892fa99c6f
- #GP when trying to set reserved bits of CR4_HI in 64-bit mode - #GP when trying to set reserved bits of EFER MSR - clear upper part of RSI/RDI when executing rep instructions with 32-bit asize even if no repeat iterations were executed (because of RCX=0 for example) - write SYSENTER_EIP_MSR and SYSENTER_ESP_MSR as 64-bit when x86_64 supported - set MSR_FMASK reset value - MSR_FMASK should be 32-bit only - check for fetch permissions when doing ITLB lookup - #GP when trying to write non-canonical address to MSR_CSTAR or MSR_LSTAR - correct repeat instructions timing - mark TSS busy in TR after it is loaded
152 lines
4.9 KiB
C
Executable File
152 lines
4.9 KiB
C
Executable File
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: crregs.h,v 1.10 2008-04-16 16:44:04 sshwarts Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (c) 2007 Stanislav Shwartsman
|
|
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#ifndef BX_CRREGS
|
|
#define BX_CRREGS
|
|
|
|
struct bx_cr0_t {
|
|
Bit32u val32; // 32bit value of register
|
|
|
|
// Accessors for all cr0 bitfields.
|
|
#define IMPLEMENT_CRREG_ACCESSORS(name,bitnum) \
|
|
BX_CPP_INLINE bx_bool get_##name () { \
|
|
return 1 & (val32 >> bitnum); \
|
|
} \
|
|
BX_CPP_INLINE void set_##name (Bit8u val) { \
|
|
val32 = (val32&~(1<<bitnum)) | (val ? (1<<bitnum) : 0); \
|
|
}
|
|
|
|
// CR0 notes:
|
|
// Each x86 level has its own quirks regarding how it handles
|
|
// reserved bits. I used DOS DEBUG.EXE in real mode on the
|
|
// following processors, tried to clear bits 1..30, then tried
|
|
// to set bits 1..30, to see how these bits are handled.
|
|
// I found the following:
|
|
//
|
|
// Processor try to clear bits 1..30 try to set bits 1..30
|
|
// 386 7FFFFFF0 7FFFFFFE
|
|
// 486DX2 00000010 6005003E
|
|
// Pentium 00000010 7FFFFFFE
|
|
// Pentium-II 00000010 6005003E
|
|
//
|
|
// My assumptions:
|
|
// All processors: bit 4 is hardwired to 1 (not true on all clones)
|
|
// 386: bits 5..30 of CR0 are also hardwired to 1
|
|
// Pentium: reserved bits retain value set using mov cr0, reg32
|
|
// 486DX2/Pentium-II: reserved bits are hardwired to 0
|
|
|
|
IMPLEMENT_CRREG_ACCESSORS(PE, 0);
|
|
IMPLEMENT_CRREG_ACCESSORS(MP, 1);
|
|
IMPLEMENT_CRREG_ACCESSORS(EM, 2);
|
|
IMPLEMENT_CRREG_ACCESSORS(TS, 3);
|
|
#if BX_CPU_LEVEL >= 4
|
|
IMPLEMENT_CRREG_ACCESSORS(ET, 4);
|
|
IMPLEMENT_CRREG_ACCESSORS(NE, 5);
|
|
IMPLEMENT_CRREG_ACCESSORS(AM, 18);
|
|
IMPLEMENT_CRREG_ACCESSORS(WP, 16);
|
|
IMPLEMENT_CRREG_ACCESSORS(CD, 29);
|
|
IMPLEMENT_CRREG_ACCESSORS(NW, 30);
|
|
#endif
|
|
IMPLEMENT_CRREG_ACCESSORS(PG, 31);
|
|
|
|
BX_CPP_INLINE Bit32u getRegister() { return val32; }
|
|
BX_CPP_INLINE void setRegister(Bit32u val) { val32 = val; }
|
|
};
|
|
|
|
#if BX_CPU_LEVEL >= 4
|
|
struct bx_cr4_t {
|
|
Bit32u val32; // 32bit value of register
|
|
|
|
#if BX_SUPPORT_VME
|
|
IMPLEMENT_CRREG_ACCESSORS(VME, 0);
|
|
IMPLEMENT_CRREG_ACCESSORS(PVI, 1);
|
|
#endif
|
|
IMPLEMENT_CRREG_ACCESSORS(TSD, 2);
|
|
IMPLEMENT_CRREG_ACCESSORS(DE, 3);
|
|
IMPLEMENT_CRREG_ACCESSORS(PSE, 4);
|
|
IMPLEMENT_CRREG_ACCESSORS(PAE, 5);
|
|
IMPLEMENT_CRREG_ACCESSORS(MCE, 6);
|
|
IMPLEMENT_CRREG_ACCESSORS(PGE, 7);
|
|
IMPLEMENT_CRREG_ACCESSORS(PCE, 8);
|
|
IMPLEMENT_CRREG_ACCESSORS(OSFXSR, 9);
|
|
IMPLEMENT_CRREG_ACCESSORS(OSXMMEXCPT, 10);
|
|
#if BX_SUPPORT_XSAVE
|
|
IMPLEMENT_CRREG_ACCESSORS(OSXSAVE, 18);
|
|
#endif
|
|
|
|
BX_CPP_INLINE Bit32u getRegister() { return val32; }
|
|
BX_CPP_INLINE void setRegister(Bit32u val) { val32 = val; }
|
|
};
|
|
#endif // #if BX_CPU_LEVEL >= 4
|
|
|
|
#if BX_SUPPORT_VME
|
|
#define CR4_VME_ENABLED (BX_CPU_THIS_PTR cr4.get_VME())
|
|
#else
|
|
#define CR4_VME_ENABLED (0)
|
|
#endif
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
|
|
struct bx_efer_t {
|
|
Bit32u val32; // 32bit value of register
|
|
|
|
IMPLEMENT_CRREG_ACCESSORS(SCE, 0);
|
|
IMPLEMENT_CRREG_ACCESSORS(LME, 8);
|
|
IMPLEMENT_CRREG_ACCESSORS(LMA, 10);
|
|
IMPLEMENT_CRREG_ACCESSORS(NXE, 11);
|
|
IMPLEMENT_CRREG_ACCESSORS(FFXSR, 14);
|
|
|
|
BX_CPP_INLINE Bit32u getRegister() { return val32; }
|
|
BX_CPP_INLINE void setRegister(Bit32u val) { val32 = val; }
|
|
};
|
|
|
|
#define BX_EFER_LMA_MASK (1<<10)
|
|
#define BX_EFER_SUPPORTED_BITS BX_CONST64(0x00004d01)
|
|
|
|
#endif
|
|
|
|
#if BX_SUPPORT_XSAVE
|
|
struct xcr0_t {
|
|
Bit32u val32; // 32bit value of register
|
|
|
|
#define BX_XCR0_SUPPORTED_BITS 0x3
|
|
|
|
#define BX_XCR0_FPU_BIT 0
|
|
#define BX_XCR0_FPU_MASK (1<<BX_XCR0_FPU_BIT)
|
|
#define BX_XCR0_SSE_BIT 1
|
|
#define BX_XCR0_SSE_MASK (1<<BX_XCR0_SSE_BIT)
|
|
|
|
IMPLEMENT_CRREG_ACCESSORS(FPU, BX_XCR0_FPU_BIT);
|
|
#if BX_SUPPORT_SSE
|
|
IMPLEMENT_CRREG_ACCESSORS(SSE, BX_XCR0_SSE_BIT);
|
|
#endif
|
|
|
|
BX_CPP_INLINE Bit32u getRegister() { return val32; }
|
|
BX_CPP_INLINE void setRegister(Bit32u val) { val32 = val; }
|
|
};
|
|
#endif
|
|
|
|
#undef IMPLEMENT_CRREG_ACCESSORS
|
|
|
|
#endif
|