Bochs/bochs/cpu/shift8.cc
2009-12-04 16:53:12 +00:00

366 lines
8.5 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: shift8.cc,v 1.42 2009-12-04 16:53:12 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2009 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROL_Eb(bxInstruction_c *i)
{
Bit8u op1_8, result_8;
unsigned count;
unsigned bit0, bit7;
if (i->b1() == 0xd2)
count = CL;
else // 0xc0 or 0xd0
count = i->Ib();
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_8 = read_RMW_virtual_byte(i->seg(), eaddr);
}
if ((count & 0x07) == 0) {
if (count & 0x18) {
bit0 = (op1_8 & 1);
bit7 = (op1_8 >> 7);
SET_FLAGS_OxxxxC(bit0 ^ bit7, bit0);
}
return;
}
count &= 0x7; // use only lowest 3 bits
result_8 = (op1_8 << count) | (op1_8 >> (8 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_RMW_virtual_byte(result_8);
}
/* set eflags:
* ROL count affects the following flags: C, O
*/
bit0 = (result_8 & 1);
bit7 = (result_8 >> 7);
SET_FLAGS_OxxxxC(bit0 ^ bit7, bit0);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ROR_Eb(bxInstruction_c *i)
{
Bit8u op1_8, result_8;
unsigned count;
unsigned bit6, bit7;
if (i->b1() == 0xd2)
count = CL;
else // 0xc0 or 0xd0
count = i->Ib();
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_8 = read_RMW_virtual_byte(i->seg(), eaddr);
}
if ((count & 0x07) == 0) {
if (count & 0x18) {
bit6 = (op1_8 >> 6) & 1;
bit7 = (op1_8 >> 7) & 1;
SET_FLAGS_OxxxxC(bit6 ^ bit7, bit7);
}
return;
}
count &= 0x7; /* use only bottom 3 bits */
result_8 = (op1_8 >> count) | (op1_8 << (8 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_RMW_virtual_byte(result_8);
}
/* set eflags:
* ROR count affects the following flags: C, O
*/
bit6 = (result_8 >> 6) & 1;
bit7 = (result_8 >> 7) & 1;
SET_FLAGS_OxxxxC(bit6 ^ bit7, bit7);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCL_Eb(bxInstruction_c *i)
{
Bit8u op1_8, result_8;
unsigned count;
unsigned of, cf;
if (i->b1() == 0xd2)
count = CL;
else // 0xc0 or 0xd0
count = i->Ib();
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_8 = read_RMW_virtual_byte(i->seg(), eaddr);
}
count = (count & 0x1f) % 9;
if (! count) return;
if (count==1) {
result_8 = (op1_8 << 1) | getB_CF();
}
else {
result_8 = (op1_8 << count) | (getB_CF() << (count - 1)) |
(op1_8 >> (9 - count));
}
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_RMW_virtual_byte(result_8);
}
cf = (op1_8 >> (8 - count)) & 0x01;
of = cf ^ (result_8 >> 7); // of = cf ^ result7
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::RCR_Eb(bxInstruction_c *i)
{
Bit8u op1_8, result_8;
unsigned count;
unsigned cf, of;
if (i->b1() == 0xd2)
count = CL;
else // 0xc0 or 0xd0
count = i->Ib();
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_8 = read_RMW_virtual_byte(i->seg(), eaddr);
}
count = (count & 0x1f) % 9;
if (! count) return;
result_8 = (op1_8 >> count) | (getB_CF() << (8 - count)) |
(op1_8 << (9 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_RMW_virtual_byte(result_8);
}
cf = (op1_8 >> (count - 1)) & 0x1;
of = (((result_8 << 1) ^ result_8) >> 7) & 0x1; // of = result6 ^ result7
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHL_Eb(bxInstruction_c *i)
{
Bit8u op1_8, result_8;
unsigned count;
unsigned of = 0, cf = 0;
if (i->b1() == 0xd2)
count = CL;
else // 0xc0 or 0xd0
count = i->Ib();
count &= 0x1f;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_8 = read_RMW_virtual_byte(i->seg(), eaddr);
}
if (!count) return;
if (count <= 8) {
result_8 = (op1_8 << count);
cf = (op1_8 >> (8 - count)) & 0x1;
of = cf ^ (result_8 >> 7);
}
else {
result_8 = 0;
}
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_RMW_virtual_byte(result_8);
}
SET_FLAGS_OSZAPC_LOGIC_8(result_8);
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SHR_Eb(bxInstruction_c *i)
{
Bit8u op1_8, result_8;
unsigned count;
unsigned cf, of;
if (i->b1() == 0xd2)
count = CL;
else // 0xc0 or 0xd0
count = i->Ib();
count &= 0x1f;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_8 = read_RMW_virtual_byte(i->seg(), eaddr);
}
if (!count) return;
result_8 = (op1_8 >> count);
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_RMW_virtual_byte(result_8);
}
cf = (op1_8 >> (count - 1)) & 0x1;
// note, that of == result7 if count == 1 and
// of == 0 if count >= 2
of = (((result_8 << 1) ^ result_8) >> 7) & 0x1;
SET_FLAGS_OSZAPC_LOGIC_8(result_8);
SET_FLAGS_OxxxxC(of, cf);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SAR_Eb(bxInstruction_c *i)
{
Bit8u op1_8, result_8;
unsigned count, cf;
if (i->b1() == 0xd2)
count = CL;
else // 0xc0 or 0xd0
count = i->Ib();
count &= 0x1f;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_8 = BX_READ_8BIT_REGx(i->rm(), i->extend8bitL());
}
else {
bx_address eaddr = BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op1_8 = read_RMW_virtual_byte(i->seg(), eaddr);
}
if (!count) return;
if (count < 8) {
if (op1_8 & 0x80) {
result_8 = (op1_8 >> count) | (0xff << (8 - count));
}
else {
result_8 = (op1_8 >> count);
}
cf = (op1_8 >> (count - 1)) & 0x1;
}
else {
if (op1_8 & 0x80) {
result_8 = 0xff;
}
else {
result_8 = 0;
}
cf = (result_8 & 0x1);
}
SET_FLAGS_OSZAPC_LOGIC_8(result_8);
/* signed overflow cannot happen in SAR instruction */
SET_FLAGS_OxxxxC(0, cf);
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
}
else {
write_RMW_virtual_byte(result_8);
}
}