u.segment.r_w = 1; // writeable
seg->cache.u.segment.a = 1; // accessed
seg->cache.u.segment.base = val << 4;
seg->cache.u.segment.limit = 0xffff;
seg->cache.u.segment.limit_scaled = 0xffff;
seg->cache.u.segment.g = 0; // byte granular
seg->cache.u.segment.d_b = 0; // default 16bit size
seg->cache.u.segment.avl = 0;
return(1); // ok
}
return(0); // can't change when not in real mode
}
unsigned
BX_CPU_C::dbg_query_pending(void)
{
unsigned ret = 0;
if ( BX_HRQ ) { // DMA Hold Request
ret |= BX_DBG_PENDING_DMA;
}
if ( BX_CPU_THIS_PTR INTR && BX_CPU_THIS_PTR get_IF () ) {
ret |= BX_DBG_PENDING_IRQ;
}
return(ret);
}
Bit32u
BX_CPU_C::dbg_get_eflags(void)
{
return(BX_CPU_THIS_PTR eflags.val32);
}
Bit32u
BX_CPU_C::dbg_get_descriptor_l(bx_descriptor_t *d)
{
Bit32u val;
if (d->valid == 0) {
return(0);
}
if (d->segment) {
val = ((d->u.segment.base & 0xffff) << 16) |
(d->u.segment.limit & 0xffff);
return(val);
}
else {
switch (d->type) {
case 0: // Reserved (not yet defined)
BX_ERROR(( "#get_descriptor_l(): type %d not finished", d->type ));
return(0);
case 1: // available 16bit TSS
val = ((d->u.tss286.base & 0xffff) << 16) |
(d->u.tss286.limit & 0xffff);
return(val);
case 2: // LDT
val = ((d->u.ldt.base & 0xffff) << 16) |
d->u.ldt.limit;
return(val);
case 9: // available 32bit TSS
val = ((d->u.tss386.base & 0xffff) << 16) |
(d->u.tss386.limit & 0xffff);
return(val);
default:
BX_ERROR(( "#get_descriptor_l(): type %d not finished", d->type ));
return(0);
}
}
}
Bit32u
BX_CPU_C::dbg_get_descriptor_h(bx_descriptor_t *d)
{
Bit32u val;
if (d->valid == 0) {
return(0);
}
if (d->segment) {
val = (d->u.segment.base & 0xff000000) |
((d->u.segment.base >> 16) & 0x000000ff) |
(d->u.segment.executable << 11) |
(d->u.segment.c_ed << 10) |
(d->u.segment.r_w << 9) |
(d->u.segment.a << 8) |
(d->segment << 12) |
(d->dpl << 13) |
(d->p << 15) |
(d->u.segment.limit & 0xf0000) |
(d->u.segment.avl << 20) |
(d->u.segment.d_b << 22) |
(d->u.segment.g << 23);
return(val);
}
else {
switch (d->type) {
case 0: // Reserved (not yet defined)
BX_ERROR(( "#get_descriptor_h(): type %d not finished", d->type ));
return(0);
case 1: // available 16bit TSS
val = ((d->u.tss286.base >> 16) & 0xff) |
(d->type << 8) |
(d->dpl << 13) |
(d->p << 15);
return(val);
case 2: // LDT
val = ((d->u.ldt.base >> 16) & 0xff) |
(d->type << 8) |
(d->dpl << 13) |
(d->p << 15) |
(d->u.ldt.base & 0xff000000);
return(val);
case 9: // available 32bit TSS
val = ((d->u.tss386.base >> 16) & 0xff) |
(d->type << 8) |
(d->dpl << 13) |
(d->p << 15) |
(d->u.tss386.limit & 0xf0000) |
(d->u.tss386.avl << 20) |
(d->u.tss386.g << 23) |
(d->u.tss386.base & 0xff000000);
return(val);
default:
BX_ERROR(( "#get_descriptor_h(): type %d not finished", d->type ));
return(0);
}
}
}
bx_bool
BX_CPU_C::dbg_get_sreg(bx_dbg_sreg_t *sreg, unsigned sreg_no)
{
if (sreg_no > 5)
return(0);
sreg->sel = BX_CPU_THIS_PTR sregs[sreg_no].selector.value;
sreg->des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[sreg_no].cache);
sreg->des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[sreg_no].cache);
sreg->valid = BX_CPU_THIS_PTR sregs[sreg_no].cache.valid;
return(1);
}
bx_bool
BX_CPU_C::dbg_get_cpu(bx_dbg_cpu_t *cpu)
{
cpu->eax = EAX;
cpu->ebx = EBX;
cpu->ecx = ECX;
cpu->edx = EDX;
cpu->ebp = EBP;
cpu->esi = ESI;
cpu->edi = EDI;
cpu->esp = ESP;
cpu->eflags = dbg_get_eflags();
cpu->eip = EIP;
cpu->cs.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
cpu->cs.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache);
cpu->cs.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache);
cpu->cs.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid;
cpu->ss.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
cpu->ss.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache);
cpu->ss.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache);
cpu->ss.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid;
cpu->ds.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
cpu->ds.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache);
cpu->ds.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache);
cpu->ds.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid;
cpu->es.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
cpu->es.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache);
cpu->es.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache);
cpu->es.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid;
cpu->fs.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
cpu->fs.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache);
cpu->fs.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache);
cpu->fs.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid;
cpu->gs.sel = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
cpu->gs.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache);
cpu->gs.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache);
cpu->gs.valid = BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid;
cpu->ldtr.sel = BX_CPU_THIS_PTR ldtr.selector.value;
cpu->ldtr.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR ldtr.cache);
cpu->ldtr.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR ldtr.cache);
cpu->ldtr.valid = BX_CPU_THIS_PTR ldtr.cache.valid;
cpu->tr.sel = BX_CPU_THIS_PTR tr.selector.value;
cpu->tr.des_l = dbg_get_descriptor_l(&BX_CPU_THIS_PTR tr.cache);
cpu->tr.des_h = dbg_get_descriptor_h(&BX_CPU_THIS_PTR tr.cache);
cpu->tr.valid = BX_CPU_THIS_PTR tr.cache.valid;
cpu->gdtr.base = BX_CPU_THIS_PTR gdtr.base;
cpu->gdtr.limit = BX_CPU_THIS_PTR gdtr.limit;
cpu->idtr.base = BX_CPU_THIS_PTR idtr.base;
cpu->idtr.limit = BX_CPU_THIS_PTR idtr.limit;
cpu->dr0 = BX_CPU_THIS_PTR dr0;
cpu->dr1 = BX_CPU_THIS_PTR dr1;
cpu->dr2 = BX_CPU_THIS_PTR dr2;
cpu->dr3 = BX_CPU_THIS_PTR dr3;
cpu->dr6 = BX_CPU_THIS_PTR dr6;
cpu->dr7 = BX_CPU_THIS_PTR dr7;
cpu->tr3 = 0;
cpu->tr4 = 0;
cpu->tr5 = 0;
cpu->tr6 = 0;
cpu->tr7 = 0;
// cr0:32=pg,cd,nw,am,wp,ne,ts,em,mp,pe
cpu->cr0 = BX_CPU_THIS_PTR cr0.val32;
cpu->cr1 = 0;
cpu->cr2 = BX_CPU_THIS_PTR cr2;
cpu->cr3 = BX_CPU_THIS_PTR cr3;
cpu->cr4 = BX_CPU_THIS_PTR cr4.getRegister();
cpu->inhibit_mask = BX_CPU_THIS_PTR inhibit_mask;
return(1);
}
bx_bool
BX_CPU_C::dbg_set_cpu(bx_dbg_cpu_t *cpu)
{
// returns 1=OK, 0=Error
Bit32u val;
Bit32u type;
// =================================================
// Do checks first, before setting any CPU registers
// =================================================
// CS, SS, DS, ES, FS, GS descriptor checks
if (!cpu->cs.valid) {
BX_ERROR(( "Error: CS not valid" ));
return(0); // error
}
if ( (cpu->cs.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: CS not application type" ));
return(0); // error
}
if ( (cpu->cs.des_h & 0x0800) == 0 ) {
BX_ERROR(( "Error: CS not executable" ));
return(0); // error
}
if (!cpu->ss.valid) {
BX_ERROR(( "Error: SS not valid" ));
return(0); // error
}
if ( (cpu->ss.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: SS not application type" ));
return(0); // error
}
if (cpu->ds.valid) {
if ( (cpu->ds.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: DS not application type" ));
return(0); // error
}
}
if (cpu->es.valid) {
if ( (cpu->es.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: ES not application type" ));
return(0); // error
}
}
if (cpu->fs.valid) {
if ( (cpu->fs.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: FS not application type" ));
return(0); // error
}
}
if (cpu->gs.valid) {
if ( (cpu->gs.des_h & 0x1000) == 0 ) {
BX_ERROR(( "Error: GS not application type" ));
return(0); // error
}
}
if (cpu->ldtr.valid) {
if ( cpu->ldtr.des_h & 0x1000 ) {
BX_ERROR(( "Error: LDTR not system type" ));
return(0); // error
}
if ( ((cpu->ldtr.des_h >> 8) & 0x0f) != 2 ) {
BX_ERROR(( "Error: LDTR descriptor type not LDT" ));
return(0); // error
}
}
if (cpu->tr.valid) {
if ( cpu->tr.des_h & 0x1000 ) {
BX_ERROR(( "Error: TR not system type"));
return(0); // error
}
type = (cpu->tr.des_h >> 8) & 0x0f;
if ( (type != 1) && (type != 9) ) {
BX_ERROR(( "Error: TR descriptor type not TSS" ));
return(0); // error
}
}
// =============
// end of checks
// =============
EAX = cpu->eax;
EBX = cpu->ebx;
ECX = cpu->ecx;
EDX = cpu->edx;
EBP = cpu->ebp;
ESI = cpu->esi;
EDI = cpu->edi;
ESP = cpu->esp;
// eflags
val = cpu->eflags;
BX_CPU_THIS_PTR set_CF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_PF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_AF(val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_ZF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_SF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_TF (val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_IF (val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_DF (val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_OF(val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_IOPL (val & 0x03); val >>= 2;
BX_CPU_THIS_PTR set_NT (val & 0x01); val >>= 2;
BX_CPU_THIS_PTR set_RF (val & 0x01); val >>= 1;
BX_CPU_THIS_PTR set_VM (val & 0x01); val >>= 1;
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR set_AC (val & 0x01); val >>= 1;
//BX_CPU_THIS_PTR eflags.set_VIF (val & 0x01);
val >>= 1;
//BX_CPU_THIS_PTR eflags.set_VIP (val & 0x01);
val >>= 1;
BX_CPU_THIS_PTR set_ID (val & 0x01);
#endif
EIP = cpu->eip;
// CS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = cpu->cs.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = cpu->cs.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = (cpu->cs.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = cpu->cs.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = cpu->cs.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = (cpu->cs.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = (cpu->cs.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = (cpu->cs.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.type = (cpu->cs.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = (cpu->cs.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = (cpu->cs.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = (cpu->cs.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = (cpu->cs.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = (cpu->cs.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base |= (cpu->cs.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base |= (cpu->cs.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = (cpu->cs.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit |= (cpu->cs.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = (cpu->cs.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = (cpu->cs.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = (cpu->cs.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit;
// SS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = cpu->ss.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = cpu->ss.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = (cpu->ss.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = cpu->ss.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = cpu->ss.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = (cpu->ss.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = (cpu->ss.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = (cpu->ss.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type = (cpu->ss.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = (cpu->ss.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = (cpu->ss.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = (cpu->ss.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = (cpu->ss.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = (cpu->ss.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base |= (cpu->ss.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base |= (cpu->ss.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = (cpu->ss.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit |= (cpu->ss.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g = (cpu->ss.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b = (cpu->ss.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl = (cpu->ss.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit;
// DS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = cpu->ds.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = cpu->ds.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti = (cpu->ds.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = cpu->ds.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = cpu->ds.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = (cpu->ds.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = (cpu->ds.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = (cpu->ds.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.type = (cpu->ds.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = (cpu->ds.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = (cpu->ds.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = (cpu->ds.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = (cpu->ds.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = (cpu->ds.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base |= (cpu->ds.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base |= (cpu->ds.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = (cpu->ds.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit |= (cpu->ds.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g = (cpu->ds.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b = (cpu->ds.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.avl = (cpu->ds.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit;
// ES:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = cpu->es.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index = cpu->es.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti = (cpu->es.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = cpu->es.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = cpu->es.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = (cpu->es.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = (cpu->es.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = (cpu->es.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.type = (cpu->es.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = (cpu->es.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = (cpu->es.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = (cpu->es.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = (cpu->es.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = (cpu->es.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base |= (cpu->es.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base |= (cpu->es.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = (cpu->es.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit |= (cpu->es.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g = (cpu->es.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.d_b = (cpu->es.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.avl = (cpu->es.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit;
// FS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value = cpu->fs.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.index = cpu->fs.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.ti = (cpu->fs.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.rpl = cpu->fs.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.valid = cpu->fs.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.p = (cpu->fs.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.dpl = (cpu->fs.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment = (cpu->fs.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.type = (cpu->fs.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.executable = (cpu->fs.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.c_ed = (cpu->fs.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.r_w = (cpu->fs.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.a = (cpu->fs.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base = (cpu->fs.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base |= (cpu->fs.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.base |= (cpu->fs.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit = (cpu->fs.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit |= (cpu->fs.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g = (cpu->fs.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.d_b = (cpu->fs.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.avl = (cpu->fs.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.u.segment.limit;
// GS:
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value = cpu->gs.sel;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.index = cpu->gs.sel >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.ti = (cpu->gs.sel >> 2) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.rpl = cpu->gs.sel & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.valid = cpu->gs.valid;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.p = (cpu->gs.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.dpl = (cpu->gs.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment = (cpu->gs.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.type = (cpu->gs.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.executable = (cpu->gs.des_h >> 11) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.c_ed = (cpu->gs.des_h >> 10) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.r_w = (cpu->gs.des_h >> 9) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.a = (cpu->gs.des_h >> 8) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base = (cpu->gs.des_l >> 16);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base |= (cpu->gs.des_h & 0xff) << 16;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.base |= (cpu->gs.des_h & 0xff000000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit = (cpu->gs.des_l & 0xffff);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit |= (cpu->gs.des_h & 0x000f0000);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g = (cpu->gs.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.d_b = (cpu->gs.des_h >> 22) & 0x01;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.avl = (cpu->gs.des_h >> 20) & 0x01;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.g)
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit_scaled =
(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit << 12) | 0x0fff;
else
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit_scaled =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.u.segment.limit;
// LDTR:
BX_CPU_THIS_PTR ldtr.selector.value = cpu->ldtr.sel;
BX_CPU_THIS_PTR ldtr.selector.index = cpu->ldtr.sel >> 3;
BX_CPU_THIS_PTR ldtr.selector.ti = (cpu->ldtr.sel >> 2) & 0x01;
BX_CPU_THIS_PTR ldtr.selector.rpl = cpu->ldtr.sel & 0x03;
BX_CPU_THIS_PTR ldtr.cache.valid = cpu->ldtr.valid;
BX_CPU_THIS_PTR ldtr.cache.p = (cpu->ldtr.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR ldtr.cache.dpl = (cpu->ldtr.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR ldtr.cache.segment = (cpu->ldtr.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR ldtr.cache.type = (cpu->ldtr.des_h >> 8) & 0x0f;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = (cpu->ldtr.des_l >> 16);
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base |= (cpu->ldtr.des_h & 0xff) << 16;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base |= (cpu->ldtr.des_h & 0xff000000);
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = (cpu->ldtr.des_l & 0xffff);
// TR
type = (cpu->tr.des_h >> 8) & 0x0f;
type &= ~2; // never allow busy bit in tr.cache.type
BX_CPU_THIS_PTR tr.selector.value = cpu->tr.sel;
BX_CPU_THIS_PTR tr.selector.index = cpu->tr.sel >> 3;
BX_CPU_THIS_PTR tr.selector.ti = (cpu->tr.sel >> 2) & 0x01;
BX_CPU_THIS_PTR tr.selector.rpl = cpu->tr.sel & 0x03;
BX_CPU_THIS_PTR tr.cache.valid = cpu->tr.valid;
BX_CPU_THIS_PTR tr.cache.p = (cpu->tr.des_h >> 15) & 0x01;
BX_CPU_THIS_PTR tr.cache.dpl = (cpu->tr.des_h >> 13) & 0x03;
BX_CPU_THIS_PTR tr.cache.segment = (cpu->tr.des_h >> 12) & 0x01;
BX_CPU_THIS_PTR tr.cache.type = type;
if (type == 1) { // 286 TSS
BX_CPU_THIS_PTR tr.cache.u.tss286.base = (cpu->tr.des_l >> 16);
BX_CPU_THIS_PTR tr.cache.u.tss286.base |= (cpu->tr.des_h & 0xff) << 16;
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = (cpu->tr.des_l & 0xffff);
}
else { // type == 9, 386 TSS
BX_CPU_THIS_PTR tr.cache.u.tss386.base = (cpu->tr.des_l >> 16);
BX_CPU_THIS_PTR tr.cache.u.tss386.base |= (cpu->tr.des_h & 0xff) << 16;
BX_CPU_THIS_PTR tr.cache.u.tss386.base |= (cpu->tr.des_h & 0xff000000);
BX_CPU_THIS_PTR tr.cache.u.tss386.limit = (cpu->tr.des_l & 0xffff);
BX_CPU_THIS_PTR tr.cache.u.tss386.limit |= (cpu->tr.des_h & 0x000f0000);
BX_CPU_THIS_PTR tr.cache.u.tss386.g = (cpu->tr.des_h >> 23) & 0x01;
BX_CPU_THIS_PTR tr.cache.u.tss386.avl = (cpu->tr.des_h >> 20) & 0x01;
}
// gdtr
BX_CPU_THIS_PTR gdtr.base = cpu->gdtr.base;
BX_CPU_THIS_PTR gdtr.limit = cpu->gdtr.limit;
// idtr
BX_CPU_THIS_PTR idtr.base = cpu->idtr.base;
BX_CPU_THIS_PTR idtr.limit = cpu->idtr.limit;
BX_CPU_THIS_PTR dr0 = cpu->dr0;
BX_CPU_THIS_PTR dr1 = cpu->dr1;
BX_CPU_THIS_PTR dr2 = cpu->dr2;
BX_CPU_THIS_PTR dr3 = cpu->dr3;
BX_CPU_THIS_PTR dr6 = cpu->dr6;
BX_CPU_THIS_PTR dr7 = cpu->dr7;
// BX_CPU_THIS_PTR tr3 = cpu->tr3;
// BX_CPU_THIS_PTR tr4 = cpu->tr4;
// BX_CPU_THIS_PTR tr5 = cpu->tr5;
// BX_CPU_THIS_PTR tr6 = cpu->tr6;
// BX_CPU_THIS_PTR tr7 = cpu->tr7;
// cr0, cr1, cr2, cr3, cr4
SetCR0(cpu->cr0);
BX_CPU_THIS_PTR cr1 = cpu->cr1;
BX_CPU_THIS_PTR cr2 = cpu->cr2;
BX_CPU_THIS_PTR cr3 = cpu->cr3;
#if BX_CPU_LEVEL >= 5
BX_CPU_THIS_PTR cr4.setRegister(cpu->cr4);
#endif
BX_CPU_THIS_PTR inhibit_mask = cpu->inhibit_mask;
//
// flush cached items, prefetch, paging, etc
//
BX_CPU_THIS_PTR CR3_change(cpu->cr3);
BX_CPU_THIS_PTR invalidate_prefetch_q();
BX_CPU_THIS_PTR async_event = 1;
return(1);
}
#if BX_SIM_ID == 0
# define BX_DBG_NULL_CALLBACK bx_dbg_null_callback0
#else
# define BX_DBG_NULL_CALLBACK bx_dbg_null_callback1
#endif
void
BX_DBG_NULL_CALLBACK(unsigned val)
{
// bochs uses the pc_system variables, so this function is
// a stub for notification by the debugger, that a change
// occurred.
UNUSED(val);
}
void
#if BX_SIM_ID == 0
bx_dbg_init_cpu_mem_env0(bx_dbg_callback_t *callback, int argc, char *argv[])
#else
bx_dbg_init_cpu_mem_env1(bx_dbg_callback_t *callback, int argc, char *argv[])
#endif
{
UNUSED(argc);
UNUSED(argv);
#if 0
#warning hardcoding BX_CPU_THIS_PTR mem[0] and cpu[0]
callback->setphymem = BX_MEM(0)->dbg_set_mem;
callback->getphymem = BX_MEM(0)->dbg_fetch_mem;
callback->xlate_linear2phy = BX_CPU(0)->dbg_xlate_linear2phy;
callback->set_reg = BX_CPU(0)->dbg_set_reg;
callback->get_reg = BX_CPU(0)->dbg_get_reg;
callback->get_sreg = BX_CPU(0)->dbg_get_sreg;
callback->get_cpu = BX_CPU(0)->dbg_get_cpu;
callback->set_cpu = BX_CPU(0)->dbg_set_cpu;
callback->dirty_page_tbl_size = sizeof(BX_MEM(0)->dbg_dirty_pages);
callback->dirty_page_tbl = BX_MEM(0)->dbg_dirty_pages;
callback->atexit = BX_CPU(0)->atexit;
callback->query_pending = BX_CPU(0)->dbg_query_pending;
callback->execute = BX_CPU(0)->cpu_loop;
callback->take_irq = BX_CPU(0)->dbg_take_irq;
callback->take_dma = BX_CPU(0)->dbg_take_dma;
callback->reset_cpu = BX_CPU(0)->reset;
callback->init_mem = BX_MEM(0)->init_memory;
callback->load_ROM = BX_MEM(0)->load_ROM;
callback->set_A20 = NULL;
callback->set_NMI = BX_DBG_NULL_CALLBACK;
callback->set_RESET = BX_DBG_NULL_CALLBACK;
callback->set_INTR = BX_CPU(0)->set_INTR;
callback->force_interrupt = BX_CPU(0)->dbg_force_interrupt;
#if BX_INSTRUMENTATION
callback->instr_start = bx_instr_start;
callback->instr_stop = bx_instr_stop;
callback->instr_reset = bx_instr_reset;
callback->instr_print = bx_instr_print;
#endif
#if BX_USE_LOADER
callback->loader = bx_dbg_loader;
#endif
callback->crc32 = BX_MEM(0)->dbg_crc32;
#endif
}
#endif // #if BX_DEBUGGER
void
BX_CPU_C::atexit(void)
{
if (protected_mode()) BX_INFO(("protected mode"));
else if (v8086_mode()) BX_INFO(("v8086 mode"));
else BX_INFO(("real mode"));
BX_INFO(("CS.d_b = %u bit",
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b ? 32 : 16));
BX_INFO(("SS.d_b = %u bit",
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b ? 32 : 16));
debug(BX_CPU_THIS_PTR prev_eip);
}