Bochs/bochs/cpu/lazy_flags.cc
Kevin Lawton 0d7a5fdf3c I rehashed the way the EFLAGS register was stored internally.
All the EFLAGS bits used to be cached in separate fields.  I left
a few of them in separate fields for now - might remove them
at some point also.  When the arithmetic fields are known
(ie they're not in lazy mode), they are all cached in a
32-bit EFLAGS image, just like the x86 EFLAGS register expects.
All other eflags are store in the 32-bit register also, with
a few also mirrored in separate fields for now.

The reason I did this, was so that on x86 hosts, asm() statements
can be #ifdef'd in to do the calculation and get the native
eflags results very cheaply.  Just to test that it works, I
coded ADD_EdId() and ADD_EwIw() with some conditionally compiled
asm()s for accelerated eflags processing and it works.

-Kevin
2002-09-08 04:08:14 +00:00

842 lines
26 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: lazy_flags.cc,v 1.7 2002-09-08 04:08:14 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
Boolean
BX_CPU_C::get_CF(void)
{
unsigned cf;
switch ( BX_CPU_THIS_PTR lf_flags_status & 0x00000f ) {
case BX_LF_INDEX_KNOWN:
return(BX_CPU_THIS_PTR eflags.val32 & 1);
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_ADD8:
case BX_INSTR_XADD8:
cf = (BX_CPU_THIS_PTR oszapc.result_8 <
BX_CPU_THIS_PTR oszapc.op1_8);
break;
case BX_INSTR_ADD16:
case BX_INSTR_XADD16:
cf = (BX_CPU_THIS_PTR oszapc.result_16 <
BX_CPU_THIS_PTR oszapc.op1_16);
break;
case BX_INSTR_ADD32:
case BX_INSTR_XADD32:
cf = (BX_CPU_THIS_PTR oszapc.result_32 <
BX_CPU_THIS_PTR oszapc.op1_32);
break;
case BX_INSTR_ADC8:
cf =
(BX_CPU_THIS_PTR oszapc.result_8 <
BX_CPU_THIS_PTR oszapc.op1_8) ||
(BX_CPU_THIS_PTR oszapc.prev_CF &&
BX_CPU_THIS_PTR oszapc.result_8 ==
BX_CPU_THIS_PTR oszapc.op1_8);
break;
case BX_INSTR_ADC16:
cf =
(BX_CPU_THIS_PTR oszapc.result_16 <
BX_CPU_THIS_PTR oszapc.op1_16) ||
(BX_CPU_THIS_PTR oszapc.prev_CF &&
BX_CPU_THIS_PTR oszapc.result_16 ==
BX_CPU_THIS_PTR oszapc.op1_16);
break;
case BX_INSTR_ADC32:
cf =
(BX_CPU_THIS_PTR oszapc.result_32 <
BX_CPU_THIS_PTR oszapc.op1_32) ||
(BX_CPU_THIS_PTR oszapc.prev_CF &&
BX_CPU_THIS_PTR oszapc.result_32 ==
BX_CPU_THIS_PTR oszapc.op1_32);
break;
case BX_INSTR_SUB8:
case BX_INSTR_CMP8:
case BX_INSTR_CMPS8:
case BX_INSTR_SCAS8:
cf = (BX_CPU_THIS_PTR oszapc.op1_8 <
BX_CPU_THIS_PTR oszapc.op2_8);
break;
case BX_INSTR_SUB16:
case BX_INSTR_CMP16:
case BX_INSTR_CMPS16:
case BX_INSTR_SCAS16:
cf = (BX_CPU_THIS_PTR oszapc.op1_16 <
BX_CPU_THIS_PTR oszapc.op2_16);
break;
case BX_INSTR_SUB32:
case BX_INSTR_CMP32:
case BX_INSTR_CMPS32:
case BX_INSTR_SCAS32:
cf = (BX_CPU_THIS_PTR oszapc.op1_32 <
BX_CPU_THIS_PTR oszapc.op2_32);
break;
case BX_INSTR_SBB8:
cf =
(BX_CPU_THIS_PTR oszapc.op1_8 <
BX_CPU_THIS_PTR oszapc.result_8) ||
((BX_CPU_THIS_PTR oszapc.op2_8==0xff) &&
BX_CPU_THIS_PTR oszapc.prev_CF);
break;
case BX_INSTR_SBB16:
cf =
(BX_CPU_THIS_PTR oszapc.op1_16 <
BX_CPU_THIS_PTR oszapc.result_16) ||
((BX_CPU_THIS_PTR oszapc.op2_16==0xffff) &&
BX_CPU_THIS_PTR oszapc.prev_CF);
break;
case BX_INSTR_SBB32:
cf =
(BX_CPU_THIS_PTR oszapc.op1_32 <
BX_CPU_THIS_PTR oszapc.result_32) ||
((BX_CPU_THIS_PTR oszapc.op2_32==0xffffffff) &&
BX_CPU_THIS_PTR oszapc.prev_CF);
break;
case BX_INSTR_NEG8:
cf =
BX_CPU_THIS_PTR oszapc.op1_8 != 0;
break;
case BX_INSTR_NEG16:
cf =
BX_CPU_THIS_PTR oszapc.op1_16 != 0;
break;
case BX_INSTR_NEG32:
cf =
BX_CPU_THIS_PTR oszapc.op1_32 != 0;
break;
case BX_INSTR_OR8:
case BX_INSTR_OR16:
case BX_INSTR_OR32:
case BX_INSTR_AND8:
case BX_INSTR_AND16:
case BX_INSTR_AND32:
case BX_INSTR_TEST8:
case BX_INSTR_TEST16:
case BX_INSTR_TEST32:
case BX_INSTR_XOR8:
case BX_INSTR_XOR16:
case BX_INSTR_XOR32:
cf = 0;
break;
case BX_INSTR_SHR8:
cf =
(BX_CPU_THIS_PTR oszapc.op1_8 >>
(BX_CPU_THIS_PTR oszapc.op2_8 - 1)) & 0x01;
break;
case BX_INSTR_SHR16:
cf =
(BX_CPU_THIS_PTR oszapc.op1_16 >>
(BX_CPU_THIS_PTR oszapc.op2_16 - 1)) & 0x01;
break;
case BX_INSTR_SHR32:
cf =
(BX_CPU_THIS_PTR oszapc.op1_32 >>
(BX_CPU_THIS_PTR oszapc.op2_32 - 1)) & 0x01;
break;
case BX_INSTR_SHL8:
if (BX_CPU_THIS_PTR oszapc.op2_8 <= 8) {
cf =
(BX_CPU_THIS_PTR oszapc.op1_8 >>
(8 - BX_CPU_THIS_PTR oszapc.op2_8)) & 0x01;
}
else {
cf = 0;
}
break;
case BX_INSTR_SHL16:
if (BX_CPU_THIS_PTR oszapc.op2_16 <= 16) {
cf =
(BX_CPU_THIS_PTR oszapc.op1_16 >>
(16 - BX_CPU_THIS_PTR oszapc.op2_16)) & 0x01;
}
else {
cf = 0;
}
break;
case BX_INSTR_SHL32:
cf =
(BX_CPU_THIS_PTR oszapc.op1_32 >>
(32 - BX_CPU_THIS_PTR oszapc.op2_32)) & 0x01;
break;
default:
cf = 0; // Keep compiler quiet.
BX_PANIC(("get_CF: OSZAPC: unknown instr %u",
(unsigned) BX_CPU_THIS_PTR oszapc.instr));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xfffff0;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<0);
BX_CPU_THIS_PTR eflags.val32 |= (!!cf)<<0;
return(cf);
default:
BX_PANIC(("get_CF: unknown case"));
return(0);
}
}
Boolean
BX_CPU_C::get_AF(void)
{
unsigned af;
switch ( (BX_CPU_THIS_PTR lf_flags_status>>8) & 0x00000f ) {
case BX_LF_INDEX_KNOWN:
return( (BX_CPU_THIS_PTR eflags.val32 >> 4) & 1);
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_ADD8:
case BX_INSTR_ADC8:
case BX_INSTR_SUB8:
case BX_INSTR_SBB8:
case BX_INSTR_CMP8:
case BX_INSTR_XADD8:
case BX_INSTR_CMPS8:
case BX_INSTR_SCAS8:
af =
((BX_CPU_THIS_PTR oszapc.op1_8 ^
BX_CPU_THIS_PTR oszapc.op2_8) ^
BX_CPU_THIS_PTR oszapc.result_8) & 0x10;
break;
case BX_INSTR_ADD16:
case BX_INSTR_ADC16:
case BX_INSTR_SUB16:
case BX_INSTR_SBB16:
case BX_INSTR_CMP16:
case BX_INSTR_XADD16:
case BX_INSTR_CMPS16:
case BX_INSTR_SCAS16:
af =
((BX_CPU_THIS_PTR oszapc.op1_16 ^
BX_CPU_THIS_PTR oszapc.op2_16) ^
BX_CPU_THIS_PTR oszapc.result_16) & 0x10;
break;
case BX_INSTR_ADD32:
case BX_INSTR_ADC32:
case BX_INSTR_SUB32:
case BX_INSTR_SBB32:
case BX_INSTR_CMP32:
case BX_INSTR_XADD32:
case BX_INSTR_CMPS32:
case BX_INSTR_SCAS32:
af =
((BX_CPU_THIS_PTR oszapc.op1_32 ^
BX_CPU_THIS_PTR oszapc.op2_32) ^
BX_CPU_THIS_PTR oszapc.result_32) & 0x10;
break;
case BX_INSTR_NEG8:
af =
(BX_CPU_THIS_PTR oszapc.op1_8 & 0x0f) > 0;
break;
case BX_INSTR_NEG16:
af =
(BX_CPU_THIS_PTR oszapc.op1_16 & 0x0f) > 0;
break;
case BX_INSTR_NEG32:
af =
(BX_CPU_THIS_PTR oszapc.op1_32 & 0x0f) > 0;
break;
case BX_INSTR_OR8:
case BX_INSTR_OR16:
case BX_INSTR_OR32:
case BX_INSTR_AND8:
case BX_INSTR_AND16:
case BX_INSTR_AND32:
case BX_INSTR_TEST8:
case BX_INSTR_TEST16:
case BX_INSTR_TEST32:
case BX_INSTR_XOR8:
case BX_INSTR_XOR16:
case BX_INSTR_XOR32:
case BX_INSTR_SHR8:
case BX_INSTR_SHR16:
case BX_INSTR_SHR32:
case BX_INSTR_SHL8:
case BX_INSTR_SHL16:
case BX_INSTR_SHL32:
af = 0;
/* undefined */
break;
default:
af = 0; // Keep compiler quiet.
BX_PANIC(("get_AF: OSZAPC: unknown instr %u",
(unsigned) BX_CPU_THIS_PTR oszapc.instr));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xfff0ff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<4);
BX_CPU_THIS_PTR eflags.val32 |= (!!af)<<4;
return(af);
case BX_LF_INDEX_OSZAP:
switch (BX_CPU_THIS_PTR oszap.instr) {
case BX_INSTR_INC8:
af =
(BX_CPU_THIS_PTR oszap.result_8 & 0x0f) == 0;
break;
case BX_INSTR_INC16:
af =
(BX_CPU_THIS_PTR oszap.result_16 & 0x0f) == 0;
break;
case BX_INSTR_INC32:
af =
(BX_CPU_THIS_PTR oszap.result_32 & 0x0f) == 0;
break;
case BX_INSTR_DEC8:
af =
(BX_CPU_THIS_PTR oszap.result_8 & 0x0f) == 0x0f;
break;
case BX_INSTR_DEC16:
af =
(BX_CPU_THIS_PTR oszap.result_16 & 0x0f) == 0x0f;
break;
case BX_INSTR_DEC32:
af =
(BX_CPU_THIS_PTR oszap.result_32 & 0x0f) == 0x0f;
break;
default:
af = 0; // Keep compiler quiet.
BX_PANIC(("get_AF: OSZAP: unknown instr %u",
(unsigned) BX_CPU_THIS_PTR oszap.instr));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xfff0ff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<4);
BX_CPU_THIS_PTR eflags.val32 |= (!!af)<<4;
return(af);
default:
BX_PANIC(("get_AF: unknown case"));
return(0);
}
}
Boolean
BX_CPU_C::get_ZF(void)
{
unsigned zf;
switch ( (BX_CPU_THIS_PTR lf_flags_status>>12) & 0x00000f ) {
case BX_LF_INDEX_KNOWN:
return( (BX_CPU_THIS_PTR eflags.val32 >> 6) & 1);
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_ADD8:
case BX_INSTR_ADC8:
case BX_INSTR_SUB8:
case BX_INSTR_SBB8:
case BX_INSTR_CMP8:
case BX_INSTR_NEG8:
case BX_INSTR_XADD8:
case BX_INSTR_OR8:
case BX_INSTR_AND8:
case BX_INSTR_TEST8:
case BX_INSTR_XOR8:
case BX_INSTR_CMPS8:
case BX_INSTR_SCAS8:
case BX_INSTR_SHR8:
case BX_INSTR_SHL8:
zf = (BX_CPU_THIS_PTR oszapc.result_8 == 0);
break;
case BX_INSTR_ADD16:
case BX_INSTR_ADC16:
case BX_INSTR_SUB16:
case BX_INSTR_SBB16:
case BX_INSTR_CMP16:
case BX_INSTR_NEG16:
case BX_INSTR_XADD16:
case BX_INSTR_OR16:
case BX_INSTR_AND16:
case BX_INSTR_TEST16:
case BX_INSTR_XOR16:
case BX_INSTR_CMPS16:
case BX_INSTR_SCAS16:
case BX_INSTR_SHR16:
case BX_INSTR_SHL16:
zf = (BX_CPU_THIS_PTR oszapc.result_16 == 0);
break;
case BX_INSTR_ADD32:
case BX_INSTR_ADC32:
case BX_INSTR_SUB32:
case BX_INSTR_SBB32:
case BX_INSTR_CMP32:
case BX_INSTR_NEG32:
case BX_INSTR_XADD32:
case BX_INSTR_OR32:
case BX_INSTR_AND32:
case BX_INSTR_TEST32:
case BX_INSTR_XOR32:
case BX_INSTR_CMPS32:
case BX_INSTR_SCAS32:
case BX_INSTR_SHR32:
case BX_INSTR_SHL32:
zf = (BX_CPU_THIS_PTR oszapc.result_32 == 0);
break;
default:
zf = 0;
BX_PANIC(("get_ZF: OSZAPC: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xff0fff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<6);
BX_CPU_THIS_PTR eflags.val32 |= (!!zf)<<6;
return(zf);
case BX_LF_INDEX_OSZAP:
switch (BX_CPU_THIS_PTR oszap.instr) {
case BX_INSTR_INC8:
case BX_INSTR_DEC8:
zf = (BX_CPU_THIS_PTR oszap.result_8 == 0);
break;
case BX_INSTR_INC16:
case BX_INSTR_DEC16:
zf = (BX_CPU_THIS_PTR oszap.result_16 == 0);
break;
case BX_INSTR_INC32:
case BX_INSTR_DEC32:
zf = (BX_CPU_THIS_PTR oszap.result_32 == 0);
break;
default:
zf = 0;
BX_PANIC(("get_ZF: OSZAP: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xff0fff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<6);
BX_CPU_THIS_PTR eflags.val32 |= (!!zf)<<6;
return(zf);
default:
BX_PANIC(("get_ZF: unknown case"));
return(0);
}
}
Boolean
BX_CPU_C::get_SF(void)
{
unsigned sf;
switch ( (BX_CPU_THIS_PTR lf_flags_status>>16) & 0x00000f ) {
case BX_LF_INDEX_KNOWN:
return( (BX_CPU_THIS_PTR eflags.val32 >> 7) & 1);
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_ADD8:
case BX_INSTR_ADC8:
case BX_INSTR_SUB8:
case BX_INSTR_SBB8:
case BX_INSTR_CMP8:
case BX_INSTR_NEG8:
case BX_INSTR_XADD8:
case BX_INSTR_OR8:
case BX_INSTR_AND8:
case BX_INSTR_TEST8:
case BX_INSTR_XOR8:
case BX_INSTR_CMPS8:
case BX_INSTR_SCAS8:
case BX_INSTR_SHR8:
case BX_INSTR_SHL8:
sf =
(BX_CPU_THIS_PTR oszapc.result_8 >= 0x80);
break;
case BX_INSTR_ADD16:
case BX_INSTR_ADC16:
case BX_INSTR_SUB16:
case BX_INSTR_SBB16:
case BX_INSTR_CMP16:
case BX_INSTR_NEG16:
case BX_INSTR_XADD16:
case BX_INSTR_OR16:
case BX_INSTR_AND16:
case BX_INSTR_TEST16:
case BX_INSTR_XOR16:
case BX_INSTR_CMPS16:
case BX_INSTR_SCAS16:
case BX_INSTR_SHR16:
case BX_INSTR_SHL16:
sf =
(BX_CPU_THIS_PTR oszapc.result_16 >= 0x8000);
break;
case BX_INSTR_ADD32:
case BX_INSTR_ADC32:
case BX_INSTR_SUB32:
case BX_INSTR_SBB32:
case BX_INSTR_CMP32:
case BX_INSTR_NEG32:
case BX_INSTR_XADD32:
case BX_INSTR_OR32:
case BX_INSTR_AND32:
case BX_INSTR_TEST32:
case BX_INSTR_XOR32:
case BX_INSTR_CMPS32:
case BX_INSTR_SCAS32:
case BX_INSTR_SHR32:
case BX_INSTR_SHL32:
sf =
(BX_CPU_THIS_PTR oszapc.result_32 >= 0x80000000);
break;
default:
sf = 0; // Keep compiler quiet.
BX_PANIC(("get_SF: OSZAPC: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xf0ffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<7);
BX_CPU_THIS_PTR eflags.val32 |= (!!sf)<<7;
return(sf);
case BX_LF_INDEX_OSZAP:
switch (BX_CPU_THIS_PTR oszap.instr) {
case BX_INSTR_INC8:
case BX_INSTR_DEC8:
sf =
(BX_CPU_THIS_PTR oszap.result_8 >= 0x80);
break;
case BX_INSTR_INC16:
case BX_INSTR_DEC16:
sf =
(BX_CPU_THIS_PTR oszap.result_16 >= 0x8000);
break;
case BX_INSTR_INC32:
case BX_INSTR_DEC32:
sf =
(BX_CPU_THIS_PTR oszap.result_32 >= 0x80000000);
break;
default:
sf = 0; // Keep compiler quiet.
BX_PANIC(("get_SF: OSZAP: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xf0ffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<7);
BX_CPU_THIS_PTR eflags.val32 |= (!!sf)<<7;
return(sf);
default:
BX_PANIC(("get_SF: unknown case"));
return(0);
}
}
Boolean
BX_CPU_C::get_OF(void)
{
Bit8u op1_b7, op2_b7, result_b7;
Bit16u op1_b15, op2_b15, result_b15;
Bit32u op1_b31, op2_b31, result_b31;
unsigned of;
switch ( (BX_CPU_THIS_PTR lf_flags_status>>20) & 0x00000f ) {
case BX_LF_INDEX_KNOWN:
return( (BX_CPU_THIS_PTR eflags.val32 >> 11) & 1);
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_ADD8:
case BX_INSTR_ADC8:
case BX_INSTR_XADD8:
op1_b7 = BX_CPU_THIS_PTR oszapc.op1_8 & 0x80;
op2_b7 = BX_CPU_THIS_PTR oszapc.op2_8 & 0x80;
result_b7 = BX_CPU_THIS_PTR oszapc.result_8 & 0x80;
of = (op1_b7 == op2_b7) && (result_b7 ^ op2_b7);
break;
case BX_INSTR_ADD16:
case BX_INSTR_ADC16:
case BX_INSTR_XADD16:
op1_b15 = BX_CPU_THIS_PTR oszapc.op1_16 & 0x8000;
op2_b15 = BX_CPU_THIS_PTR oszapc.op2_16 & 0x8000;
result_b15 = BX_CPU_THIS_PTR oszapc.result_16 & 0x8000;
of = (op1_b15 == op2_b15) && (result_b15 ^ op2_b15);
break;
case BX_INSTR_ADD32:
case BX_INSTR_ADC32:
case BX_INSTR_XADD32:
op1_b31 = BX_CPU_THIS_PTR oszapc.op1_32 & 0x80000000;
op2_b31 = BX_CPU_THIS_PTR oszapc.op2_32 & 0x80000000;
result_b31 = BX_CPU_THIS_PTR oszapc.result_32 & 0x80000000;
of = (op1_b31 == op2_b31) && (result_b31 ^ op2_b31);
break;
case BX_INSTR_SUB8:
case BX_INSTR_SBB8:
case BX_INSTR_CMP8:
case BX_INSTR_CMPS8:
case BX_INSTR_SCAS8:
op1_b7 = BX_CPU_THIS_PTR oszapc.op1_8 & 0x80;
op2_b7 = BX_CPU_THIS_PTR oszapc.op2_8 & 0x80;
result_b7 = BX_CPU_THIS_PTR oszapc.result_8 & 0x80;
of = (op1_b7 ^ op2_b7) && (op1_b7 ^ result_b7);
break;
case BX_INSTR_SUB16:
case BX_INSTR_SBB16:
case BX_INSTR_CMP16:
case BX_INSTR_CMPS16:
case BX_INSTR_SCAS16:
op1_b15 = BX_CPU_THIS_PTR oszapc.op1_16 & 0x8000;
op2_b15 = BX_CPU_THIS_PTR oszapc.op2_16 & 0x8000;
result_b15 = BX_CPU_THIS_PTR oszapc.result_16 & 0x8000;
of = (op1_b15 ^ op2_b15) && (op1_b15 ^ result_b15);
break;
case BX_INSTR_SUB32:
case BX_INSTR_SBB32:
case BX_INSTR_CMP32:
case BX_INSTR_CMPS32:
case BX_INSTR_SCAS32:
op1_b31 = BX_CPU_THIS_PTR oszapc.op1_32 & 0x80000000;
op2_b31 = BX_CPU_THIS_PTR oszapc.op2_32 & 0x80000000;
result_b31 = BX_CPU_THIS_PTR oszapc.result_32 & 0x80000000;
of = (op1_b31 ^ op2_b31) && (op1_b31 ^ result_b31);
break;
case BX_INSTR_NEG8:
of = (BX_CPU_THIS_PTR oszapc.op1_8 == 0x80);
break;
case BX_INSTR_NEG16:
of = (BX_CPU_THIS_PTR oszapc.op1_16 == 0x8000);
break;
case BX_INSTR_NEG32:
of = (BX_CPU_THIS_PTR oszapc.op1_32 == 0x80000000);
break;
case BX_INSTR_OR8:
case BX_INSTR_OR16:
case BX_INSTR_OR32:
case BX_INSTR_AND8:
case BX_INSTR_AND16:
case BX_INSTR_AND32:
case BX_INSTR_TEST8:
case BX_INSTR_TEST16:
case BX_INSTR_TEST32:
case BX_INSTR_XOR8:
case BX_INSTR_XOR16:
case BX_INSTR_XOR32:
of = 0;
break;
case BX_INSTR_SHR8:
if (BX_CPU_THIS_PTR oszapc.op2_8 == 1)
of = (BX_CPU_THIS_PTR oszapc.op1_8 >= 0x80);
else
of = (BX_CPU_THIS_PTR eflags.val32 >> 11) & 1; // Old val
break;
case BX_INSTR_SHR16:
if (BX_CPU_THIS_PTR oszapc.op2_16 == 1)
of = (BX_CPU_THIS_PTR oszapc.op1_16 >= 0x8000);
else
of = (BX_CPU_THIS_PTR eflags.val32 >> 11) & 1; // Old val
break;
case BX_INSTR_SHR32:
if (BX_CPU_THIS_PTR oszapc.op2_32 == 1)
of = (BX_CPU_THIS_PTR oszapc.op1_32 >= 0x80000000);
else
of = (BX_CPU_THIS_PTR eflags.val32 >> 11) & 1; // Old val
break;
case BX_INSTR_SHL8:
if (BX_CPU_THIS_PTR oszapc.op2_8 == 1)
of = ((BX_CPU_THIS_PTR oszapc.op1_8 ^
BX_CPU_THIS_PTR oszapc.result_8) & 0x80) > 0;
else
of = (BX_CPU_THIS_PTR eflags.val32 >> 11) & 1; // Old val
break;
case BX_INSTR_SHL16:
if (BX_CPU_THIS_PTR oszapc.op2_16 == 1)
of = ((BX_CPU_THIS_PTR oszapc.op1_16 ^
BX_CPU_THIS_PTR oszapc.result_16) & 0x8000) > 0;
else
of = (BX_CPU_THIS_PTR eflags.val32 >> 11) & 1; // Old val
break;
case BX_INSTR_SHL32:
if (BX_CPU_THIS_PTR oszapc.op2_32 == 1)
of = ((BX_CPU_THIS_PTR oszapc.op1_32 ^
BX_CPU_THIS_PTR oszapc.result_32) & 0x80000000) > 0;
else
of = (BX_CPU_THIS_PTR eflags.val32 >> 11) & 1; // Old val
break;
default:
of = 0; // Keep compiler happy.
BX_PANIC(("get_OF: OSZAPC: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0x0fffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<11);
BX_CPU_THIS_PTR eflags.val32 |= (!!of)<<11;
return(of);
case BX_LF_INDEX_OSZAP:
switch (BX_CPU_THIS_PTR oszap.instr) {
case BX_INSTR_INC8:
of =
BX_CPU_THIS_PTR oszap.result_8 == 0x80;
break;
case BX_INSTR_INC16:
of =
BX_CPU_THIS_PTR oszap.result_16 == 0x8000;
break;
case BX_INSTR_INC32:
of =
BX_CPU_THIS_PTR oszap.result_32 == 0x80000000;
break;
case BX_INSTR_DEC8:
of =
BX_CPU_THIS_PTR oszap.result_8 == 0x7F;
break;
case BX_INSTR_DEC16:
of =
BX_CPU_THIS_PTR oszap.result_16 == 0x7FFF;
break;
case BX_INSTR_DEC32:
of =
BX_CPU_THIS_PTR oszap.result_32 == 0x7FFFFFFF;
break;
default:
of = 0; // Keep compiler happy.
BX_PANIC(("get_OF: OSZAP: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0x0fffff;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<11);
BX_CPU_THIS_PTR eflags.val32 |= (!!of)<<11;
return(of);
default:
BX_PANIC(("get_OF: unknown case"));
return(0);
}
}
Boolean
BX_CPU_C::get_PF(void)
{
unsigned pf;
switch ( (BX_CPU_THIS_PTR lf_flags_status>>4) & 0x00000f ) {
case BX_LF_INDEX_KNOWN:
return( (BX_CPU_THIS_PTR eflags.val32 >> 2) & 1);
case BX_LF_INDEX_OSZAPC:
switch (BX_CPU_THIS_PTR oszapc.instr) {
case BX_INSTR_ADD8:
case BX_INSTR_ADC8:
case BX_INSTR_SUB8:
case BX_INSTR_SBB8:
case BX_INSTR_CMP8:
case BX_INSTR_NEG8:
case BX_INSTR_XADD8:
case BX_INSTR_OR8:
case BX_INSTR_AND8:
case BX_INSTR_TEST8:
case BX_INSTR_XOR8:
case BX_INSTR_CMPS8:
case BX_INSTR_SCAS8:
case BX_INSTR_SHR8:
case BX_INSTR_SHL8:
pf = bx_parity_lookup[BX_CPU_THIS_PTR oszapc.result_8];
break;
case BX_INSTR_ADD16:
case BX_INSTR_ADC16:
case BX_INSTR_SUB16:
case BX_INSTR_SBB16:
case BX_INSTR_CMP16:
case BX_INSTR_NEG16:
case BX_INSTR_XADD16:
case BX_INSTR_OR16:
case BX_INSTR_AND16:
case BX_INSTR_TEST16:
case BX_INSTR_XOR16:
case BX_INSTR_CMPS16:
case BX_INSTR_SCAS16:
case BX_INSTR_SHR16:
case BX_INSTR_SHL16:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszapc.result_16];
break;
case BX_INSTR_ADD32:
case BX_INSTR_ADC32:
case BX_INSTR_SUB32:
case BX_INSTR_SBB32:
case BX_INSTR_CMP32:
case BX_INSTR_NEG32:
case BX_INSTR_XADD32:
case BX_INSTR_OR32:
case BX_INSTR_AND32:
case BX_INSTR_TEST32:
case BX_INSTR_XOR32:
case BX_INSTR_CMPS32:
case BX_INSTR_SCAS32:
case BX_INSTR_SHR32:
case BX_INSTR_SHL32:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszapc.result_32];
break;
default:
pf = 0; // Keep compiler quiet.
BX_PANIC(("get_PF: OSZAPC: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<2);
BX_CPU_THIS_PTR eflags.val32 |= (!!pf)<<2;
return(pf);
case BX_LF_INDEX_OSZAP:
switch (BX_CPU_THIS_PTR oszap.instr) {
case BX_INSTR_INC8:
case BX_INSTR_DEC8:
pf = bx_parity_lookup[BX_CPU_THIS_PTR oszap.result_8];
break;
case BX_INSTR_INC16:
case BX_INSTR_DEC16:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszap.result_16];
break;
case BX_INSTR_INC32:
case BX_INSTR_DEC32:
pf = bx_parity_lookup[(Bit8u) BX_CPU_THIS_PTR oszap.result_32];
break;
default:
pf = 0; // Keep compiler quiet.
BX_PANIC(("get_PF: OSZAP: unknown instr"));
}
BX_CPU_THIS_PTR lf_flags_status &= 0xffff0f;
BX_CPU_THIS_PTR eflags.val32 &= ~(1<<2);
BX_CPU_THIS_PTR eflags.val32 |= (!!pf)<<2;
return(pf);
default:
BX_PANIC(("get_PF: unknown case"));
return(0);
}
}