Bochs/bochs/cpu/generic_cpuid.cc
Stanislav Shwartsman bb7a648d91 Major commit !
------------

Implemented SVN nested paging support - the Virtual Box boots perfectly with Nested Paging guest !
A lot of code duplication was added for now - major cleanup will follow later.

! Added AMD Phenom X3 8650 (Toliman) configuration to the CPUDB - this configuration has Nested Paging enabled.

Some CPUID modules rework done to enable Toliman configuration.

Ckean up 'executable' attribute from all CPU source files.
2012-02-13 23:29:01 +00:00

1516 lines
42 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2011-2012 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#include "bochs.h"
#include "cpu.h"
#include "param_names.h"
#include "generic_cpuid.h"
#define LOG_THIS cpu->
bx_cpuid_t::bx_cpuid_t(BX_CPU_C *_cpu): cpu(_cpu)
{
#if BX_SUPPORT_SMP
nthreads = SIM->get_param_num(BXPN_CPU_NTHREADS)->get();
ncores = SIM->get_param_num(BXPN_CPU_NCORES)->get();
nprocessors = SIM->get_param_num(BXPN_CPU_NPROCESSORS)->get();
#else
nthreads = 1;
ncores = 1;
nprocessors = 1;
#endif
}
#if BX_CPU_LEVEL >= 4
bx_generic_cpuid_t::bx_generic_cpuid_t(BX_CPU_C *cpu): bx_cpuid_t(cpu)
{
init_isa_extensions_bitmask();
init_cpu_extensions_bitmask();
#if BX_CPU_LEVEL <= 5
// 486 and Pentium processors
max_std_leaf = 1;
#else
// for Pentium Pro, Pentium II, Pentium 4 processors
max_std_leaf = 2;
// do not report CPUID functions above 0x3 if cpuid_limit_winnt is set
// to workaround WinNT issue.
static bx_bool cpuid_limit_winnt = SIM->get_param_bool(BXPN_CPUID_LIMIT_WINNT)->get();
if (! cpuid_limit_winnt) {
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_MONITOR_MWAIT))
max_std_leaf = 0x5;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_X2APIC))
max_std_leaf = 0xB;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XSAVE))
max_std_leaf = 0xD;
}
#endif
#if BX_CPU_LEVEL <= 5
max_ext_leaf = 0;
#else
max_ext_leaf = 0x80000008;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SVM))
max_ext_leaf = 0x8000000A;
#endif
}
void bx_generic_cpuid_t::get_cpuid_leaf(Bit32u function, Bit32u subfunction, cpuid_function_t *leaf) const
{
static bx_bool cpuid_limit_winnt = SIM->get_param_bool(BXPN_CPUID_LIMIT_WINNT)->get();
if (cpuid_limit_winnt)
if (function > 2 && function < 0x80000000) function = 2;
#if BX_CPU_LEVEL >= 6
if (function >= 0x80000000 && function > max_ext_leaf)
function = max_std_leaf;
#endif
if (function < 0x80000000 && function > max_std_leaf)
function = max_std_leaf;
switch(function) {
#if BX_CPU_LEVEL >= 6
case 0x80000000:
get_ext_cpuid_leaf_0(leaf);
return;
case 0x80000001:
get_ext_cpuid_leaf_1(leaf);
return;
case 0x80000002:
case 0x80000003:
case 0x80000004:
get_ext_cpuid_brand_string_leaf(function, leaf);
return;
case 0x80000005:
get_ext_cpuid_leaf_5(leaf);
return;
case 0x80000006:
get_ext_cpuid_leaf_6(leaf);
return;
case 0x80000007:
get_ext_cpuid_leaf_7(leaf);
return;
case 0x80000008:
get_ext_cpuid_leaf_8(leaf);
return;
#if BX_SUPPORT_SVM
case 0x8000000A:
get_ext_cpuid_leaf_A(leaf);
return;
#endif
#endif
case 0x00000000:
get_std_cpuid_leaf_0(leaf);
return;
case 0x00000001:
get_std_cpuid_leaf_1(leaf);
return;
#if BX_CPU_LEVEL >= 6
case 0x00000002:
get_std_cpuid_leaf_2(leaf);
return;
case 0x00000003:
get_std_cpuid_leaf_3(leaf);
return;
case 0x00000004:
get_std_cpuid_leaf_4(subfunction, leaf);
return;
case 0x00000005:
get_std_cpuid_leaf_5(leaf);
return;
case 0x00000006:
get_std_cpuid_leaf_6(leaf);
return;
case 0x00000007:
get_std_cpuid_leaf_7(subfunction, leaf);
return;
case 0x00000008:
get_reserved_leaf(leaf);
return;
case 0x00000009:
get_std_cpuid_leaf_9(leaf);
return;
case 0x0000000A:
get_std_cpuid_leaf_A(leaf);
return;
case 0x0000000B:
get_std_cpuid_extended_topology_leaf(subfunction, leaf);
return;
case 0x0000000C:
get_reserved_leaf(leaf);
return;
case 0x0000000D:
default:
get_std_cpuid_xsave_leaf(subfunction, leaf);
return;
#endif
}
}
// leaf 0x00000000 //
void bx_generic_cpuid_t::get_std_cpuid_leaf_0(cpuid_function_t *leaf) const
{
static Bit8u *vendor_string = (Bit8u *)SIM->get_param_string(BXPN_VENDOR_STRING)->getptr();
// EAX: highest std function understood by CPUID
// EBX: vendor ID string
// EDX: vendor ID string
// ECX: vendor ID string
leaf->eax = max_std_leaf;
// CPUID vendor string (e.g. GenuineIntel, AuthenticAMD, CentaurHauls, ...)
memcpy(&(leaf->ebx), vendor_string, 4);
memcpy(&(leaf->edx), vendor_string + 4, 4);
memcpy(&(leaf->ecx), vendor_string + 8, 4);
#ifdef BX_BIG_ENDIAN
leaf->ebx = bx_bswap32(leaf->ebx);
leaf->ecx = bx_bswap32(leaf->ecx);
leaf->edx = bx_bswap32(leaf->edx);
#endif
}
// leaf 0x00000001 //
void bx_generic_cpuid_t::get_std_cpuid_leaf_1(cpuid_function_t *leaf) const
{
// EAX: CPU Version Information
// [3:0] Stepping ID
// [7:4] Model: starts at 1
// [11:8] Family: 4=486, 5=Pentium, 6=PPro, ...
// [13:12] Type: 0=OEM, 1=overdrive, 2=dual cpu, 3=reserved
// [19:16] Extended Model
// [27:20] Extended Family
leaf->eax = get_cpu_version_information();
// EBX:
// [7:0] Brand ID
// [15:8] CLFLUSH cache line size (value*8 = cache line size in bytes)
// [23:16] Number of logical processors in one physical processor
// [31:24] Local Apic ID
leaf->ebx = 0;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_CLFLUSH)) {
leaf->ebx |= (CACHE_LINE_SIZE / 8) << 8;
}
unsigned n_logical_processors = ncores*nthreads;
leaf->ebx |= (n_logical_processors << 16);
#if BX_SUPPORT_APIC
leaf->ebx |= ((cpu->get_apic_id() & 0xff) << 24);
#endif
// ECX: Extended Feature Flags
#if BX_CPU_LEVEL >= 6
leaf->ecx = get_extended_cpuid_features();
#else
leaf->ecx = 0;
#endif
// EDX: Standard Feature Flags
leaf->edx = get_std_cpuid_features();
}
#if BX_CPU_LEVEL >= 6
// leaf 0x00000002 //
void bx_generic_cpuid_t::get_std_cpuid_leaf_2(cpuid_function_t *leaf) const
{
// CPUID function 0x00000002 - Cache and TLB Descriptors
#if BX_CPU_VENDOR_INTEL
leaf->eax = 0x00410601; // for Pentium Pro compatibility
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
#else
leaf->eax = 0; // ignore for AMD
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
#endif
}
// leaf 0x00000003 //
void bx_generic_cpuid_t::get_std_cpuid_leaf_3(cpuid_function_t *leaf) const
{
// CPUID function 0x00000003 - Processor Serial Number
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
}
// leaf 0x00000004 //
void bx_generic_cpuid_t::get_std_cpuid_leaf_4(Bit32u subfunction, cpuid_function_t *leaf) const
{
// CPUID function 0x00000004 - Deterministic Cache Parameters
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
}
// leaf 0x00000005 //
void bx_generic_cpuid_t::get_std_cpuid_leaf_5(cpuid_function_t *leaf) const
{
// CPUID function 0x00000005 - MONITOR/MWAIT Leaf
#if BX_SUPPORT_MONITOR_MWAIT
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_MONITOR_MWAIT))
{
// EAX - Smallest monitor-line size in bytes
// EBX - Largest monitor-line size in bytes
// ECX -
// [31:2] - reserved
// [1:1] - exit MWAIT even with EFLAGS.IF = 0
// [0:0] - MONITOR/MWAIT extensions are supported
// EDX -
// [03-00] - number of C0 sub C-states supported using MWAIT
// [07-04] - number of C1 sub C-states supported using MWAIT
// [11-08] - number of C2 sub C-states supported using MWAIT
// [15-12] - number of C3 sub C-states supported using MWAIT
// [19-16] - number of C4 sub C-states supported using MWAIT
// [31-20] - reserved (MBZ)
leaf->eax = CACHE_LINE_SIZE;
leaf->ebx = CACHE_LINE_SIZE;
leaf->ecx = 3;
leaf->edx = 0x00000020;
}
else
#endif
{
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
}
}
// leaf 0x00000006 //
void bx_generic_cpuid_t::get_std_cpuid_leaf_6(cpuid_function_t *leaf) const
{
// CPUID function 0x00000006 - Thermal and Power Management Leaf
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
}
// leaf 0x00000007 //
void bx_generic_cpuid_t::get_std_cpuid_leaf_7(Bit32u subfunction, cpuid_function_t *leaf) const
{
leaf->eax = 0; /* report max sub-leaf that supported in leaf 7 */
leaf->ebx = get_ext3_cpuid_features();
leaf->ecx = 0;
leaf->edx = 0;
}
// leaf 0x00000008 - reserved //
// leaf 0x00000009 //
void bx_generic_cpuid_t::get_std_cpuid_leaf_9(cpuid_function_t *leaf) const
{
// CPUID function 0x00000009 - Direct Cache Access Information Leaf
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
}
// leaf 0x0000000A //
void bx_generic_cpuid_t::get_std_cpuid_leaf_A(cpuid_function_t *leaf) const
{
// CPUID function 0x0000000A - Architectural Performance Monitoring Leaf
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
}
BX_CPP_INLINE static Bit32u ilog2(Bit32u x)
{
Bit32u count = 0;
while(x>>=1) count++;
return count;
}
// leaf 0x0000000B //
void bx_generic_cpuid_t::get_std_cpuid_extended_topology_leaf(Bit32u subfunction, cpuid_function_t *leaf) const
{
// CPUID function 0x0000000B - Extended Topology Leaf
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = subfunction;
leaf->edx = cpu->get_apic_id();
#if BX_SUPPORT_SMP
switch(subfunction) {
case 0:
if (nthreads > 1) {
leaf->eax = ilog2(nthreads-1)+1;
leaf->ebx = nthreads;
leaf->ecx |= (1<<8);
}
else if (ncores > 1) {
leaf->eax = ilog2(ncores-1)+1;
leaf->ebx = ncores;
leaf->ecx |= (2<<8);
}
else if (nprocessors > 1) {
leaf->eax = ilog2(nprocessors-1)+1;
leaf->ebx = nprocessors;
}
else {
leaf->eax = 1;
leaf->ebx = 1; // number of logical CPUs at this level
}
break;
case 1:
if (nthreads > 1) {
if (ncores > 1) {
leaf->eax = ilog2(ncores-1)+1;
leaf->ebx = ncores;
leaf->ecx |= (2<<8);
}
else if (nprocessors > 1) {
leaf->eax = ilog2(nprocessors-1)+1;
leaf->ebx = nprocessors;
}
}
else if (ncores > 1) {
if (nprocessors > 1) {
leaf->eax = ilog2(nprocessors-1)+1;
leaf->ebx = nprocessors;
}
}
break;
case 2:
if (nthreads > 1) {
if (nprocessors > 1) {
leaf->eax = ilog2(nprocessors-1)+1;
leaf->ebx = nprocessors;
}
}
break;
default:
break;
}
#endif
}
// leaf 0x0000000C - reserved //
// leaf 0x0000000D //
void bx_generic_cpuid_t::get_std_cpuid_xsave_leaf(Bit32u subfunction, cpuid_function_t *leaf) const
{
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XSAVE))
{
switch(subfunction) {
case 0:
// EAX - valid bits of XCR0 (lower part)
// EBX - Maximum size (in bytes) required by enabled features
// ECX - Maximum size (in bytes) required by CPU supported features
// EDX - valid bits of XCR0 (upper part)
leaf->eax = cpu->xcr0_suppmask;
leaf->ebx = 512+64;
#if BX_SUPPORT_AVX
if (cpu->xcr0.get_AVX())
leaf->ebx += 256;
#endif
leaf->ecx = 512+64;
#if BX_SUPPORT_AVX
if (cpu->xcr0_suppmask & BX_XCR0_AVX_MASK)
leaf->ecx += 256;
#endif
leaf->edx = 0;
return;
case 1:
leaf->eax = BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XSAVEOPT);
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
return;
#if BX_SUPPORT_AVX
case 2: // AVX leaf
if (cpu->xcr0_suppmask & BX_XCR0_AVX_MASK) {
leaf->eax = 256;
leaf->ebx = 576;
leaf->ecx = 0;
leaf->edx = 0;
break;
}
// else fall through
#endif
default:
leaf->eax = 0; // reserved
leaf->ebx = 0; // reserved
leaf->ecx = 0; // reserved
leaf->edx = 0; // reserved
break;
}
}
}
// leaf 0x80000000 //
void bx_generic_cpuid_t::get_ext_cpuid_leaf_0(cpuid_function_t *leaf) const
{
// EAX: highest extended function understood by CPUID
// EBX: vendor ID string
// EDX: vendor ID string
// ECX: vendor ID string
leaf->eax = max_ext_leaf;
#if BX_CPU_VENDOR_INTEL
leaf->ebx = 0;
leaf->edx = 0; // Reserved for Intel
leaf->ecx = 0;
#else
static Bit8u *vendor_string = (Bit8u *)SIM->get_param_string(BXPN_VENDOR_STRING)->getptr();
memcpy(&(leaf->ebx), vendor_string, 4);
memcpy(&(leaf->edx), vendor_string + 4, 4);
memcpy(&(leaf->ecx), vendor_string + 8, 4);
#endif
#ifdef BX_BIG_ENDIAN
leaf->ebx = bx_bswap32(leaf->ebx);
leaf->ecx = bx_bswap32(leaf->ecx);
leaf->edx = bx_bswap32(leaf->edx);
#endif
}
// leaf 0x80000001 //
void bx_generic_cpuid_t::get_ext_cpuid_leaf_1(cpuid_function_t *leaf) const
{
// EAX: CPU Version Information
leaf->eax = BX_CPU_VENDOR_INTEL ? 0 : get_cpu_version_information();
// EBX: Brand ID
leaf->ebx = 0;
// ECX:
leaf->ecx = get_ext2_cpuid_features();
// EDX:
// Many of the bits in EDX are the same as FN 0x00000001 [*] for AMD
// [*] [0:0] FPU on chip
// [*] [1:1] VME: Virtual-8086 Mode enhancements
// [*] [2:2] DE: Debug Extensions (I/O breakpoints)
// [*] [3:3] PSE: Page Size Extensions
// [*] [4:4] TSC: Time Stamp Counter
// [*] [5:5] MSR: RDMSR and WRMSR support
// [*] [6:6] PAE: Physical Address Extensions
// [*] [7:7] MCE: Machine Check Exception
// [*] [8:8] CXS: CMPXCHG8B instruction
// [*] [9:9] APIC: APIC on Chip
// [10:10] Reserved
// [11:11] SYSCALL/SYSRET support
// [*] [12:12] MTRR: Memory Type Range Reg
// [*] [13:13] PGE/PTE Global Bit
// [*] [14:14] MCA: Machine Check Architecture
// [*] [15:15] CMOV: Cond Mov/Cmp Instructions
// [*] [16:16] PAT: Page Attribute Table
// [*] [17:17] PSE-36: Physical Address Extensions
// [18:19] Reserved
// [20:20] No-Execute page protection
// [21:21] Reserved
// [22:22] AMD MMX Extensions
// [*] [23:23] MMX Technology
// [*] [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available)
// [25:25] Fast FXSAVE/FXRSTOR mode support
// [26:26] 1G paging support
// [27:27] Support RDTSCP Instruction
// [28:28] Reserved
// [29:29] Long Mode
// [30:30] AMD 3DNow! Extensions
// [31:31] AMD 3DNow! Instructions
leaf->edx = get_std2_cpuid_features();
}
// leaf 0x80000002 //
// leaf 0x80000003 //
// leaf 0x80000004 //
void bx_generic_cpuid_t::get_ext_cpuid_brand_string_leaf(Bit32u function, cpuid_function_t *leaf) const
{
// CPUID function 0x800000002-0x800000004 - Processor Name String Identifier
static Bit8u *brand_string = (Bit8u *)SIM->get_param_string(BXPN_BRAND_STRING)->getptr();
switch(function) {
case 0x80000002:
memcpy(&(leaf->eax), brand_string , 4);
memcpy(&(leaf->ebx), brand_string + 4, 4);
memcpy(&(leaf->ecx), brand_string + 8, 4);
memcpy(&(leaf->edx), brand_string + 12, 4);
break;
case 0x80000003:
memcpy(&(leaf->eax), brand_string + 16, 4);
memcpy(&(leaf->ebx), brand_string + 20, 4);
memcpy(&(leaf->ecx), brand_string + 24, 4);
memcpy(&(leaf->edx), brand_string + 28, 4);
break;
case 0x80000004:
memcpy(&(leaf->eax), brand_string + 32, 4);
memcpy(&(leaf->ebx), brand_string + 36, 4);
memcpy(&(leaf->ecx), brand_string + 40, 4);
memcpy(&(leaf->edx), brand_string + 44, 4);
break;
default:
break;
}
#ifdef BX_BIG_ENDIAN
leaf->eax = bx_bswap32(leaf->eax);
leaf->ebx = bx_bswap32(leaf->ebx);
leaf->ecx = bx_bswap32(leaf->ecx);
leaf->edx = bx_bswap32(leaf->edx);
#endif
}
// leaf 0x80000005 //
void bx_generic_cpuid_t::get_ext_cpuid_leaf_5(cpuid_function_t *leaf) const
{
// CPUID function 0x800000005 - L1 Cache and TLB Identifiers
leaf->eax = 0x01ff01ff;
leaf->ebx = 0x01ff01ff;
leaf->ecx = 0x40020140;
leaf->edx = 0x40020140;
}
// leaf 0x80000006 //
void bx_generic_cpuid_t::get_ext_cpuid_leaf_6(cpuid_function_t *leaf) const
{
// CPUID function 0x800000006 - L2 Cache and TLB Identifiers
leaf->eax = 0;
leaf->ebx = 0x42004200;
leaf->ecx = 0x02008140;
leaf->edx = 0;
}
// leaf 0x80000007 //
void bx_generic_cpuid_t::get_ext_cpuid_leaf_7(cpuid_function_t *leaf) const
{
// CPUID function 0x800000007 - Advanced Power Management
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0;
leaf->edx = 0;
}
// leaf 0x80000008 //
void bx_generic_cpuid_t::get_ext_cpuid_leaf_8(cpuid_function_t *leaf) const
{
// virtual & phys address size in low 2 bytes.
leaf->eax = BX_PHY_ADDRESS_WIDTH | (BX_LIN_ADDRESS_WIDTH << 8);
leaf->ebx = 0;
leaf->ecx = 0; // Reserved, undefined
leaf->edx = 0;
}
#if BX_SUPPORT_SVM
// leaf 0x8000000A //
void bx_generic_cpuid_t::get_ext_cpuid_leaf_A(cpuid_function_t *leaf) const
{
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SVM))
{
leaf->eax = BX_SVM_REVISION;
leaf->ebx = 0x40; /* number of ASIDs */
leaf->ecx = 0;
// * [0:0] NP - Nested paging support
// [1:1] LBR virtualization
// [2:2] SVM Lock
// * [3:3] NRIPS - Next RIP save on VMEXIT
// [4:4] TscRate - MSR based TSC ratio control
// [5:5] VMCB Clean bits support
// [6:6] Flush by ASID support
// [7:7] Decode assists support
// [9:8] Reserved
// [10:10] Pause filter support
// [11:11] Reserved
// [12:12] Pause filter threshold support
// [31:13] Reserved
leaf->edx = BX_CPUID_SVM_NESTED_PAGING | BX_CPUID_SVM_NRIP_SAVE;
}
else {
leaf->eax = 0;
leaf->ebx = 0;
leaf->ecx = 0; // Reserved, undefined
leaf->edx = 0;
}
}
#endif
#endif
void bx_generic_cpuid_t::init_isa_extensions_bitmask(void)
{
Bit64u features_bitmask = 0;
#if BX_SUPPORT_FPU
features_bitmask |= BX_ISA_X87;
#endif
#if BX_CPU_LEVEL >= 4
features_bitmask |= BX_ISA_486;
#if BX_CPU_LEVEL >= 5
features_bitmask |= BX_ISA_PENTIUM;
static bx_bool mmx_enabled = SIM->get_param_bool(BXPN_CPUID_MMX)->get();
if (mmx_enabled)
features_bitmask |= BX_ISA_MMX;
#if BX_SUPPORT_3DNOW
features_bitmask |= BX_ISA_3DNOW;
if (! mmx_enabled) {
BX_PANIC(("PANIC: 3DNOW emulation requires MMX support !"));
return;
}
#endif
#if BX_CPU_LEVEL >= 6
features_bitmask |= BX_ISA_P6;
#if BX_SUPPORT_MONITOR_MWAIT
static bx_bool mwait_enabled = SIM->get_param_bool(BXPN_CPUID_MWAIT)->get();
if (mwait_enabled)
features_bitmask |= BX_ISA_MONITOR_MWAIT;
#endif
static unsigned sse_enabled = SIM->get_param_enum(BXPN_CPUID_SSE)->get();
// determine SSE in runtime
switch (sse_enabled) {
case BX_CPUID_SUPPORT_SSE4_2:
features_bitmask |= BX_ISA_SSE4_2;
case BX_CPUID_SUPPORT_SSE4_1:
features_bitmask |= BX_ISA_SSE4_1;
case BX_CPUID_SUPPORT_SSSE3:
features_bitmask |= BX_ISA_SSSE3;
case BX_CPUID_SUPPORT_SSE3:
features_bitmask |= BX_ISA_SSE3;
case BX_CPUID_SUPPORT_SSE2:
features_bitmask |= BX_ISA_SSE2;
case BX_CPUID_SUPPORT_SSE:
features_bitmask |= BX_ISA_SSE;
case BX_CPUID_SUPPORT_NOSSE:
default:
break;
};
if (sse_enabled) {
if (mmx_enabled == 0 || BX_CPU_LEVEL < 6) {
BX_PANIC(("PANIC: SSE support requires P6 emulation with MMX enabled !"));
return;
}
}
// enable CLFLUSH only when SSE2 or higher is enabled
if (sse_enabled >= BX_CPUID_SUPPORT_SSE2)
features_bitmask |= BX_ISA_CLFLUSH;
// enable POPCNT if SSE4.2 is enabled
if (sse_enabled >= BX_CPUID_SUPPORT_SSE4_2)
features_bitmask |= BX_ISA_POPCNT;
static bx_bool sse4a_enabled = SIM->get_param_bool(BXPN_CPUID_SSE4A)->get();
if (sse4a_enabled) {
features_bitmask |= BX_ISA_SSE4A;
if (! sse_enabled) {
BX_PANIC(("PANIC: SSE4A require SSE to be enabled !"));
return;
}
}
static bx_bool sep_enabled = SIM->get_param_bool(BXPN_CPUID_SEP)->get();
if (sep_enabled)
features_bitmask |= BX_ISA_SYSENTER_SYSEXIT;
static bx_bool xsave_enabled = SIM->get_param_bool(BXPN_CPUID_XSAVE)->get();
if (xsave_enabled) {
features_bitmask |= BX_ISA_XSAVE;
if (! sse_enabled) {
BX_PANIC(("PANIC: XSAVE emulation requires SSE support !"));
return;
}
}
static bx_bool xsaveopt_enabled = SIM->get_param_bool(BXPN_CPUID_XSAVEOPT)->get();
if (xsaveopt_enabled) {
features_bitmask |= BX_ISA_XSAVEOPT;
if (! xsave_enabled) {
BX_PANIC(("PANIC: XSAVEOPT emulation requires XSAVE !"));
return;
}
}
static bx_bool aes_enabled = SIM->get_param_bool(BXPN_CPUID_AES)->get();
if (aes_enabled) {
features_bitmask |= BX_ISA_AES_PCLMULQDQ;
// AES required 3-byte opcode (SSS3E support or more)
if (sse_enabled < BX_CPUID_SUPPORT_SSSE3) {
BX_PANIC(("PANIC: AES support requires SSSE3 or higher !"));
return;
}
}
static bx_bool movbe_enabled = SIM->get_param_bool(BXPN_CPUID_MOVBE)->get();
if (movbe_enabled) {
features_bitmask |= BX_ISA_MOVBE;
// MOVBE required 3-byte opcode (SSS3E support or more)
if (sse_enabled < BX_CPUID_SUPPORT_SSSE3) {
BX_PANIC(("PANIC: MOVBE support requires SSSE3 or higher !"));
return;
}
}
#if BX_SUPPORT_X86_64
static bx_bool x86_64_enabled = SIM->get_param_bool(BXPN_CPUID_X86_64)->get();
if (x86_64_enabled) {
features_bitmask |= BX_ISA_CMPXCHG16B | BX_ISA_RDTSCP | BX_ISA_LM_LAHF_SAHF;
if (sse_enabled < BX_CPUID_SUPPORT_SSE2) {
BX_PANIC(("PANIC: x86-64 emulation requires SSE2 support !"));
return;
}
if (! sep_enabled) {
BX_PANIC(("PANIC: x86-64 emulation requires SYSENTER/SYSEXIT support !"));
return;
}
static bx_bool fsgsbase_enabled = SIM->get_param_bool(BXPN_CPUID_FSGSBASE)->get();
if (fsgsbase_enabled)
features_bitmask |= BX_ISA_FSGSBASE;
static unsigned apic_enabled = SIM->get_param_enum(BXPN_CPUID_APIC)->get();
if (apic_enabled < BX_CPUID_SUPPORT_XAPIC) {
BX_PANIC(("PANIC: x86-64 emulation requires XAPIC support !"));
return;
}
}
else {
if (BX_SUPPORT_VMX >= 2) {
BX_PANIC(("PANIC: VMXx2 emulation requires x86-64 support !"));
return;
}
}
#if BX_SUPPORT_AVX
static unsigned avx_enabled = SIM->get_param_num(BXPN_CPUID_AVX)->get();
if (avx_enabled) {
features_bitmask |= BX_ISA_AVX;
if (! xsave_enabled) {
BX_PANIC(("PANIC: AVX emulation requires XSAVE support !"));
return;
}
if (! x86_64_enabled) {
BX_PANIC(("PANIC: AVX emulation requires x86-64 support !"));
return;
}
if (avx_enabled >= 2)
features_bitmask |= BX_ISA_AVX2;
}
static bx_bool avx_f16c_enabled = SIM->get_param_bool(BXPN_CPUID_AVX_F16CVT)->get();
if (avx_f16c_enabled) {
if (! avx_enabled) {
BX_PANIC(("PANIC: Float16 convert emulation requires AVX support !"));
return;
}
features_bitmask |= BX_ISA_AVX_F16C;
}
static bx_bool avx_fma_enabled = SIM->get_param_bool(BXPN_CPUID_AVX_FMA)->get();
if (avx_fma_enabled) {
if (avx_enabled < 2) {
BX_PANIC(("PANIC: FMA emulation requires AVX2 support !"));
return;
}
features_bitmask |= BX_ISA_AVX_FMA;
}
static unsigned bmi_enabled = SIM->get_param_num(BXPN_CPUID_BMI)->get();
if (bmi_enabled) {
features_bitmask |= BX_ISA_BMI1 | BX_ISA_LZCNT;
if (! avx_enabled) {
BX_PANIC(("PANIC: Bit Manipulation Instructions (BMI) emulation requires AVX support !"));
return;
}
if (bmi_enabled >= 2)
features_bitmask |= BX_ISA_BMI2;
}
static bx_bool fma4_enabled = SIM->get_param_bool(BXPN_CPUID_FMA4)->get();
if (fma4_enabled) {
if (! avx_enabled) {
BX_PANIC(("PANIC: FMA4 emulation requires AVX support !"));
return;
}
features_bitmask |= BX_ISA_FMA4;
}
static bx_bool xop_enabled = SIM->get_param_bool(BXPN_CPUID_XOP)->get();
if (xop_enabled) {
if (! avx_enabled) {
BX_PANIC(("PANIC: XOP emulation requires AVX support !"));
return;
}
features_bitmask |= BX_ISA_XOP;
}
static bx_bool tbm_enabled = SIM->get_param_bool(BXPN_CPUID_TBM)->get();
if (tbm_enabled) {
if (! avx_enabled || ! xop_enabled) {
BX_PANIC(("PANIC: TBM emulation requires AVX and XOP support !"));
return;
}
features_bitmask |= BX_ISA_TBM;
}
#endif // BX_SUPPORT_AVX
#endif // BX_SUPPORT_X86_64
#if BX_SUPPORT_VMX
static unsigned vmx_enabled = SIM->get_param_num(BXPN_CPUID_VMX)->get();
if (vmx_enabled) {
features_bitmask |= BX_ISA_VMX;
if (! sep_enabled) {
BX_PANIC(("PANIC: VMX emulation requires SYSENTER/SYSEXIT support !"));
return;
}
}
#endif
#if BX_SUPPORT_SVM
static unsigned svm_enabled = SIM->get_param_num(BXPN_CPUID_SVM)->get();
if (svm_enabled) {
features_bitmask |= BX_ISA_SVM;
if (! x86_64_enabled) {
BX_PANIC(("PANIC: SVM emulation requires x86-64 support !"));
return;
}
}
#endif
#if BX_SUPPORT_VMX && BX_SUPPORT_SVM
if (vmx_enabled && svm_enabled) {
BX_PANIC(("PANIC: VMX and SVM emulation cannot be enabled together in same configuration !"));
return;
}
#endif
#endif // CPU_LEVEL >= 6
#endif // CPU_LEVEL >= 5
#endif // CPU_LEVEL >= 4
this->isa_extensions_bitmask = features_bitmask;
}
void bx_generic_cpuid_t::init_cpu_extensions_bitmask(void)
{
Bit32u features_bitmask = 0;
#if BX_SUPPORT_APIC
static unsigned apic_enabled = SIM->get_param_enum(BXPN_CPUID_APIC)->get();
// determine SSE in runtime
switch (apic_enabled) {
#if BX_CPU_LEVEL >= 6
case BX_CPUID_SUPPORT_X2APIC:
features_bitmask |= BX_CPU_X2APIC | BX_CPU_XAPIC;
break;
case BX_CPUID_SUPPORT_XAPIC_EXT:
features_bitmask |= BX_CPU_XAPIC_EXT | BX_CPU_XAPIC;
break;
#endif
case BX_CPUID_SUPPORT_XAPIC:
features_bitmask |= BX_CPU_XAPIC;
break;
case BX_CPUID_SUPPORT_LEGACY_APIC:
break;
default:
BX_PANIC(("unknown APIC option %d", apic_enabled));
};
#endif
#if BX_CPU_LEVEL >= 5
features_bitmask |= BX_CPU_VME;
features_bitmask |= BX_CPU_DEBUG_EXTENSIONS;
features_bitmask |= BX_CPU_PSE;
#if BX_CPU_LEVEL >= 6
features_bitmask |= BX_CPU_PAE;
features_bitmask |= BX_CPU_PGE;
#if BX_PHY_ADDRESS_LONG
features_bitmask |= BX_CPU_PSE36;
#endif
features_bitmask |= BX_CPU_MTRR;
features_bitmask |= BX_CPU_PAT;
#if BX_SUPPORT_MISALIGNED_SSE
features_bitmask |= BX_CPU_MISALIGNED_SSE;
#endif
static bx_bool smep_enabled = SIM->get_param_bool(BXPN_CPUID_SMEP)->get();
if (smep_enabled)
features_bitmask |= BX_CPU_SMEP;
#if BX_SUPPORT_X86_64
static bx_bool x86_64_enabled = SIM->get_param_bool(BXPN_CPUID_X86_64)->get();
if (x86_64_enabled) {
features_bitmask |= BX_CPU_LONG_MODE | BX_CPU_FFXSR | BX_CPU_NX;
static bx_bool pcid_enabled = SIM->get_param_bool(BXPN_CPUID_PCID)->get();
if (pcid_enabled)
features_bitmask |= BX_CPU_PCID;
static bx_bool xlarge_pages = SIM->get_param_bool(BXPN_CPUID_1G_PAGES)->get();
if (xlarge_pages)
features_bitmask |= BX_CPU_1G_PAGES;
}
#if BX_SUPPORT_SVM
static unsigned svm_enabled = SIM->get_param_num(BXPN_CPUID_SVM)->get();
if (svm_enabled) {
features_bitmask |= BX_CPU_ALT_MOV_CR8 | BX_CPU_XAPIC_EXT; // auto-enable together with SVM
}
#endif
#endif // BX_SUPPORT_X86_64
#endif // CPU_LEVEL >= 6
#endif // CPU_LEVEL >= 5
this->cpu_extensions_bitmask = features_bitmask;
}
#if BX_SUPPORT_VMX
void bx_generic_cpuid_t::init_vmx_extensions_bitmask(void)
{
Bit32u features_bitmask = 0;
static unsigned vmx_enabled = SIM->get_param_num(BXPN_CPUID_VMX)->get();
if (vmx_enabled) {
features_bitmask |= BX_VMX_VIRTUAL_NMI;
static bx_bool x86_64_enabled = SIM->get_param_bool(BXPN_CPUID_X86_64)->get();
if (x86_64_enabled) {
features_bitmask |= BX_VMX_TPR_SHADOW |
BX_VMX_APIC_VIRTUALIZATION |
BX_VMX_WBINVD_VMEXIT;
#if BX_SUPPORT_VMX >= 2
if (vmx_enabled >= 2) {
features_bitmask |= BX_VMX_PREEMPTION_TIMER |
BX_VMX_PAT |
BX_VMX_EFER |
BX_VMX_EPT |
BX_VMX_VPID |
BX_VMX_UNRESTRICTED_GUEST |
BX_VMX_DESCRIPTOR_TABLE_EXIT |
BX_VMX_X2APIC_VIRTUALIZATION |
BX_VMX_PAUSE_LOOP_EXITING;
features_bitmask |= BX_VMX_SAVE_DEBUGCTL_DISABLE |
/* BX_VMX_MONITOR_TRAP_FLAG | */ // not implemented yet
BX_VMX_PERF_GLOBAL_CTRL;
}
#endif
}
}
this->vmx_extensions_bitmask = features_bitmask;
}
#endif
#if BX_SUPPORT_SVM
void bx_generic_cpuid_t::init_svm_extensions_bitmask(void)
{
Bit32u features_bitmask = 0;
/*
static bx_bool svm_enabled = SIM->get_param_bool(BXPN_CPUID_SVM)->get();
if (svm_enabled) {
// do smth
}
*/
this->svm_extensions_bitmask = features_bitmask;
}
#endif
/*
* Get CPU version information:
*
* [3:0] Stepping ID
* [7:4] Model: starts at 1
* [11:8] Family: 4=486, 5=Pentium, 6=PPro, ...
* [13:12] Type: 0=OEM, 1=overdrive, 2=dual cpu, 3=reserved
* [19:16] Extended Model
* [27:29] Extended Family
*/
Bit32u bx_generic_cpuid_t::get_cpu_version_information(void) const
{
static Bit32u stepping = SIM->get_param_num(BXPN_CPUID_STEPPING)->get();
static Bit32u model = SIM->get_param_num(BXPN_CPUID_MODEL)->get();
static Bit32u family = SIM->get_param_num(BXPN_CPUID_FAMILY)->get();
if (family < 6 && family != BX_CPU_LEVEL)
BX_PANIC(("PANIC: CPUID family %x not matching configured cpu level %d", family, BX_CPU_LEVEL));
return ((family & 0xfff0) << 16) |
((model & 0xf0) << 12) |
((family & 0x0f) << 8) |
((model & 0x0f) << 4) | stepping;
}
#if BX_CPU_LEVEL >= 6
/* Get CPU extended feature flags. */
Bit32u bx_generic_cpuid_t::get_extended_cpuid_features(void) const
{
// [0:0] SSE3: SSE3 Instructions
// [1:1] PCLMULQDQ Instruction support
// [2:2] DTES64: 64-bit DS area
// [3:3] MONITOR/MWAIT support
// [4:4] DS-CPL: CPL qualified debug store
// [5:5] VMX: Virtual Machine Technology
// [6:6] SMX: Secure Virtual Machine Technology
// [7:7] EST: Enhanced Intel SpeedStep Technology
// [8:8] TM2: Thermal Monitor 2
// [9:9] SSSE3: SSSE3 Instructions
// [10:10] CNXT-ID: L1 context ID
// [11:11] reserved
// [12:12] FMA Instructions support
// [13:13] CMPXCHG16B: CMPXCHG16B instruction support
// [14:14] xTPR update control
// [15:15] PDCM - Perfon and Debug Capability MSR
// [16:16] reserved
// [17:17] PCID: Process Context Identifiers
// [18:18] DCA - Direct Cache Access
// [19:19] SSE4.1 Instructions
// [20:20] SSE4.2 Instructions
// [21:21] X2APIC
// [22:22] MOVBE instruction
// [23:23] POPCNT instruction
// [24:24] TSC Deadline
// [25:25] AES Instructions
// [26:26] XSAVE extensions support
// [27:27] OSXSAVE support
// [28:28] AVX extensions support
// [29:29] AVX F16C - Float16 conversion support
// [30:30] RDRAND instruction
// [31:31] reserved
Bit32u features = 0;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE3))
features |= BX_CPUID_EXT_SSE3;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AES_PCLMULQDQ))
features |= BX_CPUID_EXT_PCLMULQDQ;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_MONITOR_MWAIT))
features |= BX_CPUID_EXT_MONITOR_MWAIT;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_VMX))
features |= BX_CPUID_EXT_VMX;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSSE3))
features |= BX_CPUID_EXT_SSSE3;
#if BX_SUPPORT_X86_64
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_LONG_MODE))
features |= BX_CPUID_EXT_CMPXCHG16B;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PCID))
features |= BX_CPUID_EXT_PCID;
#endif
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE4_1))
features |= BX_CPUID_EXT_SSE4_1;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE4_2))
features |= BX_CPUID_EXT_SSE4_2;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_X2APIC))
features |= BX_CPUID_EXT_X2APIC;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_MOVBE))
features |= BX_CPUID_EXT_MOVBE;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_POPCNT))
features |= BX_CPUID_EXT_POPCNT;
// support for AES
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AES_PCLMULQDQ))
features |= BX_CPUID_EXT_AES;
// support XSAVE extensions
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XSAVE)) {
features |= BX_CPUID_EXT_XSAVE;
if (cpu->cr4.get_OSXSAVE())
features |= BX_CPUID_EXT_OSXSAVE;
}
#if BX_SUPPORT_AVX
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX))
features |= BX_CPUID_EXT_AVX;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX_F16C))
features |= BX_CPUID_EXT_AVX_F16C;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX_FMA))
features |= BX_CPUID_EXT_FMA;
#endif
return features;
}
#endif
/* Get CPU feature flags. Returned by CPUID functions 1 and 80000001. */
Bit32u bx_generic_cpuid_t::get_std_cpuid_features(void) const
{
// [0:0] FPU on chip
// [1:1] VME: Virtual-8086 Mode enhancements
// [2:2] DE: Debug Extensions (I/O breakpoints)
// [3:3] PSE: Page Size Extensions
// [4:4] TSC: Time Stamp Counter
// [5:5] MSR: RDMSR and WRMSR support
// [6:6] PAE: Physical Address Extensions
// [7:7] MCE: Machine Check Exception
// [8:8] CXS: CMPXCHG8B instruction
// [9:9] APIC: APIC on Chip
// [10:10] Reserved
// [11:11] SYSENTER/SYSEXIT support
// [12:12] MTRR: Memory Type Range Reg
// [13:13] PGE/PTE Global Bit
// [14:14] MCA: Machine Check Architecture
// [15:15] CMOV: Cond Mov/Cmp Instructions
// [16:16] PAT: Page Attribute Table
// [17:17] PSE-36: Physical Address Extensions
// [18:18] PSN: Processor Serial Number
// [19:19] CLFLUSH: CLFLUSH Instruction support
// [20:20] Reserved
// [21:21] DS: Debug Store
// [22:22] ACPI: Thermal Monitor and Software Controlled Clock Facilities
// [23:23] MMX Technology
// [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available)
// [25:25] SSE: SSE Extensions
// [26:26] SSE2: SSE2 Extensions
// [27:27] Self Snoop
// [28:28] Hyper Threading Technology
// [29:29] TM: Thermal Monitor
// [30:30] Reserved
// [31:31] PBE: Pending Break Enable
Bit32u features = 0;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_X87))
features |= BX_CPUID_STD_X87;
#if BX_CPU_LEVEL >= 5
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_PENTIUM)) {
// Pentium only features
features |= BX_CPUID_STD_TSC;
features |= BX_CPUID_STD_MSR;
// support Machine Check
features |= BX_CPUID_STD_MCE | BX_CPUID_STD_MCA;
features |= BX_CPUID_STD_CMPXCHG8B;
}
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_VME))
features |= BX_CPUID_STD_VME;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_DEBUG_EXTENSIONS))
features |= BX_CPUID_STD_DEBUG_EXTENSIONS;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PSE))
features |= BX_CPUID_STD_PSE;
#endif
#if BX_SUPPORT_APIC
// if MSR_APICBASE APIC Global Enable bit has been cleared,
// the CPUID feature flag for the APIC is set to 0.
if (cpu->msr.apicbase & 0x800)
features |= BX_CPUID_STD_APIC; // APIC on chip
#endif
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SYSENTER_SYSEXIT))
features |= BX_CPUID_STD_SYSENTER_SYSEXIT;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_CLFLUSH))
features |= BX_CPUID_STD_CLFLUSH;
#if BX_CPU_LEVEL >= 5
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_MMX))
features |= BX_CPUID_STD_MMX;
#endif
#if BX_CPU_LEVEL >= 6
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_P6)) {
features |= BX_CPUID_STD_CMOV;
features |= BX_CPUID_STD_ACPI;
}
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_MTRR))
features |= BX_CPUID_STD_MTRR;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PAT))
features |= BX_CPUID_STD_PAT;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PAE))
features |= BX_CPUID_STD_PAE;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PGE))
features |= BX_CPUID_STD_GLOBAL_PAGES;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PSE36))
features |= BX_CPUID_STD_PSE36;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE))
features |= BX_CPUID_STD_FXSAVE_FXRSTOR | BX_CPUID_STD_SSE;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE2))
features |= BX_CPUID_STD_SSE2;
if (BX_CPU_VENDOR_INTEL)
features |= BX_CPUID_STD_SELF_SNOOP;
#endif
features |= BX_CPUID_STD_HT;
return features;
}
#if BX_CPU_LEVEL >= 6
/* Get CPU feature flags. Returned by CPUID function 80000001 in EDX register */
Bit32u bx_generic_cpuid_t::get_std2_cpuid_features(void) const
{
// Many of the bits in EDX are the same as EAX [*] for AMD
// [*] [0:0] FPU on chip
// [*] [1:1] VME: Virtual-8086 Mode enhancements
// [*] [2:2] DE: Debug Extensions (I/O breakpoints)
// [*] [3:3] PSE: Page Size Extensions
// [*] [4:4] TSC: Time Stamp Counter
// [*] [5:5] MSR: RDMSR and WRMSR support
// [*] [6:6] PAE: Physical Address Extensions
// [*] [7:7] MCE: Machine Check Exception
// [*] [8:8] CXS: CMPXCHG8B instruction
// [*] [9:9] APIC: APIC on Chip
// [10:10] Reserved
// [11:11] SYSCALL/SYSRET support
// [*] [12:12] MTRR: Memory Type Range Reg
// [*] [13:13] PGE/PTE Global Bit
// [*] [14:14] MCA: Machine Check Architecture
// [*] [15:15] CMOV: Cond Mov/Cmp Instructions
// [*] [16:16] PAT: Page Attribute Table
// [*] [17:17] PSE-36: Physical Address Extensions
// [18:19] Reserved
// [20:20] No-Execute page protection
// [21:21] Reserved
// [22:22] AMD MMX Extensions
// [*] [23:23] MMX Technology
// [*] [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available)
// [25:25] Fast FXSAVE/FXRSTOR mode support
// [26:26] 1G paging support
// [27:27] Support RDTSCP Instruction
// [28:28] Reserved
// [29:29] Long Mode
// [30:30] AMD 3DNow! Extensions
// [31:31] AMD 3DNow! Instructions
Bit32u features = BX_CPU_VENDOR_INTEL ? 0 : get_std_cpuid_features();
features &= 0x0183F3FF;
#if BX_SUPPORT_3DNOW
// only AMD is interesting in AMD MMX extensions
features |= BX_CPUID_STD2_AMD_MMX_EXT | BX_CPUID_STD2_3DNOW_EXT | BX_CPUID_STD2_3DNOW;
#endif
#if BX_SUPPORT_X86_64
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_LONG_MODE)) {
features |= BX_CPUID_STD2_LONG_MODE;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_RDTSCP))
features |= BX_CPUID_STD2_RDTSCP;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_NX))
features |= BX_CPUID_STD2_NX;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_FFXSR))
features |= BX_CPUID_STD2_FFXSR;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_1G_PAGES))
features |= BX_CPUID_STD2_1G_PAGES;
if (cpu->long64_mode())
features |= BX_CPUID_STD2_SYSCALL_SYSRET;
}
#endif
return features;
}
/* Get CPU feature flags. Returned by CPUID function 80000001 in ECX register */
Bit32u bx_generic_cpuid_t::get_ext2_cpuid_features(void) const
{
// ECX:
// [0:0] LAHF/SAHF instructions support in 64-bit mode
// [1:1] CMP_Legacy: Core multi-processing legacy mode (AMD)
// [2:2] SVM: Secure Virtual Machine (AMD)
// [3:3] Extended APIC Space
// [4:4] AltMovCR8: LOCK MOV CR0 means MOV CR8
// [5:5] LZCNT: LZCNT instruction support
// [6:6] SSE4A: SSE4A Instructions support (deprecated?)
// [7:7] Misaligned SSE support
// [8:8] PREFETCHW: PREFETCHW instruction support
// [9:9] OSVW: OS visible workarounds (AMD)
// [10:10] IBS: Instruction based sampling
// [11:11] XOP: Extended Operations Support and XOP Prefix
// [12:12] SKINIT support
// [13:13] WDT: Watchdog timer support
// [14:14] reserved
// [15:15] LWP: Light weight profiling
// [16:16] FMA4: Four-operand FMA instructions support
// [18:17] reserved
// [19:19] NodeId: Indicates support for NodeId MSR (0xc001100c)
// [20:20] reserved
// [21:21] TBM: trailing bit manipulation instructions support
// [22:22] Topology extensions support
// [31:23] reserved
Bit32u features = 0;
#if BX_SUPPORT_X86_64
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_LONG_MODE))
features |= BX_CPUID_EXT2_LAHF_SAHF | BX_CPUID_EXT2_PREFETCHW;
#endif
#if BX_SUPPORT_MISALIGNED_SSE
features |= BX_CPUID_EXT2_MISALIGNED_SSE;
#endif
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_LZCNT))
features |= BX_CPUID_EXT2_LZCNT;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_SSE4A))
features |= BX_CPUID_EXT2_SSE4A;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_XOP))
features |= BX_CPUID_EXT2_XOP;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_FMA4))
features |= BX_CPUID_EXT2_FMA4;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_TBM))
features |= BX_CPUID_EXT2_TBM;
return features;
}
Bit32u bx_generic_cpuid_t::get_ext3_cpuid_features(void) const
{
Bit32u features = 0;
// [0:0] FS/GS BASE access instructions
// [2:1] reserved
// [3:3] BMI1: Advanced Bit Manipulation Extensions
// [4:4] reserved
// [5:5] AVX2
// [6:6] reserved
// [7:7] SMEP: Supervisor Mode Execution Protection
// [8:8] BMI2: Advanced Bit Manipulation Extensions
// [9:9] Support for Enhanced REP MOVSB/STOSB
// [10:10] Support for INVPCID instruction
// [31:10] reserved
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_FSGSBASE))
features |= BX_CPUID_EXT3_FSGSBASE;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_BMI1))
features |= BX_CPUID_EXT3_BMI1;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX2))
features |= BX_CPUID_EXT3_AVX2;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_SMEP))
features |= BX_CPUID_EXT3_SMEP;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_BMI2))
features |= BX_CPUID_EXT3_BMI2;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_INVPCID))
features |= BX_CPUID_EXT3_INVPCID;
return features;
}
#endif
void bx_generic_cpuid_t::dump_cpuid(void) const
{
struct cpuid_function_t leaf;
unsigned n;
for (n=0; n <= max_std_leaf; n++) {
get_cpuid_leaf(n, 0x00000000, &leaf);
BX_INFO(("CPUID[0x%08x]: %08x %08x %08x %08x", n, leaf.eax, leaf.ebx, leaf.ecx, leaf.edx));
}
#if BX_CPU_LEVEL >= 6
if (max_ext_leaf > 0) {
for (n=0x80000000; n <= max_ext_leaf; n++) {
get_cpuid_leaf(n, 0x00000000, &leaf);
BX_INFO(("CPUID[0x%08x]: %08x %08x %08x %08x", n, leaf.eax, leaf.ebx, leaf.ecx, leaf.edx));
}
}
#endif
}
bx_cpuid_t *create_bx_generic_cpuid(BX_CPU_C *cpu) { return new bx_generic_cpuid_t(cpu); }
#endif