bdb89cd364
To see the commit logs for this use either cvsweb or cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files. In general this provides a generic interface for logging. logfunctions:: is a class that is inherited by some classes, and also . allocated as a standalone global called 'genlog'. All logging uses . one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this . class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros . respectively. . . An example usage: . BX_INFO(("Hello, World!\n")); iofunctions:: is a class that is allocated once by default, and assigned as the iofunction of each logfunctions instance. It is this class that maintains the file descriptor and other output related code, at this point using vfprintf(). At some future point, someone may choose to write a gui 'console' for bochs to which messages would be redirected simply by assigning a different iofunction class to the various logfunctions objects. More cleanup is coming, but this works for now. If you want to see alot of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1. Comments, bugs, flames, to me: todd@fries.net
1248 lines
26 KiB
C++
1248 lines
26 KiB
C++
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
|
|
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
|
|
|
|
void
|
|
BX_CPU_C::SETO_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETO: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_OF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNO_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNO: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_OF()==0)
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETB_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETB: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_CF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNB_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNB: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_CF()==0)
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETZ_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETZ: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_ZF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNZ_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNZ: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_ZF()==0)
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETBE_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETBE: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_CF() || get_ZF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNBE_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNBE: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if ((get_CF()==0) && (get_ZF()==0))
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETS_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETS: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_SF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNS_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNL: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_SF()==0)
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETP_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETP: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_PF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNP_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNP: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_PF() == 0)
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETL_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETL: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_SF() != get_OF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNL_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNL: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_SF() == get_OF())
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETLE_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETLE: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if (get_ZF() || (get_SF()!=get_OF()))
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::SETNLE_Eb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("SETNLE: not available on < 386\n"));
|
|
#else
|
|
Bit8u result_8;
|
|
|
|
|
|
if ((get_ZF()==0) && (get_SF()==get_OF()))
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_8BIT_REG(i->rm, result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg, i->rm_addr, &result_8);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::BSF_GvEv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BSF_GvEv(): not supported on < 386\n"));
|
|
#else
|
|
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32;
|
|
|
|
/* op2_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op2_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
|
|
}
|
|
|
|
if (op2_32 == 0) {
|
|
set_ZF(1);
|
|
/* op1_32 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_32 = 0;
|
|
while ( (op2_32 & 0x01) == 0 ) {
|
|
op1_32++;
|
|
op2_32 >>= 1;
|
|
}
|
|
set_ZF(0);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_32BIT_REG(i->nnn, op1_32);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16;
|
|
|
|
/* op2_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
|
|
if (op2_16 == 0) {
|
|
set_ZF(1);
|
|
/* op1_16 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_16 = 0;
|
|
while ( (op2_16 & 0x01) == 0 ) {
|
|
op1_16++;
|
|
op2_16 >>= 1;
|
|
}
|
|
set_ZF(0);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_16BIT_REG(i->nnn, op1_16);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BSR_GvEv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BSR_GvEv(): not supported on < 386\n"));
|
|
#else
|
|
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32;
|
|
|
|
/* op2_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op2_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
|
|
}
|
|
|
|
if (op2_32 == 0) {
|
|
set_ZF(1);
|
|
/* op1_32 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_32 = 31;
|
|
while ( (op2_32 & 0x80000000) == 0 ) {
|
|
op1_32--;
|
|
op2_32 <<= 1;
|
|
}
|
|
set_ZF(0);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_32BIT_REG(i->nnn, op1_32);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16;
|
|
|
|
/* op2_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, i->rm_addr, &op2_16);
|
|
}
|
|
|
|
if (op2_16 == 0) {
|
|
set_ZF(1);
|
|
/* op1_16 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_16 = 15;
|
|
while ( (op2_16 & 0x8000) == 0 ) {
|
|
op1_16--;
|
|
op2_16 <<= 1;
|
|
}
|
|
set_ZF(0);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_16BIT_REG(i->nnn, op1_16);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::BSWAP_EAX(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u eax, b0, b1, b2, b3;
|
|
|
|
eax = EAX;
|
|
b0 = eax & 0xff; eax >>= 8;
|
|
b1 = eax & 0xff; eax >>= 8;
|
|
b2 = eax & 0xff; eax >>= 8;
|
|
b3 = eax;
|
|
|
|
EAX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_EAX: not implemented CPU <= 3\n"));
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BSWAP_ECX(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u ecx, b0, b1, b2, b3;
|
|
|
|
ecx = ECX;
|
|
b0 = ecx & 0xff; ecx >>= 8;
|
|
b1 = ecx & 0xff; ecx >>= 8;
|
|
b2 = ecx & 0xff; ecx >>= 8;
|
|
b3 = ecx;
|
|
|
|
ECX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_ECX: not implemented CPU <= 3\n"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_EDX(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u edx, b0, b1, b2, b3;
|
|
|
|
edx = EDX;
|
|
b0 = edx & 0xff; edx >>= 8;
|
|
b1 = edx & 0xff; edx >>= 8;
|
|
b2 = edx & 0xff; edx >>= 8;
|
|
b3 = edx;
|
|
|
|
EDX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_EDX: not implemented CPU <= 3\n"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_EBX(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u ebx, b0, b1, b2, b3;
|
|
|
|
ebx = EBX;
|
|
b0 = ebx & 0xff; ebx >>= 8;
|
|
b1 = ebx & 0xff; ebx >>= 8;
|
|
b2 = ebx & 0xff; ebx >>= 8;
|
|
b3 = ebx;
|
|
|
|
EBX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_EBX: not implemented CPU <= 3\n"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_ESP(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u esp, b0, b1, b2, b3;
|
|
|
|
esp = ESP;
|
|
b0 = esp & 0xff; esp >>= 8;
|
|
b1 = esp & 0xff; esp >>= 8;
|
|
b2 = esp & 0xff; esp >>= 8;
|
|
b3 = esp;
|
|
|
|
ESP = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_ESP: not implemented CPU <= 3\n"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_EBP(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u ebp, b0, b1, b2, b3;
|
|
|
|
ebp = EBP;
|
|
b0 = ebp & 0xff; ebp >>= 8;
|
|
b1 = ebp & 0xff; ebp >>= 8;
|
|
b2 = ebp & 0xff; ebp >>= 8;
|
|
b3 = ebp;
|
|
|
|
EBP = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_EBP: not implemented CPU <= 3\n"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_ESI(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u esi, b0, b1, b2, b3;
|
|
|
|
esi = ESI;
|
|
b0 = esi & 0xff; esi >>= 8;
|
|
b1 = esi & 0xff; esi >>= 8;
|
|
b2 = esi & 0xff; esi >>= 8;
|
|
b3 = esi;
|
|
|
|
ESI = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_ESI: not implemented CPU <= 3\n"));
|
|
#endif
|
|
}
|
|
void
|
|
BX_CPU_C::BSWAP_EDI(BxInstruction_t *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
|
|
Bit32u edi, b0, b1, b2, b3;
|
|
|
|
edi = EDI;
|
|
b0 = edi & 0xff; edi >>= 8;
|
|
b1 = edi & 0xff; edi >>= 8;
|
|
b2 = edi & 0xff; edi >>= 8;
|
|
b3 = edi;
|
|
|
|
EDI = (b0<<24) | (b1<<16) | (b2<<8) | b3;
|
|
#else
|
|
BX_PANIC(("BSWAP_EDI: not implemented CPU <= 3\n"));
|
|
#endif
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::BT_EvGv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BT_EvGv: not available on <386\n"));
|
|
#else
|
|
Bit32u op1_addr;
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32, index;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_32 is a register, op2_addr is an index of a register */
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn);
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
op2_32 &= 0x1f;
|
|
set_CF((op1_32 >> op2_32) & 0x01);
|
|
return;
|
|
}
|
|
|
|
index = op2_32 & 0x1f;
|
|
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
|
|
op1_addr = i->rm_addr + 4 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg, op1_addr, &op1_32);
|
|
|
|
set_CF((op1_32 >> index) & 0x01);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16, index;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_16 is a register, op2_addr is an index of a register */
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn);
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
op2_16 &= 0x0f;
|
|
set_CF((op1_16 >> op2_16) & 0x01);
|
|
return;
|
|
}
|
|
|
|
index = op2_16 & 0x0f;
|
|
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
|
|
op1_addr = i->rm_addr + 2 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, op1_addr, &op1_16);
|
|
|
|
set_CF((op1_16 >> index) & 0x01);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTS_EvGv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTS_EvGv: not available on <386\n"));
|
|
#else
|
|
Bit32u op1_addr;
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32, bit_i, index;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_32 is a register, op2_addr is an index of a register */
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn);
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
op2_32 &= 0x1f;
|
|
set_CF((op1_32 >> op2_32) & 0x01);
|
|
op1_32 |= (((Bit32u) 1) << op2_32);
|
|
|
|
/* now write diff back to destination */
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
return;
|
|
}
|
|
|
|
index = op2_32 & 0x1f;
|
|
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
|
|
op1_addr = i->rm_addr + 4 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg, op1_addr, &op1_32);
|
|
|
|
bit_i = (op1_32 >> index) & 0x01;
|
|
op1_32 |= (((Bit32u) 1) << index);
|
|
|
|
write_RMW_virtual_dword(op1_32);
|
|
|
|
set_CF(bit_i);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16, bit_i, index;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_16 is a register, op2_addr is an index of a register */
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn);
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
op2_16 &= 0x0f;
|
|
set_CF((op1_16 >> op2_16) & 0x01);
|
|
op1_16 |= (((Bit16u) 1) << op2_16);
|
|
|
|
/* now write diff back to destination */
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
return;
|
|
}
|
|
|
|
index = op2_16 & 0x0f;
|
|
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
|
|
op1_addr = i->rm_addr + 2 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, op1_addr, &op1_16);
|
|
|
|
bit_i = (op1_16 >> index) & 0x01;
|
|
op1_16 |= (((Bit16u) 1) << index);
|
|
|
|
write_RMW_virtual_word(op1_16);
|
|
|
|
set_CF(bit_i);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTR_EvGv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTR_EvGv: not available on <386\n"));
|
|
#else
|
|
Bit32u op1_addr;
|
|
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32, index, temp_cf;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_32 is a register, op2_addr is an index of a register */
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn);
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
op2_32 &= 0x1f;
|
|
set_CF((op1_32 >> op2_32) & 0x01);
|
|
op1_32 &= ~(((Bit32u) 1) << op2_32);
|
|
|
|
/* now write diff back to destination */
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
return;
|
|
}
|
|
|
|
index = op2_32 & 0x1f;
|
|
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
|
|
op1_addr = i->rm_addr + 4 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg, op1_addr, &op1_32);
|
|
|
|
temp_cf = (op1_32 >> index) & 0x01;
|
|
op1_32 &= ~(((Bit32u) 1) << index);
|
|
|
|
/* now write back to destination */
|
|
write_RMW_virtual_dword(op1_32);
|
|
|
|
set_CF(temp_cf);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16, index, temp_cf;
|
|
Bit32s displacement32;
|
|
|
|
/* op2_16 is a register, op2_addr is an index of a register */
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn);
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
op2_16 &= 0x0f;
|
|
set_CF((op1_16 >> op2_16) & 0x01);
|
|
op1_16 &= ~(((Bit16u) 1) << op2_16);
|
|
|
|
/* now write diff back to destination */
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
return;
|
|
}
|
|
|
|
index = op2_16 & 0x0f;
|
|
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
|
|
op1_addr = i->rm_addr + 2 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, op1_addr, &op1_16);
|
|
|
|
temp_cf = (op1_16 >> index) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << index);
|
|
|
|
/* now write back to destination */
|
|
write_RMW_virtual_word(op1_16);
|
|
|
|
set_CF(temp_cf);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTC_EvGv(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTC_EvGv: not available on <386\n"));
|
|
#else
|
|
Bit32u op1_addr;
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32, index_32, temp_CF;
|
|
Bit32s displacement32;
|
|
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn);
|
|
index_32 = op2_32 & 0x1f;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
op1_addr = 0; // keep compiler happy
|
|
}
|
|
else {
|
|
displacement32 = ((Bit32s) (op2_32 & 0xffffffe0)) / 32;
|
|
op1_addr = i->rm_addr + 4 * displacement32;
|
|
read_RMW_virtual_dword(i->seg, op1_addr, &op1_32);
|
|
}
|
|
|
|
temp_CF = (op1_32 >> index_32) & 0x01;
|
|
op1_32 &= ~(((Bit32u) 1) << index_32); /* clear out bit */
|
|
op1_32 |= (((Bit32u) !temp_CF) << index_32); /* set to complement */
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
}
|
|
else {
|
|
write_RMW_virtual_dword(op1_32);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, op2_16, index_16, temp_CF;
|
|
Bit16s displacement16;
|
|
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn);
|
|
index_16 = op2_16 & 0x0f;
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
op1_addr = 0; // keep compiler happy
|
|
}
|
|
else {
|
|
displacement16 = ((Bit16s) (op2_16 & 0xfff0)) / 16;
|
|
op1_addr = i->rm_addr + 2 * displacement16;
|
|
read_RMW_virtual_word(i->seg, op1_addr, &op1_16);
|
|
}
|
|
|
|
temp_CF = (op1_16 >> index_16) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << index_16); /* clear out bit */
|
|
op1_16 |= (((Bit16u) !temp_CF) << index_16); /* set to complement */
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
}
|
|
else {
|
|
write_RMW_virtual_word(op1_16);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BT_EvIb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BT_EvIb: not available on <386\n"));
|
|
#else
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32;
|
|
Bit8u op2_8;
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 32;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg, i->rm_addr, &op1_32);
|
|
}
|
|
|
|
set_CF((op1_32 >> op2_8) & 0x01);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16;
|
|
Bit8u op2_8;
|
|
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 16;
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg, i->rm_addr, &op1_16);
|
|
}
|
|
|
|
set_CF((op1_16 >> op2_8) & 0x01);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTS_EvIb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTS_EvIb: not available on <386\n"));
|
|
#else
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 32;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
|
|
}
|
|
|
|
temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
op1_32 |= (((Bit32u) 1) << op2_8);
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
}
|
|
else {
|
|
write_RMW_virtual_dword(op1_32);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 16;
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16);
|
|
}
|
|
|
|
temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 |= (((Bit16u) 1) << op2_8);
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
}
|
|
else {
|
|
write_RMW_virtual_word(op1_16);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTC_EvIb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTC_EvIb: not available on <386\n"));
|
|
#else
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 32;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
|
|
}
|
|
|
|
temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
|
|
op1_32 &= ~(((Bit32u) 1) << op2_8); /* clear out bit */
|
|
op1_32 |= (((Bit32u) !temp_CF) << op2_8); /* set to complement */
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
}
|
|
else {
|
|
write_RMW_virtual_dword(op1_32);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 16;
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16);
|
|
}
|
|
|
|
temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << op2_8); /* clear out bit */
|
|
op1_16 |= (((Bit16u) !temp_CF) << op2_8); /* set to complement */
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
}
|
|
else {
|
|
write_RMW_virtual_word(op1_16);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::BTR_EvIb(BxInstruction_t *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 3
|
|
BX_PANIC(("BTR_EvIb: not available on <386\n"));
|
|
#else
|
|
|
|
if (i->os_32) { /* 32 bit operand size mode */
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 32;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
|
|
}
|
|
|
|
temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
op1_32 &= ~(((Bit32u) 1) << op2_8);
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_32BIT_REG(i->rm, op1_32);
|
|
}
|
|
else {
|
|
write_RMW_virtual_dword(op1_32);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
else { /* 16 bit operand size mode */
|
|
Bit16u op1_16, temp_CF;
|
|
Bit8u op2_8;
|
|
|
|
|
|
op2_8 = i->Ib;
|
|
op2_8 %= 16;
|
|
|
|
/* op1_16 is a register or memory reference */
|
|
if (i->mod == 0xc0) {
|
|
op1_16 = BX_READ_16BIT_REG(i->rm);
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16);
|
|
}
|
|
|
|
temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << op2_8);
|
|
|
|
/* now write diff back to destination */
|
|
if (i->mod == 0xc0) {
|
|
BX_WRITE_16BIT_REG(i->rm, op1_16);
|
|
}
|
|
else {
|
|
write_RMW_virtual_word(op1_16);
|
|
}
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
}
|