Bochs/bochs/cpu/data_xfer32.cc
Stanislav Shwartsman 0730ff4c4a added a comment for future: some memory operations must be done atomically
these are include LOCKed RMW of course and also a lot of others
in the future it will be very hard to find all the cases that must be atomic so better to start marking them already now
try to mark every RMW case for atomicity requirements
no code changes, only comments
2023-11-17 23:18:43 +02:00

382 lines
9.8 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2018 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_EdIdM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
write_virtual_dword(i->seg(), eaddr, i->Id());
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_EdIdR(bxInstruction_c *i)
{
BX_WRITE_32BIT_REGZ(i->dst(), i->Id());
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV32_EdGdM(bxInstruction_c *i)
{
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i);
write_virtual_dword_32(i->seg(), eaddr, BX_READ_32BIT_REG(i->src()));
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV32S_EdGdM(bxInstruction_c *i)
{
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i);
stack_write_dword(eaddr, BX_READ_32BIT_REG(i->src()));
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_GdEdR(bxInstruction_c *i)
{
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV32_GdEdM(bxInstruction_c *i)
{
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i);
Bit32u val32 = read_virtual_dword_32(i->seg(), eaddr);
BX_WRITE_32BIT_REGZ(i->dst(), val32);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV32S_GdEdM(bxInstruction_c *i)
{
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR_32(i);
Bit32u val32 = stack_read_dword(eaddr);
BX_WRITE_32BIT_REGZ(i->dst(), val32);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LEA_GdM(bxInstruction_c *i)
{
Bit32u eaddr = (Bit32u) BX_CPU_RESOLVE_ADDR(i);
BX_WRITE_32BIT_REGZ(i->dst(), eaddr);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_EAXOd(bxInstruction_c *i)
{
RAX = read_virtual_dword_32(i->seg(), i->Id());
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_OdEAX(bxInstruction_c *i)
{
write_virtual_dword_32(i->seg(), i->Id(), EAX);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVZX_GdEbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit8u op2_8 = read_virtual_byte(i->seg(), eaddr);
/* zero extend byte op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->dst(), (Bit32u) op2_8);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVZX_GdEbR(bxInstruction_c *i)
{
Bit8u op2_8 = BX_READ_8BIT_REGx(i->src(), i->extend8bitL());
/* zero extend byte op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->dst(), (Bit32u) op2_8);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVZX_GdEwM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit16u op2_16 = read_virtual_word(i->seg(), eaddr);
/* zero extend word op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->dst(), (Bit32u) op2_16);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVZX_GdEwR(bxInstruction_c *i)
{
Bit16u op2_16 = BX_READ_16BIT_REG(i->src());
/* zero extend word op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->dst(), (Bit32u) op2_16);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSX_GdEbM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit8u op2_8 = read_virtual_byte(i->seg(), eaddr);
/* sign extend byte op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->dst(), (Bit8s) op2_8);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSX_GdEbR(bxInstruction_c *i)
{
Bit8u op2_8 = BX_READ_8BIT_REGx(i->src(), i->extend8bitL());
/* sign extend byte op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->dst(), (Bit8s) op2_8);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSX_GdEwM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit16u op2_16 = read_virtual_word(i->seg(), eaddr);
/* sign extend word op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->dst(), (Bit16s) op2_16);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSX_GdEwR(bxInstruction_c *i)
{
Bit16u op2_16 = BX_READ_16BIT_REG(i->src());
/* sign extend word op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->dst(), (Bit16s) op2_16);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::XCHG_EdGdM(bxInstruction_c *i)
{
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
Bit32u op1_32 = read_RMW_virtual_dword(i->seg(), eaddr); // always locked
write_RMW_linear_dword(BX_READ_32BIT_REG(i->src()));
BX_WRITE_32BIT_REGZ(i->src(), op1_32);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::XCHG_EdGdR(bxInstruction_c *i)
{
Bit32u op1_32 = BX_READ_32BIT_REG(i->dst());
Bit32u op2_32 = BX_READ_32BIT_REG(i->src());
BX_WRITE_32BIT_REGZ(i->src(), op1_32);
BX_WRITE_32BIT_REGZ(i->dst(), op2_32);
BX_NEXT_INSTR(i);
}
// Note: CMOV accesses a memory source operand (read), regardless
// of whether condition is true or not. Thus, exceptions may
// occur even if the MOV does not take place.
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVO_GdEdR(bxInstruction_c *i)
{
if (get_OF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVNO_GdEdR(bxInstruction_c *i)
{
if (!get_OF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVB_GdEdR(bxInstruction_c *i)
{
if (get_CF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVNB_GdEdR(bxInstruction_c *i)
{
if (!get_CF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVZ_GdEdR(bxInstruction_c *i)
{
if (get_ZF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVNZ_GdEdR(bxInstruction_c *i)
{
if (!get_ZF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVBE_GdEdR(bxInstruction_c *i)
{
if (get_CF() || get_ZF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVNBE_GdEdR(bxInstruction_c *i)
{
if (! (get_CF() || get_ZF()))
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVS_GdEdR(bxInstruction_c *i)
{
if (get_SF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVNS_GdEdR(bxInstruction_c *i)
{
if (!get_SF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVP_GdEdR(bxInstruction_c *i)
{
if (get_PF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVNP_GdEdR(bxInstruction_c *i)
{
if (!get_PF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVL_GdEdR(bxInstruction_c *i)
{
if (getB_SF() != getB_OF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVNL_GdEdR(bxInstruction_c *i)
{
if (getB_SF() == getB_OF())
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVLE_GdEdR(bxInstruction_c *i)
{
if (get_ZF() || (getB_SF() != getB_OF()))
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMOVNLE_GdEdR(bxInstruction_c *i)
{
if (! get_ZF() && (getB_SF() == getB_OF()))
BX_WRITE_32BIT_REGZ(i->dst(), BX_READ_32BIT_REG(i->src()));
BX_CLEAR_64BIT_HIGH(i->dst()); // always clear upper part of the register
BX_NEXT_INSTR(i);
}