Bochs/bochs/iodev/pci.cc

599 lines
18 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002-2009 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
//
// i440FX Support - PMC/DBX
//
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
#include "iodev.h"
#if BX_SUPPORT_PCI
#include "pci.h"
#define LOG_THIS thePciBridge->
bx_pci_bridge_c *thePciBridge = NULL;
int libpci_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
{
thePciBridge = new bx_pci_bridge_c();
bx_devices.pluginPciBridge = thePciBridge;
BX_REGISTER_DEVICE_DEVMODEL(plugin, type, thePciBridge, BX_PLUGIN_PCI);
return(0); // Success
}
void libpci_LTX_plugin_fini(void)
{
delete thePciBridge;
}
bx_pci_bridge_c::bx_pci_bridge_c()
{
put("PCI");
}
bx_pci_bridge_c::~bx_pci_bridge_c()
{
debug_dump();
BX_DEBUG(("Exit"));
}
void bx_pci_bridge_c::init(void)
{
// called once when bochs initializes
unsigned i;
BX_PCI_THIS num_pci_handlers = 0;
/* set unused elements to appropriate values */
for (i=0; i < BX_MAX_PCI_DEVICES; i++) {
BX_PCI_THIS pci_handler[i].handler = NULL;
}
for (i=0; i < 0x100; i++) {
BX_PCI_THIS pci_handler_id[i] = BX_MAX_PCI_DEVICES; // not assigned
}
for (i=0; i < BX_N_PCI_SLOTS; i++) {
BX_PCI_THIS slot_used[i] = 0; // no device connected
}
BX_PCI_THIS slots_checked = 0;
// confAddr accepts dword i/o only
DEV_register_ioread_handler(this, read_handler, 0x0CF8, "i440FX", 4);
DEV_register_iowrite_handler(this, write_handler, 0x0CF8, "i440FX", 4);
for (i=0x0CFC; i<=0x0CFF; i++) {
DEV_register_ioread_handler(this, read_handler, i, "i440FX", 7);
}
for (i=0x0CFC; i<=0x0CFF; i++) {
DEV_register_iowrite_handler(this, write_handler, i, "i440FX", 7);
}
Bit8u devfunc = BX_PCI_DEVICE(0,0);
DEV_register_pci_handlers(this, &devfunc, BX_PLUGIN_PCI, "440FX Host bridge");
for (i=0; i<256; i++)
BX_PCI_THIS pci_conf[i] = 0x0;
// readonly registers
BX_PCI_THIS pci_conf[0x00] = 0x86;
BX_PCI_THIS pci_conf[0x01] = 0x80;
BX_PCI_THIS pci_conf[0x02] = 0x37;
BX_PCI_THIS pci_conf[0x03] = 0x12;
BX_PCI_THIS pci_conf[0x0b] = 0x06;
}
void
bx_pci_bridge_c::reset(unsigned type)
{
unsigned i;
char devname[80];
char *device;
if (!BX_PCI_THIS slots_checked) {
for (i=0; i<BX_N_PCI_SLOTS; i++) {
sprintf(devname, "pci.slot.%d", i+1);
device = SIM->get_param_string(devname)->getptr();
if ((strlen(device) > 0) && !BX_PCI_THIS slot_used[i]) {
BX_PANIC(("Unknown plugin '%s' at PCI slot #%d", device, i+1));
}
}
BX_PCI_THIS slots_checked = 1;
}
BX_PCI_THIS confAddr = 0;
BX_PCI_THIS confData = 0;
BX_PCI_THIS pci_conf[0x04] = 0x06;
BX_PCI_THIS pci_conf[0x05] = 0x00;
BX_PCI_THIS pci_conf[0x06] = 0x80;
BX_PCI_THIS pci_conf[0x07] = 0x02;
BX_PCI_THIS pci_conf[0x0d] = 0x00;
BX_PCI_THIS pci_conf[0x0f] = 0x00;
BX_PCI_THIS pci_conf[0x50] = 0x00;
BX_PCI_THIS pci_conf[0x51] = 0x01;
BX_PCI_THIS pci_conf[0x52] = 0x00;
BX_PCI_THIS pci_conf[0x53] = 0x80;
BX_PCI_THIS pci_conf[0x54] = 0x00;
BX_PCI_THIS pci_conf[0x55] = 0x00;
BX_PCI_THIS pci_conf[0x56] = 0x00;
BX_PCI_THIS pci_conf[0x57] = 0x01;
BX_PCI_THIS pci_conf[0x58] = 0x10;
for (i=0x59; i<0x60; i++)
BX_PCI_THIS pci_conf[i] = 0x00;
BX_PCI_THIS pci_conf[0x72] = 0x02;
}
void bx_pci_bridge_c::register_state(void)
{
bx_list_c *list = new bx_list_c(SIM->get_bochs_root(), "pci_bridge", "PCI Bridge State", 3);
BXRS_HEX_PARAM_FIELD(list, confAddr, BX_PCI_THIS confAddr);
BXRS_HEX_PARAM_FIELD(list, confData, BX_PCI_THIS confData);
register_pci_state(list);
}
void bx_pci_bridge_c::after_restore_state(void)
{
BX_PCI_THIS smram_control(BX_PCI_THIS pci_conf[0x72]);
}
// static IO port read callback handler
// redirects to non-static class handler to avoid virtual functions
Bit32u bx_pci_bridge_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
{
#if !BX_USE_PCI_SMF
bx_pci_bridge_c *class_ptr = (bx_pci_bridge_c *) this_ptr;
return class_ptr->read(address, io_len);
}
Bit32u bx_pci_bridge_c::read(Bit32u address, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_PCI_SMF
switch (address) {
case 0x0CF8:
return BX_PCI_THIS confAddr;
case 0x0CFC:
case 0x0CFD:
case 0x0CFE:
case 0x0CFF:
{
Bit32u handle, retval;
Bit8u devfunc, regnum;
if ((BX_PCI_THIS confAddr & 0x80FF0000) == 0x80000000) {
devfunc = (BX_PCI_THIS confAddr >> 8) & 0xff;
regnum = (BX_PCI_THIS confAddr & 0xfc) + (address & 0x03);
handle = BX_PCI_THIS pci_handler_id[devfunc];
if ((io_len <= 4) && (handle < BX_MAX_PCI_DEVICES))
retval = BX_PCI_THIS pci_handler[handle].handler->pci_read_handler(regnum, io_len);
else
retval = 0xFFFFFFFF;
}
else
retval = 0xFFFFFFFF;
BX_PCI_THIS confData = retval;
return retval;
}
}
BX_PANIC(("unsupported IO read to port 0x%x", (unsigned) address));
return(0xffffffff);
}
// static IO port write callback handler
// redirects to non-static class handler to avoid virtual functions
void bx_pci_bridge_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
{
#if !BX_USE_PCI_SMF
bx_pci_bridge_c *class_ptr = (bx_pci_bridge_c *) this_ptr;
class_ptr->write(address, value, io_len);
}
void bx_pci_bridge_c::write(Bit32u address, Bit32u value, unsigned io_len)
{
#else
UNUSED(this_ptr);
#endif // !BX_USE_PCI_SMF
switch (address) {
case 0xCF8:
BX_PCI_THIS confAddr = value;
if ((value & 0x80FFFF00) == 0x80000000) {
BX_DEBUG(("440FX PMC register 0x%02x selected", value & 0xfc));
} else if ((value & 0x80000000) == 0x80000000) {
BX_DEBUG(("440FX request for bus 0x%02x device 0x%02x function 0x%02x",
(value >> 16) & 0xFF, (value >> 11) & 0x1F, (value >> 8) & 0x07));
}
break;
case 0xCFC:
case 0xCFD:
case 0xCFE:
case 0xCFF:
if ((BX_PCI_THIS confAddr & 0x80FF0000) == 0x80000000) {
Bit8u devfunc = (BX_PCI_THIS confAddr >> 8) & 0xff;
Bit8u regnum = (BX_PCI_THIS confAddr & 0xfc) + (address & 0x03);
Bit32u handle = BX_PCI_THIS pci_handler_id[devfunc];
if ((io_len <= 4) && (handle < BX_MAX_PCI_DEVICES)) {
if (((regnum>=4) && (regnum<=7)) || (regnum==12) || (regnum==13) || (regnum>14)) {
BX_PCI_THIS pci_handler[handle].handler->pci_write_handler(regnum, value, io_len);
BX_PCI_THIS confData = value << (8 * (address & 0x03));
}
else
BX_DEBUG(("read only register, write ignored"));
}
}
break;
default:
BX_PANIC(("IO write to port 0x%x", (unsigned) address));
}
}
// pci configuration space read callback handler
Bit32u bx_pci_bridge_c::pci_read_handler(Bit8u address, unsigned io_len)
{
Bit32u value = 0;
for (unsigned i=0; i<io_len; i++) {
value |= (BX_PCI_THIS pci_conf[address+i] << (i*8));
}
BX_DEBUG(("440FX PMC read register 0x%02x value 0x%08x", address, value));
return value;
}
// pci configuration space write callback handler
void bx_pci_bridge_c::pci_write_handler(Bit8u address, Bit32u value, unsigned io_len)
{
Bit8u value8;
if ((address >= 0x10) && (address < 0x34))
return;
for (unsigned i=0; i<io_len; i++) {
value8 = (value >> (i*8)) & 0xFF;
switch (address+i) {
case 0x04:
BX_PCI_THIS pci_conf[address+i] = (value8 & 0x40) | 0x06;
break;
case 0x06:
case 0x0c:
break;
case 0x59:
case 0x5A:
case 0x5B:
case 0x5C:
case 0x5D:
case 0x5E:
case 0x5F:
BX_INFO(("440FX PMC write to PAM register %x (TLB Flush)", address+i));
BX_PCI_THIS pci_conf[address+i] = value8;
bx_pc_system.MemoryMappingChanged();
break;
case 0x72:
smram_control(value); // SMRAM conrol register
break;
default:
BX_PCI_THIS pci_conf[address+i] = value8;
BX_DEBUG(("440FX PMC write register 0x%02x value 0x%02x", address+i, value8));
}
}
}
void bx_pci_bridge_c::smram_control(Bit8u value8)
{
//
// From i440FX chipset manual:
//
// [7:7] Reserved.
// [6:6] SMM Space Open (DOPEN), when DOPEN=1 and DLCK=0, SMM space DRAM
// became visible even CPU not indicte SMM mode access. This is
// indended to help BIOS to initialize SMM space.
// [5:5] SMM Space Closed (DCLS), when DCLS=1, SMM space is not accessible
// for data references, even if CPU indicates SMM mode access. Code
// references may still access SMM space DRAM.
// [4:4] SMM Space Locked (DLCK), when DLCK=1, DOPEN is set to 0 and
// both DLCK and DOPEN became R/O. DLCK can only be cleared by
// a power-on reset.
// [3:3] SMRAM Enable (SMRAME)
// [2:0] SMM space base segment, program the location of SMM space
// reserved.
//
// SMRAM space access cycles:
// | SMRAME | DLCK | DCLS | DOPEN | CPU_SMM | | Code | Data |
// ------------------------------------------ ---------------
// | 0 | X | X | X | X | -> | PCI | PCI |
// | 1 | 0 | X | 0 | 0 | -> | PCI | PCI |
// | 1 | 0 | 0 | 0 | 1 | -> | DRAM | DRAM |
// | 1 | 0 | 0 | 1 | X | -> | DRAM | DRAM |
// | 1 | 1 | 0 | X | 1 | -> | DRAM | DRAM |
// | 1 | 0 | 1 | 0 | 1 | -> | DRAM | PCI |
// | 1 | 0 | 1 | 1 | X | -> | ---- | ---- |
// | 1 | 1 | X | X | 0 | -> | PCI | PCI |
// | 1 | 1 | 1 | X | 1 | -> | DRAM | PCI |
// ------------------------------------------ ---------------
value8 = (value8 & 0x78) | 0x2; // ignore reserved bits
if (BX_PCI_THIS pci_conf[0x72] & 0x10)
{
value8 &= 0xbf; // set DOPEN=0, DLCK=1
value8 |= 0x10;
}
if ((value8 & 0x08) == 0) {
bx_devices.mem->disable_smram();
}
else {
bx_bool DOPEN = (value8 & 0x40) > 0, DCLS = (value8 & 0x20) > 0;
if(DOPEN && DCLS) BX_PANIC(("SMRAM control: DOPEN not mutually exclusive with DCLS !"));
bx_devices.mem->enable_smram(DOPEN, DCLS);
}
BX_INFO(("setting SMRAM control register to 0x%02x", value8));
BX_PCI_THIS pci_conf[0x72] = value8;
}
Bit8u bx_pci_bridge_c::rd_memType(Bit32u addr)
{
switch ((addr & 0xFC000) >> 12) {
case 0xC0:
return (BX_PCI_THIS pci_conf[0x5A] & 0x1);
case 0xC4:
return ((BX_PCI_THIS pci_conf[0x5A] >> 4) & 0x1);
case 0xC8:
return (BX_PCI_THIS pci_conf[0x5B] & 0x1);
case 0xCC:
return ((BX_PCI_THIS pci_conf[0x5B] >> 4) & 0x1);
case 0xD0:
return (BX_PCI_THIS pci_conf[0x5C] & 0x1);
case 0xD4:
return ((BX_PCI_THIS pci_conf[0x5C] >> 4) & 0x1);
case 0xD8:
return (BX_PCI_THIS pci_conf[0x5D] & 0x1);
case 0xDC:
return ((BX_PCI_THIS pci_conf[0x5D] >> 4) & 0x1);
case 0xE0:
return (BX_PCI_THIS pci_conf[0x5E] & 0x1);
case 0xE4:
return ((BX_PCI_THIS pci_conf[0x5E] >> 4) & 0x1);
case 0xE8:
return (BX_PCI_THIS pci_conf[0x5F] & 0x1);
case 0xEC:
return ((BX_PCI_THIS pci_conf[0x5F] >> 4) & 0x1);
case 0xF0:
case 0xF4:
case 0xF8:
case 0xFC:
return ((BX_PCI_THIS pci_conf[0x59] >> 4) & 0x1);
default:
BX_PANIC(("rd_memType () Error: Memory Type not known !"));
break;
}
return(0); // keep compiler happy
}
Bit8u bx_pci_bridge_c::wr_memType(Bit32u addr)
{
switch ((addr & 0xFC000) >> 12) {
case 0xC0:
return ((BX_PCI_THIS pci_conf[0x5A] >> 1) & 0x1);
case 0xC4:
return ((BX_PCI_THIS pci_conf[0x5A] >> 5) & 0x1);
case 0xC8:
return ((BX_PCI_THIS pci_conf[0x5B] >> 1) & 0x1);
case 0xCC:
return ((BX_PCI_THIS pci_conf[0x5B] >> 5) & 0x1);
case 0xD0:
return ((BX_PCI_THIS pci_conf[0x5C] >> 1) & 0x1);
case 0xD4:
return ((BX_PCI_THIS pci_conf[0x5C] >> 5) & 0x1);
case 0xD8:
return ((BX_PCI_THIS pci_conf[0x5D] >> 1) & 0x1);
case 0xDC:
return ((BX_PCI_THIS pci_conf[0x5D] >> 5) & 0x1);
case 0xE0:
return ((BX_PCI_THIS pci_conf[0x5E] >> 1) & 0x1);
case 0xE4:
return ((BX_PCI_THIS pci_conf[0x5E] >> 5) & 0x1);
case 0xE8:
return ((BX_PCI_THIS pci_conf[0x5F] >> 1) & 0x1);
case 0xEC:
return ((BX_PCI_THIS pci_conf[0x5F] >> 5) & 0x1);
case 0xF0:
case 0xF4:
case 0xF8:
case 0xFC:
return ((BX_PCI_THIS pci_conf[0x59] >> 5) & 0x1);
default:
BX_PANIC(("wr_memType () Error: Memory Type not known !"));
break;
}
return(0); // keep compiler happy
}
void bx_pci_bridge_c::debug_dump()
{
int i;
BX_DEBUG(("i440fxConfAddr:0x%08x", BX_PCI_THIS confAddr));
BX_DEBUG(("i440fxConfData:0x%08x", BX_PCI_THIS confData));
#ifdef DUMP_FULL_I440FX
for (i=0; i<256; i++) {
BX_DEBUG(("i440fxArray%02x:0x%02x", i, BX_PCI_THIS pci_conf[i]));
}
#else /* DUMP_FULL_I440FX */
for (i=0x59; i<0x60; i++) {
BX_DEBUG(("i440fxArray%02x:0x%02x", i, BX_PCI_THIS pci_conf[i]));
}
#endif /* DUMP_FULL_I440FX */
}
bx_bool bx_pci_bridge_c::register_pci_handlers(bx_pci_device_stub_c *dev,
Bit8u *devfunc, const char *name,
const char *descr)
{
unsigned i, handle;
char devname[80];
char *device;
if (strcmp(name, "pci") && strcmp(name, "pci2isa") && strcmp(name, "pci_ide")
&& (*devfunc == 0x00)) {
for (i = 0; i < BX_N_PCI_SLOTS; i++) {
sprintf(devname, "pci.slot.%d", i+1);
device = SIM->get_param_string(devname)->getptr();
if ((strlen(device) > 0) && (!strcmp(name, device))) {
*devfunc = (i + 2) << 3;
BX_PCI_THIS slot_used[i] = 1;
BX_INFO(("PCI slot #%d used by plugin '%s'", i+1, name));
break;
}
}
if (*devfunc == 0x00) {
BX_ERROR(("Plugin '%s' not connected to a PCI slot", name));
}
}
/* check if device/function is available */
if (BX_PCI_THIS pci_handler_id[*devfunc] == BX_MAX_PCI_DEVICES) {
if (BX_PCI_THIS num_pci_handlers >= BX_MAX_PCI_DEVICES) {
BX_INFO(("too many PCI devices installed."));
BX_PANIC((" try increasing BX_MAX_PCI_DEVICES"));
return false;
}
handle = BX_PCI_THIS num_pci_handlers++;
BX_PCI_THIS pci_handler[handle].handler = dev;
BX_PCI_THIS pci_handler_id[*devfunc] = handle;
BX_INFO(("%s present at device %d, function %d", descr, *devfunc >> 3,
*devfunc & 0x07));
return true; // device/function mapped successfully
}
else {
return false; // device/function not available, return false.
}
}
bx_bool bx_pci_bridge_c::is_pci_device(const char *name)
{
unsigned i;
char devname[80];
char *device;
for (i = 0; i < BX_N_PCI_SLOTS; i++) {
sprintf(devname, "pci.slot.%d", i+1);
device = SIM->get_param_string(devname)->getptr();
if ((strlen(device) > 0) && (!strcmp(name, device))) {
return 1;
}
}
return 0;
}
bx_bool bx_pci_bridge_c::pci_set_base_mem(void *this_ptr, memory_handler_t f1, memory_handler_t f2,
Bit32u *addr, Bit8u *pci_conf, unsigned size)
{
Bit32u newbase;
Bit32u oldbase = *addr;
Bit32u mask = ~(size - 1);
Bit8u pci_flags = pci_conf[0x00] & 0x0f;
if ((pci_flags & 0x06) > 0) {
BX_PANIC(("PCI base memory flag 0x%02x not supported", pci_flags));
return 0;
}
pci_conf[0x00] &= (mask & 0xf0);
pci_conf[0x01] &= (mask >> 8) & 0xff;
pci_conf[0x02] &= (mask >> 16) & 0xff;
pci_conf[0x03] &= (mask >> 24) & 0xff;
ReadHostDWordFromLittleEndian(pci_conf, newbase);
pci_conf[0x00] |= pci_flags;
if (newbase != mask && newbase != oldbase) { // skip PCI probe
if (oldbase > 0) {
DEV_unregister_memory_handlers(this_ptr, oldbase, oldbase + size - 1);
}
if (newbase > 0) {
DEV_register_memory_handlers(this_ptr, f1, f2, newbase, newbase + size - 1);
}
*addr = newbase;
return 1;
}
return 0;
}
bx_bool bx_pci_bridge_c::pci_set_base_io(void *this_ptr, bx_read_handler_t f1, bx_write_handler_t f2,
Bit32u *addr, Bit8u *pci_conf, unsigned size,
const Bit8u *iomask, const char *name)
{
unsigned i;
Bit32u newbase;
Bit32u oldbase = *addr;
Bit16u mask = ~(size - 1);
Bit8u pci_flags = pci_conf[0x00] & 0x03;
pci_conf[0x00] &= (mask & 0xfc);
pci_conf[0x01] &= (mask >> 8);
ReadHostDWordFromLittleEndian(pci_conf, newbase);
pci_conf[0x00] |= pci_flags;
if (((newbase & 0xfffc) != mask) && (newbase != oldbase)) { // skip PCI probe
if (oldbase > 0) {
for (i=0; i<size; i++) {
if (iomask[i] > 0) {
DEV_unregister_ioread_handler(this_ptr, f1, oldbase + i, iomask[i]);
DEV_unregister_iowrite_handler(this_ptr, f2, oldbase + i, iomask[i]);
}
}
}
if (newbase > 0) {
for (i=0; i<size; i++) {
if (iomask[i] > 0) {
DEV_register_ioread_handler(this_ptr, f1, newbase + i, name, iomask[i]);
DEV_register_iowrite_handler(this_ptr, f2, newbase + i, name, iomask[i]);
}
}
}
*addr = newbase;
return 1;
}
return 0;
}
#endif /* BX_SUPPORT_PCI */