Bochs/bochs/cpu/bit.cc
Todd T.Fries bdb89cd364 merge in BRANCH-io-cleanup.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.

In general this provides a generic interface for logging.

logfunctions:: is a class that is inherited by some classes, and also
.   allocated as a standalone global called 'genlog'.  All logging uses
.   one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
.   class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
.   respectively.
.
.   An example usage:
.     BX_INFO(("Hello, World!\n"));

iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance.  It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf().  At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.

More cleanup is coming, but this works for now.  If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.

Comments, bugs, flames, to me: todd@fries.net
2001-05-15 14:49:57 +00:00

1248 lines
26 KiB
C++

// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::SETO_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETO: not available on < 386\n"));
#else
Bit8u result_8;
if (get_OF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETNO_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNO: not available on < 386\n"));
#else
Bit8u result_8;
if (get_OF()==0)
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETB_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETB: not available on < 386\n"));
#else
Bit8u result_8;
if (get_CF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETNB_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNB: not available on < 386\n"));
#else
Bit8u result_8;
if (get_CF()==0)
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETZ_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETZ: not available on < 386\n"));
#else
Bit8u result_8;
if (get_ZF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETNZ_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNZ: not available on < 386\n"));
#else
Bit8u result_8;
if (get_ZF()==0)
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETBE_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETBE: not available on < 386\n"));
#else
Bit8u result_8;
if (get_CF() || get_ZF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETNBE_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNBE: not available on < 386\n"));
#else
Bit8u result_8;
if ((get_CF()==0) && (get_ZF()==0))
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETS_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETS: not available on < 386\n"));
#else
Bit8u result_8;
if (get_SF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETNS_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNL: not available on < 386\n"));
#else
Bit8u result_8;
if (get_SF()==0)
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETP_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETP: not available on < 386\n"));
#else
Bit8u result_8;
if (get_PF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETNP_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNP: not available on < 386\n"));
#else
Bit8u result_8;
if (get_PF() == 0)
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETL_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETL: not available on < 386\n"));
#else
Bit8u result_8;
if (get_SF() != get_OF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETNL_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNL: not available on < 386\n"));
#else
Bit8u result_8;
if (get_SF() == get_OF())
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETLE_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETLE: not available on < 386\n"));
#else
Bit8u result_8;
if (get_ZF() || (get_SF()!=get_OF()))
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::SETNLE_Eb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("SETNLE: not available on < 386\n"));
#else
Bit8u result_8;
if ((get_ZF()==0) && (get_SF()==get_OF()))
result_8 = 1;
else
result_8 = 0;
/* now write result back to destination */
if (i->mod == 0xc0) {
BX_WRITE_8BIT_REG(i->rm, result_8);
}
else {
write_virtual_byte(i->seg, i->rm_addr, &result_8);
}
#endif
}
void
BX_CPU_C::BSF_GvEv(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BSF_GvEv(): not supported on < 386\n"));
#else
if (i->os_32) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32;
/* op2_32 is a register or memory reference */
if (i->mod == 0xc0) {
op2_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
}
if (op2_32 == 0) {
set_ZF(1);
/* op1_32 undefined */
return;
}
op1_32 = 0;
while ( (op2_32 & 0x01) == 0 ) {
op1_32++;
op2_32 >>= 1;
}
set_ZF(0);
/* now write result back to destination */
BX_WRITE_32BIT_REG(i->nnn, op1_32);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16;
/* op2_16 is a register or memory reference */
if (i->mod == 0xc0) {
op2_16 = BX_READ_16BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg, i->rm_addr, &op2_16);
}
if (op2_16 == 0) {
set_ZF(1);
/* op1_16 undefined */
return;
}
op1_16 = 0;
while ( (op2_16 & 0x01) == 0 ) {
op1_16++;
op2_16 >>= 1;
}
set_ZF(0);
/* now write result back to destination */
BX_WRITE_16BIT_REG(i->nnn, op1_16);
}
#endif
}
void
BX_CPU_C::BSR_GvEv(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BSR_GvEv(): not supported on < 386\n"));
#else
if (i->os_32) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32;
/* op2_32 is a register or memory reference */
if (i->mod == 0xc0) {
op2_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op2_32);
}
if (op2_32 == 0) {
set_ZF(1);
/* op1_32 undefined */
return;
}
op1_32 = 31;
while ( (op2_32 & 0x80000000) == 0 ) {
op1_32--;
op2_32 <<= 1;
}
set_ZF(0);
/* now write result back to destination */
BX_WRITE_32BIT_REG(i->nnn, op1_32);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16;
/* op2_16 is a register or memory reference */
if (i->mod == 0xc0) {
op2_16 = BX_READ_16BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg, i->rm_addr, &op2_16);
}
if (op2_16 == 0) {
set_ZF(1);
/* op1_16 undefined */
return;
}
op1_16 = 15;
while ( (op2_16 & 0x8000) == 0 ) {
op1_16--;
op2_16 <<= 1;
}
set_ZF(0);
/* now write result back to destination */
BX_WRITE_16BIT_REG(i->nnn, op1_16);
}
#endif
}
void
BX_CPU_C::BSWAP_EAX(BxInstruction_t *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u eax, b0, b1, b2, b3;
eax = EAX;
b0 = eax & 0xff; eax >>= 8;
b1 = eax & 0xff; eax >>= 8;
b2 = eax & 0xff; eax >>= 8;
b3 = eax;
EAX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_EAX: not implemented CPU <= 3\n"));
#endif
}
void
BX_CPU_C::BSWAP_ECX(BxInstruction_t *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u ecx, b0, b1, b2, b3;
ecx = ECX;
b0 = ecx & 0xff; ecx >>= 8;
b1 = ecx & 0xff; ecx >>= 8;
b2 = ecx & 0xff; ecx >>= 8;
b3 = ecx;
ECX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_ECX: not implemented CPU <= 3\n"));
#endif
}
void
BX_CPU_C::BSWAP_EDX(BxInstruction_t *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u edx, b0, b1, b2, b3;
edx = EDX;
b0 = edx & 0xff; edx >>= 8;
b1 = edx & 0xff; edx >>= 8;
b2 = edx & 0xff; edx >>= 8;
b3 = edx;
EDX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_EDX: not implemented CPU <= 3\n"));
#endif
}
void
BX_CPU_C::BSWAP_EBX(BxInstruction_t *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u ebx, b0, b1, b2, b3;
ebx = EBX;
b0 = ebx & 0xff; ebx >>= 8;
b1 = ebx & 0xff; ebx >>= 8;
b2 = ebx & 0xff; ebx >>= 8;
b3 = ebx;
EBX = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_EBX: not implemented CPU <= 3\n"));
#endif
}
void
BX_CPU_C::BSWAP_ESP(BxInstruction_t *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u esp, b0, b1, b2, b3;
esp = ESP;
b0 = esp & 0xff; esp >>= 8;
b1 = esp & 0xff; esp >>= 8;
b2 = esp & 0xff; esp >>= 8;
b3 = esp;
ESP = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_ESP: not implemented CPU <= 3\n"));
#endif
}
void
BX_CPU_C::BSWAP_EBP(BxInstruction_t *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u ebp, b0, b1, b2, b3;
ebp = EBP;
b0 = ebp & 0xff; ebp >>= 8;
b1 = ebp & 0xff; ebp >>= 8;
b2 = ebp & 0xff; ebp >>= 8;
b3 = ebp;
EBP = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_EBP: not implemented CPU <= 3\n"));
#endif
}
void
BX_CPU_C::BSWAP_ESI(BxInstruction_t *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u esi, b0, b1, b2, b3;
esi = ESI;
b0 = esi & 0xff; esi >>= 8;
b1 = esi & 0xff; esi >>= 8;
b2 = esi & 0xff; esi >>= 8;
b3 = esi;
ESI = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_ESI: not implemented CPU <= 3\n"));
#endif
}
void
BX_CPU_C::BSWAP_EDI(BxInstruction_t *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit32u edi, b0, b1, b2, b3;
edi = EDI;
b0 = edi & 0xff; edi >>= 8;
b1 = edi & 0xff; edi >>= 8;
b2 = edi & 0xff; edi >>= 8;
b3 = edi;
EDI = (b0<<24) | (b1<<16) | (b2<<8) | b3;
#else
BX_PANIC(("BSWAP_EDI: not implemented CPU <= 3\n"));
#endif
}
void
BX_CPU_C::BT_EvGv(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BT_EvGv: not available on <386\n"));
#else
Bit32u op1_addr;
if (i->os_32) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, index;
Bit32s displacement32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn);
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
return;
}
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = i->rm_addr + 4 * displacement32;
/* pointer, segment address pair */
read_virtual_dword(i->seg, op1_addr, &op1_32);
set_CF((op1_32 >> index) & 0x01);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16, index;
Bit32s displacement32;
/* op2_16 is a register, op2_addr is an index of a register */
op2_16 = BX_READ_16BIT_REG(i->nnn);
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
op1_16 = BX_READ_16BIT_REG(i->rm);
op2_16 &= 0x0f;
set_CF((op1_16 >> op2_16) & 0x01);
return;
}
index = op2_16 & 0x0f;
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
op1_addr = i->rm_addr + 2 * displacement32;
/* pointer, segment address pair */
read_virtual_word(i->seg, op1_addr, &op1_16);
set_CF((op1_16 >> index) & 0x01);
}
#endif
}
void
BX_CPU_C::BTS_EvGv(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTS_EvGv: not available on <386\n"));
#else
Bit32u op1_addr;
if (i->os_32) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, bit_i, index;
Bit32s displacement32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn);
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
op1_32 |= (((Bit32u) 1) << op2_32);
/* now write diff back to destination */
BX_WRITE_32BIT_REG(i->rm, op1_32);
return;
}
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = i->rm_addr + 4 * displacement32;
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, op1_addr, &op1_32);
bit_i = (op1_32 >> index) & 0x01;
op1_32 |= (((Bit32u) 1) << index);
write_RMW_virtual_dword(op1_32);
set_CF(bit_i);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16, bit_i, index;
Bit32s displacement32;
/* op2_16 is a register, op2_addr is an index of a register */
op2_16 = BX_READ_16BIT_REG(i->nnn);
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
op1_16 = BX_READ_16BIT_REG(i->rm);
op2_16 &= 0x0f;
set_CF((op1_16 >> op2_16) & 0x01);
op1_16 |= (((Bit16u) 1) << op2_16);
/* now write diff back to destination */
BX_WRITE_16BIT_REG(i->rm, op1_16);
return;
}
index = op2_16 & 0x0f;
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
op1_addr = i->rm_addr + 2 * displacement32;
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg, op1_addr, &op1_16);
bit_i = (op1_16 >> index) & 0x01;
op1_16 |= (((Bit16u) 1) << index);
write_RMW_virtual_word(op1_16);
set_CF(bit_i);
}
#endif
}
void
BX_CPU_C::BTR_EvGv(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTR_EvGv: not available on <386\n"));
#else
Bit32u op1_addr;
if (i->os_32) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, index, temp_cf;
Bit32s displacement32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn);
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
op2_32 &= 0x1f;
set_CF((op1_32 >> op2_32) & 0x01);
op1_32 &= ~(((Bit32u) 1) << op2_32);
/* now write diff back to destination */
BX_WRITE_32BIT_REG(i->rm, op1_32);
return;
}
index = op2_32 & 0x1f;
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
op1_addr = i->rm_addr + 4 * displacement32;
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, op1_addr, &op1_32);
temp_cf = (op1_32 >> index) & 0x01;
op1_32 &= ~(((Bit32u) 1) << index);
/* now write back to destination */
write_RMW_virtual_dword(op1_32);
set_CF(temp_cf);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16, index, temp_cf;
Bit32s displacement32;
/* op2_16 is a register, op2_addr is an index of a register */
op2_16 = BX_READ_16BIT_REG(i->nnn);
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
op1_16 = BX_READ_16BIT_REG(i->rm);
op2_16 &= 0x0f;
set_CF((op1_16 >> op2_16) & 0x01);
op1_16 &= ~(((Bit16u) 1) << op2_16);
/* now write diff back to destination */
BX_WRITE_16BIT_REG(i->rm, op1_16);
return;
}
index = op2_16 & 0x0f;
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
op1_addr = i->rm_addr + 2 * displacement32;
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg, op1_addr, &op1_16);
temp_cf = (op1_16 >> index) & 0x01;
op1_16 &= ~(((Bit16u) 1) << index);
/* now write back to destination */
write_RMW_virtual_word(op1_16);
set_CF(temp_cf);
}
#endif
}
void
BX_CPU_C::BTC_EvGv(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTC_EvGv: not available on <386\n"));
#else
Bit32u op1_addr;
if (i->os_32) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, op2_32, index_32, temp_CF;
Bit32s displacement32;
op2_32 = BX_READ_32BIT_REG(i->nnn);
index_32 = op2_32 & 0x1f;
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
op1_addr = 0; // keep compiler happy
}
else {
displacement32 = ((Bit32s) (op2_32 & 0xffffffe0)) / 32;
op1_addr = i->rm_addr + 4 * displacement32;
read_RMW_virtual_dword(i->seg, op1_addr, &op1_32);
}
temp_CF = (op1_32 >> index_32) & 0x01;
op1_32 &= ~(((Bit32u) 1) << index_32); /* clear out bit */
op1_32 |= (((Bit32u) !temp_CF) << index_32); /* set to complement */
/* now write diff back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, op1_32);
}
else {
write_RMW_virtual_dword(op1_32);
}
set_CF(temp_CF);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, op2_16, index_16, temp_CF;
Bit16s displacement16;
op2_16 = BX_READ_16BIT_REG(i->nnn);
index_16 = op2_16 & 0x0f;
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
op1_16 = BX_READ_16BIT_REG(i->rm);
op1_addr = 0; // keep compiler happy
}
else {
displacement16 = ((Bit16s) (op2_16 & 0xfff0)) / 16;
op1_addr = i->rm_addr + 2 * displacement16;
read_RMW_virtual_word(i->seg, op1_addr, &op1_16);
}
temp_CF = (op1_16 >> index_16) & 0x01;
op1_16 &= ~(((Bit16u) 1) << index_16); /* clear out bit */
op1_16 |= (((Bit16u) !temp_CF) << index_16); /* set to complement */
/* now write diff back to destination */
if (i->mod == 0xc0) {
BX_WRITE_16BIT_REG(i->rm, op1_16);
}
else {
write_RMW_virtual_word(op1_16);
}
set_CF(temp_CF);
}
#endif
}
void
BX_CPU_C::BT_EvIb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BT_EvIb: not available on <386\n"));
#else
if (i->os_32) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32;
Bit8u op2_8;
op2_8 = i->Ib;
op2_8 %= 32;
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
set_CF((op1_32 >> op2_8) & 0x01);
}
else { /* 16 bit operand size mode */
Bit16u op1_16;
Bit8u op2_8;
op2_8 = i->Ib;
op2_8 %= 16;
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
op1_16 = BX_READ_16BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg, i->rm_addr, &op1_16);
}
set_CF((op1_16 >> op2_8) & 0x01);
}
#endif
}
void
BX_CPU_C::BTS_EvIb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTS_EvIb: not available on <386\n"));
#else
if (i->os_32) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib;
op2_8 %= 32;
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 |= (((Bit32u) 1) << op2_8);
/* now write diff back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, op1_32);
}
else {
write_RMW_virtual_dword(op1_32);
}
set_CF(temp_CF);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib;
op2_8 %= 16;
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
op1_16 = BX_READ_16BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16);
}
temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 |= (((Bit16u) 1) << op2_8);
/* now write diff back to destination */
if (i->mod == 0xc0) {
BX_WRITE_16BIT_REG(i->rm, op1_16);
}
else {
write_RMW_virtual_word(op1_16);
}
set_CF(temp_CF);
}
#endif
}
void
BX_CPU_C::BTC_EvIb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTC_EvIb: not available on <386\n"));
#else
if (i->os_32) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib;
op2_8 %= 32;
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 &= ~(((Bit32u) 1) << op2_8); /* clear out bit */
op1_32 |= (((Bit32u) !temp_CF) << op2_8); /* set to complement */
/* now write diff back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, op1_32);
}
else {
write_RMW_virtual_dword(op1_32);
}
set_CF(temp_CF);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib;
op2_8 %= 16;
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
op1_16 = BX_READ_16BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16);
}
temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 &= ~(((Bit16u) 1) << op2_8); /* clear out bit */
op1_16 |= (((Bit16u) !temp_CF) << op2_8); /* set to complement */
/* now write diff back to destination */
if (i->mod == 0xc0) {
BX_WRITE_16BIT_REG(i->rm, op1_16);
}
else {
write_RMW_virtual_word(op1_16);
}
set_CF(temp_CF);
}
#endif
}
void
BX_CPU_C::BTR_EvIb(BxInstruction_t *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("BTR_EvIb: not available on <386\n"));
#else
if (i->os_32) { /* 32 bit operand size mode */
/* for 32 bit operand size mode */
Bit32u op1_32, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib;
op2_8 %= 32;
/* op1_32 is a register or memory reference */
if (i->mod == 0xc0) {
op1_32 = BX_READ_32BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg, i->rm_addr, &op1_32);
}
temp_CF = (op1_32 >> op2_8) & 0x01;
op1_32 &= ~(((Bit32u) 1) << op2_8);
/* now write diff back to destination */
if (i->mod == 0xc0) {
BX_WRITE_32BIT_REG(i->rm, op1_32);
}
else {
write_RMW_virtual_dword(op1_32);
}
set_CF(temp_CF);
}
else { /* 16 bit operand size mode */
Bit16u op1_16, temp_CF;
Bit8u op2_8;
op2_8 = i->Ib;
op2_8 %= 16;
/* op1_16 is a register or memory reference */
if (i->mod == 0xc0) {
op1_16 = BX_READ_16BIT_REG(i->rm);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg, i->rm_addr, &op1_16);
}
temp_CF = (op1_16 >> op2_8) & 0x01;
op1_16 &= ~(((Bit16u) 1) << op2_8);
/* now write diff back to destination */
if (i->mod == 0xc0) {
BX_WRITE_16BIT_REG(i->rm, op1_16);
}
else {
write_RMW_virtual_word(op1_16);
}
set_CF(temp_CF);
}
#endif
}