Bochs/bochs/cpu/proc_ctrl.cc
2005-09-14 20:01:42 +00:00

2311 lines
71 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: proc_ctrl.cc,v 1.113 2005-09-14 20:01:42 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64==0
// Make life easier for merging code.
#define RAX EAX
#define RBX EBX
#define RCX ECX
#define RDX EDX
#endif
void BX_CPU_C::UndefinedOpcode(bxInstruction_c *i)
{
BX_DEBUG(("UndefinedOpcode: %02x causes exception 6", (unsigned) i->b1()));
exception(BX_UD_EXCEPTION, 0, 0);
}
void BX_CPU_C::NOP(bxInstruction_c *i)
{
// No operation.
}
void BX_CPU_C::PREFETCH(bxInstruction_c *i)
{
#if BX_SUPPORT_3DNOW || BX_SUPPORT_SSE >= 1
BX_INSTR_PREFETCH_HINT(BX_CPU_ID, i->nnn(), i->seg(), RMAddr(i));
#else
UndefinedOpcode(i);
#endif
}
void BX_CPU_C::HLT(bxInstruction_c *i)
{
// hack to panic if HLT comes from BIOS
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value == 0xf000)
BX_PANIC(("HALT instruction encountered in the BIOS ROM"));
if (!real_mode() && CPL!=0) {
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
if (! BX_CPU_THIS_PTR get_IF ()) {
BX_PANIC(("WARNING: HLT instruction with IF=0!"));
}
// stops instruction execution and places the processor in a
// HALT state. An enabled interrupt, NMI, or reset will resume
// execution. If interrupt (including NMI) is used to resume
// execution after HLT, the saved CS:eIP points to instruction
// following HLT.
// artificial trap bit, why use another variable.
BX_CPU_THIS_PTR debug_trap |= 0x80000000; // artificial trap
BX_CPU_THIS_PTR async_event = 1; // so processor knows to check
// Execution of this instruction completes. The processor
// will remain in a halt state until one of the above conditions
// is met.
BX_INSTR_HLT(BX_CPU_ID);
#if BX_USE_IDLE_HACK
bx_gui->sim_is_idle ();
#endif /* BX_USE_IDLE_HACK */
}
void BX_CPU_C::CLTS(bxInstruction_c *i)
{
// #GP(0) if CPL is not 0
if (!real_mode() && CPL!=0) {
BX_INFO(("CLTS: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
return;
}
BX_CPU_THIS_PTR cr0.ts = 0;
BX_CPU_THIS_PTR cr0.val32 &= ~0x08;
}
void BX_CPU_C::INVD(bxInstruction_c *i)
{
BX_INFO(("---------------"));
BX_INFO(("- INVD called -"));
BX_INFO(("---------------"));
#if BX_CPU_LEVEL >= 4
invalidate_prefetch_q();
// protected or v8086 mode
if (BX_CPU_THIS_PTR cr0.pe) {
if (CPL!=0) {
BX_INFO(("INVD: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
BX_INSTR_CACHE_CNTRL(BX_CPU_ID, BX_INSTR_INVD);
#else
UndefinedOpcode(i);
#endif
}
void BX_CPU_C::WBINVD(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 4
invalidate_prefetch_q();
if (BX_CPU_THIS_PTR cr0.pe) {
if (CPL!=0) {
BX_INFO(("WBINVD: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
BX_INSTR_CACHE_CNTRL(BX_CPU_ID, BX_INSTR_WBINVD);
#else
UndefinedOpcode(i);
#endif
}
#if BX_CPU_LEVEL >= 3
void BX_CPU_C::MOV_DdRd(bxInstruction_c *i)
{
Bit32u val_32;
if (v8086_mode()) {
BX_INFO(("MOV_DdRd: v8086 mode causes #GP(0)"));
exception(BX_GP_EXCEPTION, 0, 0);
}
/* NOTES:
* 32bit operands always used
* r/m field specifies general register
* reg field specifies which special register
*/
/* This instruction is always treated as a register-to-register,
* regardless of the encoding of the MOD field in the MODRM byte.
*/
if (!i->modC0())
BX_INFO(("MOV_DdRd(): rm field not a register!"));
invalidate_prefetch_q();
/* #GP(0) if CPL is not 0 */
if (protected_mode() && CPL!=0) {
BX_INFO(("MOV_DdRd: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
val_32 = BX_READ_32BIT_REG(i->rm());
if (bx_dbg.dreg)
BX_INFO(("MOV_DdRd: DR[%u]=%08xh unhandled",
(unsigned) i->nnn(), (unsigned) val_32));
switch (i->nnn()) {
case 0: // DR0
BX_CPU_THIS_PTR dr0 = val_32;
break;
case 1: // DR1
BX_CPU_THIS_PTR dr1 = val_32;
break;
case 2: // DR2
BX_CPU_THIS_PTR dr2 = val_32;
break;
case 3: // DR3
BX_CPU_THIS_PTR dr3 = val_32;
break;
case 4: // DR4
case 6: // DR6
// DR4 aliased to DR6 by default. With Debug Extensions on,
// access to DR4 causes #UD
#if BX_CPU_LEVEL >= 4
if ((i->nnn() == 4) && (BX_CPU_THIS_PTR cr4.get_DE())) {
// Debug extensions on
BX_INFO(("MOV_DdRd: access to DR4 causes #UD"));
UndefinedOpcode(i);
}
#endif
#if BX_CPU_LEVEL <= 4
// On 386/486 bit12 is settable
BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
(val_32 & 0x0000f00f);
#else
// On Pentium+, bit12 is always zero
BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
(val_32 & 0x0000e00f);
#endif
break;
case 5: // DR5
case 7: // DR7
// Note: 486+ ignore GE and LE flags. On the 386, exact
// data breakpoint matching does not occur unless it is enabled
// by setting the LE and/or GE flags.
// DR5 aliased to DR7 by default. With Debug Extensions on,
// access to DR5 causes #UD
#if BX_CPU_LEVEL >= 4
if ((i->nnn() == 5) && (BX_CPU_THIS_PTR cr4.get_DE())) {
// Debug extensions (CR4.DE) on
BX_INFO(("MOV_DdRd: access to DR5 causes #UD"));
UndefinedOpcode(i);
}
#endif
// Some sanity checks...
if ( val_32 & 0x00002000 ) {
BX_INFO(("MOV_DdRd: GD bit not supported yet"));
// Note: processor clears GD upon entering debug exception
// handler, to allow access to the debug registers
}
if ( (((val_32>>16) & 3)==2) ||
(((val_32>>20) & 3)==2) ||
(((val_32>>24) & 3)==2) ||
(((val_32>>28) & 3)==2) ) {
// IO breakpoints (10b) are not yet supported.
BX_PANIC(("MOV_DdRd: write of %08x contains IO breakpoint", val_32));
}
if ( (((val_32>>18) & 3)==2) ||
(((val_32>>22) & 3)==2) ||
(((val_32>>26) & 3)==2) ||
(((val_32>>30) & 3)==2) ) {
// LEN0..3 contains undefined length specifier (10b)
BX_PANIC(("MOV_DdRd: write of %08x contains undefined LENx", val_32));
}
if ( ((((val_32>>16) & 3)==0) && (((val_32>>18) & 3)!=0)) ||
((((val_32>>20) & 3)==0) && (((val_32>>22) & 3)!=0)) ||
((((val_32>>24) & 3)==0) && (((val_32>>26) & 3)!=0)) ||
((((val_32>>28) & 3)==0) && (((val_32>>30) & 3)!=0)) )
{
// Instruction breakpoint with LENx not 00b (1-byte length)
BX_PANIC(("MOV_DdRd: write of %08x, R/W=00b LEN!=00b", val_32));
}
#if BX_CPU_LEVEL <= 4
// 386/486: you can play with all the bits except b10 is always 1
BX_CPU_THIS_PTR dr7 = val_32 | 0x00000400;
#else
// Pentium+: bits15,14,12 are hardwired to 0, rest are settable.
// Even bits 11,10 are changeable though reserved.
BX_CPU_THIS_PTR dr7 = (val_32 & 0xffff2fff) | 0x00000400;
#endif
// if we have breakpoints enabled then we must check
// breakpoints condition in cpu loop
if(BX_CPU_THIS_PTR dr7 & 0xff)
BX_CPU_THIS_PTR async_event = 1;
break;
default:
BX_PANIC(("MOV_DdRd: control register index out of range"));
break;
}
}
void BX_CPU_C::MOV_RdDd(bxInstruction_c *i)
{
Bit32u val_32;
if (v8086_mode()) {
BX_INFO(("MOV_RdDd: v8086 mode causes #GP(0)"));
exception(BX_GP_EXCEPTION, 0, 0);
}
/* This instruction is always treated as a register-to-register,
* regardless of the encoding of the MOD field in the MODRM byte.
*/
if (!i->modC0())
BX_INFO(("MOV_RdDd(): rm field not a register!"));
/* #GP(0) if CPL is not 0 */
if (protected_mode() && (CPL!=0)) {
BX_INFO(("MOV_RdDd: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
if (bx_dbg.dreg)
BX_INFO(("MOV_RdDd: DR%u not implemented yet", i->nnn()));
switch (i->nnn()) {
case 0: // DR0
val_32 = BX_CPU_THIS_PTR dr0;
break;
case 1: // DR1
val_32 = BX_CPU_THIS_PTR dr1;
break;
case 2: // DR2
val_32 = BX_CPU_THIS_PTR dr2;
break;
case 3: // DR3
val_32 = BX_CPU_THIS_PTR dr3;
break;
case 4: // DR4
case 6: // DR6
// DR4 aliased to DR6 by default. With Debug Extensions on,
// access to DR4 causes #UD
#if BX_CPU_LEVEL >= 4
if ( (i->nnn() == 4) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
// Debug extensions on
BX_INFO(("MOV_RdDd: access to DR4 causes #UD"));
UndefinedOpcode(i);
}
#endif
val_32 = BX_CPU_THIS_PTR dr6;
break;
case 5: // DR5
case 7: // DR7
// DR5 aliased to DR7 by default. With Debug Extensions on,
// access to DR5 causes #UD
#if BX_CPU_LEVEL >= 4
if ( (i->nnn() == 5) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
// Debug extensions on
BX_INFO(("MOV_RdDd: access to DR5 causes #UD"));
UndefinedOpcode(i);
}
#endif
val_32 = BX_CPU_THIS_PTR dr7;
break;
default:
BX_PANIC(("MOV_RdDd: control register index out of range"));
val_32 = 0;
}
BX_WRITE_32BIT_REGZ(i->rm(), val_32);
}
#if BX_SUPPORT_X86_64
void BX_CPU_C::MOV_DqRq(bxInstruction_c *i)
{
Bit64u val_64;
if (v8086_mode()) {
BX_INFO(("MOV_DqRq: v8086 mode causes #GP(0)"));
exception(BX_GP_EXCEPTION, 0, 0);
}
/* NOTES:
* 64bit operands always used
* r/m field specifies general register
* reg field specifies which special register
*/
/* This instruction is always treated as a register-to-register,
* regardless of the encoding of the MOD field in the MODRM byte.
*/
if (!i->modC0())
BX_INFO(("MOV_DqRq(): rm field not a register!"));
invalidate_prefetch_q();
/* #GP(0) if CPL is not 0 */
if (protected_mode() && CPL!=0) {
BX_INFO(("MOV_DqRq: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
val_64 = BX_READ_64BIT_REG(i->rm());
if (bx_dbg.dreg)
BX_INFO(("MOV_DqRq: DR[%u]=%08xh unhandled",
(unsigned) i->nnn(), (unsigned) val_64));
switch (i->nnn()) {
case 0: // DR0
BX_CPU_THIS_PTR dr0 = val_64;
break;
case 1: // DR1
BX_CPU_THIS_PTR dr1 = val_64;
break;
case 2: // DR2
BX_CPU_THIS_PTR dr2 = val_64;
break;
case 3: // DR3
BX_CPU_THIS_PTR dr3 = val_64;
break;
case 4: // DR4
case 6: // DR6
// DR4 aliased to DR6 by default. With Debug Extensions on,
// access to DR4 causes #UD
if ( (i->nnn() == 4) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
// Debug extensions on
BX_INFO(("MOV_DqRq: access to DR4 causes #UD"));
UndefinedOpcode(i);
}
// On Pentium+, bit12 is always zero
BX_CPU_THIS_PTR dr6 = (BX_CPU_THIS_PTR dr6 & 0xffff0ff0) |
(val_64 & 0x0000e00f);
break;
case 5: // DR5
case 7: // DR7
// Note: 486+ ignore GE and LE flags. On the 386, exact
// data breakpoint matching does not occur unless it is enabled
// by setting the LE and/or GE flags.
// DR5 aliased to DR7 by default. With Debug Extensions on,
// access to DR5 causes #UD
if ( (i->nnn() == 5) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
// Debug extensions (CR4.DE) on
BX_INFO(("MOV_DqRq: access to DR5 causes #UD"));
UndefinedOpcode(i);
}
// Some sanity checks...
if ( val_64 & 0x00002000 ) {
BX_PANIC(("MOV_DqRq: GD bit not supported yet"));
// Note: processor clears GD upon entering debug exception
// handler, to allow access to the debug registers
}
if ( (((val_64>>16) & 3)==2) ||
(((val_64>>20) & 3)==2) ||
(((val_64>>24) & 3)==2) ||
(((val_64>>28) & 3)==2) )
{
// IO breakpoints (10b) are not yet supported.
BX_PANIC(("MOV_DqRq: write of %08x:%08x contains IO breakpoint",
(Bit32u)(val_64 >> 32), (Bit32u)(val_64 & 0xFFFFFFFF)));
}
if ( (((val_64>>18) & 3)==2) ||
(((val_64>>22) & 3)==2) ||
(((val_64>>26) & 3)==2) ||
(((val_64>>30) & 3)==2) )
{
// LEN0..3 contains undefined length specifier (10b)
BX_PANIC(("MOV_DqRq: write of %08x:%08x contains undefined LENx",
(Bit32u)(val_64 >> 32), (Bit32u)(val_64 & 0xFFFFFFFF)));
}
if ( ((((val_64>>16) & 3)==0) && (((val_64>>18) & 3)!=0)) ||
((((val_64>>20) & 3)==0) && (((val_64>>22) & 3)!=0)) ||
((((val_64>>24) & 3)==0) && (((val_64>>26) & 3)!=0)) ||
((((val_64>>28) & 3)==0) && (((val_64>>30) & 3)!=0)) )
{
// Instruction breakpoint with LENx not 00b (1-byte length)
BX_PANIC(("MOV_DqRq: write of %08x:%08x , R/W=00b LEN!=00b",
(Bit32u)(val_64 >> 32), (Bit32u)(val_64 & 0xFFFFFFFF)));
}
// Pentium+: bits15,14,12 are hardwired to 0, rest are settable.
// Even bits 11,10 are changeable though reserved.
BX_CPU_THIS_PTR dr7 = (val_64 & 0xffff2fff) | 0x00000400;
break;
default:
BX_PANIC(("MOV_DqRq: control register index out of range"));
break;
}
}
void BX_CPU_C::MOV_RqDq(bxInstruction_c *i)
{
Bit64u val_64;
if (v8086_mode()) {
BX_INFO(("MOV_RqDq: v8086 mode causes #GP(0)"));
exception(BX_GP_EXCEPTION, 0, 0);
}
/* This instruction is always treated as a register-to-register,
* regardless of the encoding of the MOD field in the MODRM byte.
*/
if (!i->modC0())
BX_INFO(("MOV_RqDq(): rm field not a register!"));
/* #GP(0) if CPL is not 0 */
if (protected_mode() && (CPL!=0)) {
BX_INFO(("MOV_RqDq: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
if (bx_dbg.dreg)
BX_INFO(("MOV_RqDq: DR%u not implemented yet", i->nnn()));
switch (i->nnn()) {
case 0: // DR0
val_64 = BX_CPU_THIS_PTR dr0;
break;
case 1: // DR1
val_64 = BX_CPU_THIS_PTR dr1;
break;
case 2: // DR2
val_64 = BX_CPU_THIS_PTR dr2;
break;
case 3: // DR3
val_64 = BX_CPU_THIS_PTR dr3;
break;
case 4: // DR4
case 6: // DR6
// DR4 aliased to DR6 by default. With Debug Extensions on,
// access to DR4 causes #UD
if ( (i->nnn() == 4) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
// Debug extensions on
BX_INFO(("MOV_RqDq: access to DR4 causes #UD"));
UndefinedOpcode(i);
}
val_64 = BX_CPU_THIS_PTR dr6;
break;
case 5: // DR5
case 7: // DR7
// DR5 aliased to DR7 by default. With Debug Extensions on,
// access to DR5 causes #UD
if ( (i->nnn() == 5) && (BX_CPU_THIS_PTR cr4.get_DE()) ) {
// Debug extensions on
BX_INFO(("MOV_RqDq: access to DR5 causes #UD"));
UndefinedOpcode(i);
}
val_64 = BX_CPU_THIS_PTR dr7;
break;
default:
BX_PANIC(("MOV_RqDq: control register index out of range"));
val_64 = 0;
}
BX_WRITE_64BIT_REG(i->rm(), val_64);
}
#endif // #if BX_SUPPORT_X86_64
void BX_CPU_C::MOV_CdRd(bxInstruction_c *i)
{
// mov general register data to control register
Bit32u val_32;
if (v8086_mode()) {
BX_INFO(("MOV_CdRd: v8086 mode causes #GP(0)"));
exception(BX_GP_EXCEPTION, 0, 0);
}
/* NOTES:
* 32bit operands always used
* r/m field specifies general register
* reg field specifies which special register
*/
/* This instruction is always treated as a register-to-register,
* regardless of the encoding of the MOD field in the MODRM byte.
*/
if (!i->modC0())
BX_INFO(("MOV_CdRd(): rm field not a register!"));
invalidate_prefetch_q();
/* #GP(0) if CPL is not 0 */
if (protected_mode() && CPL!=0) {
BX_INFO(("MOV_CdRd: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
val_32 = BX_READ_32BIT_REG(i->rm());
switch (i->nnn()) {
case 0: // CR0 (MSW)
// BX_INFO(("MOV_CdRd:CR0: R32 = %08x @CS:EIP %04x:%04x ",
// (unsigned) val_32,
// (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
// (unsigned) EIP));
SetCR0(val_32);
break;
case 1: /* CR1 */
BX_PANIC(("MOV_CdRd: CR1 not implemented yet"));
break;
case 2: /* CR2 */
BX_DEBUG(("MOV_CdRd: CR2 not implemented yet"));
BX_DEBUG(("MOV_CdRd: CR2 = reg"));
BX_CPU_THIS_PTR cr2 = val_32;
break;
case 3: // CR3
if (bx_dbg.creg)
BX_INFO(("MOV_CdRd:CR3 = %08x", (unsigned) val_32));
// Reserved bits take on value of MOV instruction
CR3_change(val_32);
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_MOV_CR3, val_32);
// Reload of CR3 always serializes.
// invalidate_prefetch_q(); // Already done.
break;
case 4: // CR4
#if BX_CPU_LEVEL == 3
BX_PANIC(("MOV_CdRd: write to CR4 of 0x%08x on 386", val_32));
UndefinedOpcode(i);
#else
// Protected mode: #GP(0) if attempt to write a 1 to
// any reserved bit of CR4
SetCR4(val_32);
#endif
break;
default:
BX_PANIC(("MOV_CdRd: control register index out of range"));
break;
}
}
void BX_CPU_C::MOV_RdCd(bxInstruction_c *i)
{
// mov control register data to register
Bit32u val_32;
if (v8086_mode()) {
BX_INFO(("MOV_RdCd: v8086 mode causes #GP(0)"));
exception(BX_GP_EXCEPTION, 0, 0);
}
/* NOTES:
* 32bit operands always used
* r/m field specifies general register
* reg field specifies which special register
*/
/* This instruction is always treated as a register-to-register,
* regardless of the encoding of the MOD field in the MODRM byte.
*/
if (!i->modC0())
BX_INFO(("MOV_RdCd(): rm field not a register!"));
/* #GP(0) if CPL is not 0 */
if (protected_mode() && CPL!=0) {
BX_INFO(("MOV_RdCd: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
switch (i->nnn()) {
case 0: // CR0 (MSW)
val_32 = BX_CPU_THIS_PTR cr0.val32;
#if 0
BX_INFO(("MOV_RdCd:CR0: R32 = %08x @CS:EIP %04x:%04x",
(unsigned) val_32,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
(unsigned) EIP));
#endif
break;
case 1: /* CR1 */
BX_PANIC(("MOV_RdCd: CR1 not implemented yet"));
val_32 = 0;
break;
case 2: /* CR2 */
if (bx_dbg.creg)
BX_INFO(("MOV_RdCd: CR2"));
val_32 = BX_CPU_THIS_PTR cr2;
break;
case 3: // CR3
if (bx_dbg.creg)
BX_INFO(("MOV_RdCd: reading CR3"));
val_32 = BX_CPU_THIS_PTR cr3;
break;
case 4: // CR4
#if BX_CPU_LEVEL == 3
val_32 = 0;
BX_INFO(("MOV_RdCd: read of CR4 causes #UD"));
UndefinedOpcode(i);
#else
BX_INFO(("MOV_RdCd: read of CR4"));
val_32 = BX_CPU_THIS_PTR cr4.getRegister();
#endif
break;
default:
BX_PANIC(("MOV_RdCd: control register index out of range"));
val_32 = 0;
}
BX_WRITE_32BIT_REGZ(i->rm(), val_32);
}
#if BX_SUPPORT_X86_64
void BX_CPU_C::MOV_CqRq(bxInstruction_c *i)
{
// mov general register data to control register
Bit64u val_64;
if (v8086_mode())
{
BX_INFO(("MOV_CqRq: v8086 mode causes #GP(0)"));
exception(BX_GP_EXCEPTION, 0, 0);
}
/* NOTES:
* 64bit operands always used
* r/m field specifies general register
* reg field specifies which special register
*/
/* This instruction is always treated as a register-to-register,
* regardless of the encoding of the MOD field in the MODRM byte.
*/
if (!i->modC0())
BX_INFO(("MOV_CqRq(): rm field not a register!"));
invalidate_prefetch_q();
/* #GP(0) if CPL is not 0 */
if (protected_mode() && CPL!=0) {
BX_INFO(("MOV_CqRq: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
val_64 = BX_READ_64BIT_REG(i->rm());
switch (i->nnn()) {
case 0: // CR0 (MSW)
// BX_INFO(("MOV_CqRq:CR0: R64 = %08x @CS:EIP %04x:%04x ",
// (unsigned) val_64,
// (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
// (unsigned) EIP));
SetCR0(val_64);
break;
case 1: /* CR1 */
BX_PANIC(("MOV_CqRq: CR1 not implemented yet"));
break;
case 2: /* CR2 */
BX_DEBUG(("MOV_CqRq: CR2 not implemented yet"));
BX_DEBUG(("MOV_CqRq: CR2 = reg"));
BX_CPU_THIS_PTR cr2 = val_64;
break;
case 3: // CR3
if (bx_dbg.creg)
BX_INFO(("MOV_CqRq:CR3 = %08x", (unsigned) val_64));
// Reserved bits take on value of MOV instruction
CR3_change(val_64);
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_MOV_CR3, val_64);
break;
case 4: // CR4
// Protected mode: #GP(0) if attempt to write a 1 to
// any reserved bit of CR4
BX_INFO(("MOV_CqRq: write to CR4 of %08x:%08x",
(Bit32u)(val_64 >> 32), (Bit32u)(val_64 & 0xFFFFFFFF)));
SetCR4(val_64);
break;
#if BX_SUPPORT_APIC
case 8: // CR8
// CR8 is aliased to APIC->TASK PRIORITY register
// APIC.TPR[7:4] = CR8[3:0]
// APIC.TPR[3:0] = 0
// Reads of CR8 return zero extended APIC.TPR[7:4]
// Write to CR8 update APIC.TPR[7:4]
BX_CPU_THIS_PTR local_apic.set_tpr((val_64 & 0xF) << 0x4);
break;
#endif
default:
BX_PANIC(("MOV_CqRq: control register index out of range"));
break;
}
}
void BX_CPU_C::MOV_RqCq(bxInstruction_c *i)
{
// mov control register data to register
Bit64u val_64;
if (v8086_mode()) {
BX_INFO(("MOV_RqCq: v8086 mode causes #GP(0)"));
exception(BX_GP_EXCEPTION, 0, 0);
}
/* NOTES:
* 64bit operands always used
* r/m field specifies general register
* reg field specifies which special register
*/
/* This instruction is always treated as a register-to-register,
* regardless of the encoding of the MOD field in the MODRM byte.
*/
if (!i->modC0())
BX_INFO(("MOV_RqCq(): rm field not a register!"));
/* #GP(0) if CPL is not 0 */
if (protected_mode() && CPL!=0) {
BX_INFO(("MOV_RqCq: #GP(0) if CPL is not 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
switch (i->nnn()) {
case 0: // CR0 (MSW)
val_64 = BX_CPU_THIS_PTR cr0.val32;
#if 0
BX_INFO(("MOV_RqCq:CR0: R64 = %08x @CS:EIP %04x:%04x",
(unsigned) val_64,
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
(unsigned) EIP));
#endif
break;
case 1: /* CR1 */
BX_PANIC(("MOV_RqCq: CR1 not implemented yet"));
val_64 = 0;
break;
case 2: /* CR2 */
if (bx_dbg.creg)
BX_INFO(("MOV_RqCq: CR2"));
val_64 = BX_CPU_THIS_PTR cr2;
break;
case 3: // CR3
if (bx_dbg.creg)
BX_INFO(("MOV_RqCq: reading CR3"));
val_64 = BX_CPU_THIS_PTR cr3;
break;
case 4: // CR4
BX_INFO(("MOV_RqCq: read of CR4"));
val_64 = BX_CPU_THIS_PTR cr4.getRegister();
break;
#if BX_SUPPORT_APIC
case 8: // CR8
// CR8 is aliased to APIC->TASK PRIORITY register
// APIC.TPR[7:4] = CR8[3:0]
// APIC.TPR[3:0] = 0
// Reads of CR8 return zero extended APIC.TPR[7:4]
// Write to CR8 update APIC.TPR[7:4]
val_64 = (BX_CPU_THIS_PTR local_apic.get_tpr() & 0xF) >> 4;
break;
#endif
default:
BX_PANIC(("MOV_RqCq: control register index out of range"));
val_64 = 0;
}
BX_WRITE_64BIT_REG(i->rm(), val_64);
}
#endif // #if BX_SUPPORT_X86_64
#endif // #if BX_CPU_LEVEL >= 3
#if BX_CPU_LEVEL >= 2
void BX_CPU_C::LMSW_Ew(bxInstruction_c *i)
{
Bit16u msw;
Bit32u cr0;
invalidate_prefetch_q();
if (protected_mode() || v8086_mode()) {
if (CPL != 0) {
BX_INFO(("LMSW: CPL != 0, CPL=%u", (unsigned) CPL));
exception(BX_GP_EXCEPTION, 0, 0);
}
}
if (i->modC0()) {
msw = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &msw);
}
// LMSW does not affect PG,CD,NW,AM,WP,NE,ET bits, and cannot clear PE
// LMSW cannot clear PE
if (BX_CPU_THIS_PTR cr0.pe)
msw |= 0x0001; // adjust PE bit to current value of 1
msw &= 0x000f; // LMSW only affects last 4 flags
cr0 = (BX_CPU_THIS_PTR cr0.val32 & 0xfffffff0) | msw;
SetCR0(cr0);
}
void BX_CPU_C::SMSW_Ew(bxInstruction_c *i)
{
Bit16u msw;
#if BX_CPU_LEVEL == 2
msw = 0xfff0; /* 80286 init value */
msw |= (BX_CPU_THIS_PTR cr0.ts << 3) |
(BX_CPU_THIS_PTR cr0.em << 2) |
(BX_CPU_THIS_PTR cr0.mp << 1) |
(BX_CPU_THIS_PTR cr0.pe);
#else /* 386+ */
msw = BX_CPU_THIS_PTR cr0.val32 & 0xffff;
#endif
if (i->modC0()) {
if (i->os32L()) {
BX_WRITE_32BIT_REGZ(i->rm(), msw); // zeros out high 16bits
}
else {
BX_WRITE_16BIT_REG(i->rm(), msw);
}
}
else {
write_virtual_word(i->seg(), RMAddr(i), &msw);
}
}
#endif
void BX_CPU_C::MOV_TdRd(bxInstruction_c *i)
{
#if BX_CPU_LEVEL <= 4
BX_PANIC(("MOV_TdRd: Still not implemented"));
#else
// Pentium+ does not have TRx. They were redesigned using the MSRs.
BX_INFO(("MOV_TdRd: causes #UD"));
UndefinedOpcode(i);
#endif
}
void BX_CPU_C::MOV_RdTd(bxInstruction_c *i)
{
#if BX_CPU_LEVEL <= 4
BX_PANIC(("MOV_RdTd: Still not implemented"));
#else
// Pentium+ does not have TRx. They were redesigned using the MSRs.
BX_INFO(("MOV_RdTd: causes #UD"));
UndefinedOpcode(i);
#endif
}
#if BX_CPU_LEVEL == 2
void BX_CPU_C::LOADALL(bxInstruction_c *i)
{
Bit16u msw, tr, flags, ip, ldtr;
Bit16u ds_raw, ss_raw, cs_raw, es_raw;
Bit16u di, si, bp, sp, bx, dx, cx, ax;
Bit16u base_15_0, limit;
Bit8u base_23_16, access;
if (v8086_mode()) BX_PANIC(("proc_ctrl: LOADALL in v8086 mode unsupported"));
if (BX_CPU_THIS_PTR cr0.pe)
{
BX_PANIC(("LOADALL not yet supported for protected mode"));
}
BX_PANIC(("LOADALL: handle CR0.val32"));
/* MSW */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x806, 2, &msw);
BX_CPU_THIS_PTR cr0.pe = (msw & 0x01); msw >>= 1;
BX_CPU_THIS_PTR cr0.mp = (msw & 0x01); msw >>= 1;
BX_CPU_THIS_PTR cr0.em = (msw & 0x01); msw >>= 1;
BX_CPU_THIS_PTR cr0.ts = (msw & 0x01);
//BX_INFO(("LOADALL: pe=%u, mp=%u, em=%u, ts=%u",
// (unsigned) BX_CPU_THIS_PTR cr0.pe, (unsigned) BX_CPU_THIS_PTR cr0.mp,
// (unsigned) BX_CPU_THIS_PTR cr0.em, (unsigned) BX_CPU_THIS_PTR cr0.ts));
if (BX_CPU_THIS_PTR cr0.pe || BX_CPU_THIS_PTR cr0.mp || BX_CPU_THIS_PTR cr0.em || BX_CPU_THIS_PTR cr0.ts)
BX_PANIC(("LOADALL set PE, MP, EM or TS bits in MSW!"));
/* TR */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x816, 2, &tr);
BX_CPU_THIS_PTR tr.selector.value = tr;
BX_CPU_THIS_PTR tr.selector.rpl = (tr & 0x03); tr >>= 2;
BX_CPU_THIS_PTR tr.selector.ti = (tr & 0x01); tr >>= 1;
BX_CPU_THIS_PTR tr.selector.index = tr;
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x860, 2, &base_15_0);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x862, 1, &base_23_16);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x863, 1, &access);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x864, 2, &limit);
BX_CPU_THIS_PTR tr.cache.valid =
BX_CPU_THIS_PTR tr.cache.p = (access & 0x80) >> 7;
BX_CPU_THIS_PTR tr.cache.dpl = (access & 0x60) >> 5;
BX_CPU_THIS_PTR tr.cache.segment = (access & 0x10) >> 4;
// don't allow busy bit in tr.cache.type, so bit 2 is masked away too.
BX_CPU_THIS_PTR tr.cache.type = (access & 0x0d);
BX_CPU_THIS_PTR tr.cache.u.tss286.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = limit;
if ((BX_CPU_THIS_PTR tr.selector.value & 0xfffc) == 0) {
BX_CPU_THIS_PTR tr.cache.valid = 0;
}
if (BX_CPU_THIS_PTR tr.cache.valid == 0) {
}
if (BX_CPU_THIS_PTR tr.cache.u.tss286.limit < 43) {
BX_CPU_THIS_PTR tr.cache.valid = 0;
}
if (BX_CPU_THIS_PTR tr.cache.type != 1) {
BX_CPU_THIS_PTR tr.cache.valid = 0;
}
if (BX_CPU_THIS_PTR tr.cache.segment) {
BX_CPU_THIS_PTR tr.cache.valid = 0;
}
if (BX_CPU_THIS_PTR tr.cache.valid==0)
{
BX_CPU_THIS_PTR tr.cache.u.tss286.base = 0;
BX_CPU_THIS_PTR tr.cache.u.tss286.limit = 0;
BX_CPU_THIS_PTR tr.cache.p = 0;
BX_CPU_THIS_PTR tr.selector.value = 0;
BX_CPU_THIS_PTR tr.selector.index = 0;
BX_CPU_THIS_PTR tr.selector.ti = 0;
BX_CPU_THIS_PTR tr.selector.rpl = 0;
}
/* FLAGS */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x818, 2, &flags);
write_flags(flags, 1, 1);
/* IP */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x81a, 2, &ip);
IP = ip;
/* LDTR */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x81c, 2, &ldtr);
BX_CPU_THIS_PTR ldtr.selector.value = ldtr;
BX_CPU_THIS_PTR ldtr.selector.rpl = (ldtr & 0x03); ldtr >>= 2;
BX_CPU_THIS_PTR ldtr.selector.ti = (ldtr & 0x01); ldtr >>= 1;
BX_CPU_THIS_PTR ldtr.selector.index = ldtr;
if ((BX_CPU_THIS_PTR ldtr.selector.value & 0xfffc) == 0)
{
BX_CPU_THIS_PTR ldtr.cache.valid = 0;
BX_CPU_THIS_PTR ldtr.cache.p = 0;
BX_CPU_THIS_PTR ldtr.cache.segment = 0;
BX_CPU_THIS_PTR ldtr.cache.type = 0;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = 0;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = 0;
BX_CPU_THIS_PTR ldtr.selector.value = 0;
BX_CPU_THIS_PTR ldtr.selector.index = 0;
BX_CPU_THIS_PTR ldtr.selector.ti = 0;
}
else {
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x854, 2, &base_15_0);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x856, 1, &base_23_16);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x857, 1, &access);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x858, 2, &limit);
BX_CPU_THIS_PTR ldtr.cache.valid =
BX_CPU_THIS_PTR ldtr.cache.p = access >> 7;
BX_CPU_THIS_PTR ldtr.cache.dpl = (access >> 5) & 0x03;
BX_CPU_THIS_PTR ldtr.cache.segment = (access >> 4) & 0x01;
BX_CPU_THIS_PTR ldtr.cache.type = (access & 0x0f);
BX_CPU_THIS_PTR ldtr.cache.u.ldt.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit = limit;
if (access == 0) {
BX_PANIC(("loadall: LDTR case access byte=0."));
}
if (BX_CPU_THIS_PTR ldtr.cache.valid==0) {
BX_PANIC(("loadall: ldtr.valid=0"));
}
if (BX_CPU_THIS_PTR ldtr.cache.segment) { /* not a system segment */
BX_INFO((" AR byte = %02x", (unsigned) access));
BX_PANIC(("loadall: LDTR descriptor cache loaded with non system segment"));
}
if (BX_CPU_THIS_PTR ldtr.cache.type != 2) {
BX_PANIC(("loadall: LDTR.type(%u) != 2", (unsigned) (access & 0x0f)));
}
}
/* DS */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x81e, 2, &ds_raw);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = ds_raw;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = (ds_raw & 0x03); ds_raw >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti = (ds_raw & 0x01); ds_raw >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = ds_raw;
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x848, 2, &base_15_0);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x84a, 1, &base_23_16);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x84b, 1, &access);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x84c, 2, &limit);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = limit;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = (access & 0x03); access >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = (access & 0x01);
if ( (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value & 0xfffc) == 0 ) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 0;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid==0 ||
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment==0)
{
BX_PANIC(("loadall: DS invalid"));
}
/* SS */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x820, 2, &ss_raw);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = ss_raw;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = (ss_raw & 0x03); ss_raw >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = (ss_raw & 0x01); ss_raw >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = ss_raw;
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x842, 2, &base_15_0);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x844, 1, &base_23_16);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x845, 1, &access);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x846, 2, &limit);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = limit;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl = (access & 0x03); access >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p = (access & 0x01);
if ((BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value & 0xfffc) == 0) {
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid = 0;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid==0 ||
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment==0)
{
BX_PANIC(("loadall: SS invalid"));
}
/* CS */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x822, 2, &cs_raw);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = cs_raw;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = (cs_raw & 0x03); cs_raw >>= 2;
//BX_INFO(("LOADALL: setting cs.selector.rpl to %u",
// (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl));
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = (cs_raw & 0x01); cs_raw >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = cs_raw;
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x83c, 2, &base_15_0);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x83e, 1, &base_23_16);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x83f, 1, &access);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x840, 2, &limit);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = limit;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = (access & 0x03); access >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = (access & 0x01);
if ((BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value & 0xfffc) == 0)
{
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 0;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid==0 ||
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment==0)
{
BX_PANIC(("loadall: CS invalid"));
}
/* ES */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x824, 2, &es_raw);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value = es_raw;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl = (es_raw & 0x03); es_raw >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.ti = (es_raw & 0x01); es_raw >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.index = es_raw;
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x836, 2, &base_15_0);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x838, 1, &base_23_16);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x839, 1, &access);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x83a, 2, &limit);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.limit = limit;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.a = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.r_w = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.c_ed = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.u.segment.executable = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment = (access & 0x01); access >>= 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.dpl = (access & 0x03); access >>= 2;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.p = (access & 0x01);
#if 0
BX_INFO(("cs.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl));
BX_INFO(("ss.dpl = %02x", (unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.dpl));
BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].dpl = %02x", (unsigned) BX_CPU_THIS_PTR ds.cache.dpl));
BX_INFO(("BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].dpl = %02x", (unsigned) BX_CPU_THIS_PTR es.cache.dpl));
BX_INFO(("LOADALL: setting cs.selector.rpl to %u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl));
BX_INFO(("LOADALL: setting ss.selector.rpl to %u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl));
BX_INFO(("LOADALL: setting ds.selector.rpl to %u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl));
BX_INFO(("LOADALL: setting es.selector.rpl to %u",
(unsigned) BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.rpl));
#endif
if ((BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value & 0xfffc) == 0)
{
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid = 0;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.valid==0 ||
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment==0)
{
BX_PANIC(("loadall: ES invalid"));
}
/* DI */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x826, 2, &di);
DI = di;
/* SI */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x828, 2, &si);
SI = si;
/* BP */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x82a, 2, &bp);
BP = bp;
/* SP */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x82c, 2, &sp);
SP = sp;
/* BX */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x82e, 2, &bx);
BX = bx;
/* DX */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x830, 2, &dx);
DX = dx;
/* CX */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x832, 2, &cx);
CX = cx;
/* AX */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x834, 2, &ax);
AX = ax;
/* GDTR */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x84e, 2, &base_15_0);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x850, 1, &base_23_16);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x851, 1, &access);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x852, 2, &limit);
BX_CPU_THIS_PTR gdtr.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR gdtr.limit = limit;
#if 0
if (access)
BX_INFO(("LOADALL: GDTR access bits not 0 (%02x).",
(unsigned) access));
#endif
/* IDTR */
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x85a, 2, &base_15_0);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x85c, 1, &base_23_16);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x85d, 1, &access);
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, 0x85e, 2, &limit);
BX_CPU_THIS_PTR idtr.base = (base_23_16 << 16) | base_15_0;
BX_CPU_THIS_PTR idtr.limit = limit;
}
#endif
void BX_CPU_C::SetCR0(Bit32u val_32)
{
bx_bool pe = val_32 & 0x01;
bx_bool nw = (val_32 >> 29) & 0x01;
bx_bool cd = (val_32 >> 30) & 0x01;
bx_bool pg = (val_32 >> 31) & 0x01;
if (pg && !pe) {
BX_INFO(("SetCR0: GP(0) when attempt to set CR0.PG with CR0.PE cleared !"));
exception(BX_GP_EXCEPTION, 0, 0);
}
if (nw && !cd) {
BX_INFO(("SetCR0: GP(0) when attempt to set CR0.NW with CR0.CD cleared !"));
exception(BX_GP_EXCEPTION, 0, 0);
}
if (pe && BX_CPU_THIS_PTR get_VM()) BX_PANIC(("EFLAGS.VM=1, enter_PM"));
// from either MOV_CdRd() or debug functions
// protection checks made already or forcing from debug
Bit32u oldCR0 = BX_CPU_THIS_PTR cr0.val32, newCR0;
bx_bool prev_pe = BX_CPU_THIS_PTR cr0.pe;
#if BX_SUPPORT_X86_64
bx_bool prev_pg = BX_CPU_THIS_PTR cr0.pg;
#endif
BX_CPU_THIS_PTR cr0.pe = pe;
BX_CPU_THIS_PTR cr0.mp = (val_32 >> 1) & 0x01;
BX_CPU_THIS_PTR cr0.em = (val_32 >> 2) & 0x01;
BX_CPU_THIS_PTR cr0.ts = (val_32 >> 3) & 0x01;
// cr0.et is hardwired to 1
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR cr0.ne = (val_32 >> 5) & 0x01;
BX_CPU_THIS_PTR cr0.wp = (val_32 >> 16) & 0x01;
BX_CPU_THIS_PTR cr0.am = (val_32 >> 18) & 0x01;
BX_CPU_THIS_PTR cr0.nw = nw;
BX_CPU_THIS_PTR cr0.cd = cd;
#endif
BX_CPU_THIS_PTR cr0.pg = pg;
// handle reserved bits behaviour
#if BX_CPU_LEVEL == 3
newCR0 = val_32 | 0x7ffffff0;
#elif BX_CPU_LEVEL == 4
newCR0 = (val_32 | 0x00000010) & 0xe005003f;
#elif BX_CPU_LEVEL == 5
newCR0 = val_32 | 0x00000010;
#elif BX_CPU_LEVEL == 6
newCR0 = (val_32 | 0x00000010) & 0xe005003f;
#else
#error "MOV_CdRd: implement reserved bits behaviour for this CPU_LEVEL"
#endif
BX_CPU_THIS_PTR cr0.val32 = newCR0;
if (prev_pe==0 && BX_CPU_THIS_PTR cr0.pe) {
enter_protected_mode();
BX_DEBUG(("Enter Protected Mode"));
BX_CPU_THIS_PTR cpu_mode = BX_MODE_IA32_PROTECTED;
}
else if (prev_pe==1 && BX_CPU_THIS_PTR cr0.pe==0) {
enter_real_mode();
BX_DEBUG(("Enter Real Mode"));
BX_CPU_THIS_PTR cpu_mode = BX_MODE_IA32_REAL;
}
#if BX_SUPPORT_X86_64
if (prev_pg==0 && BX_CPU_THIS_PTR cr0.pg) {
if (BX_CPU_THIS_PTR msr.lme) {
if (!BX_CPU_THIS_PTR cr4.get_PAE()) {
BX_ERROR(("SetCR0: attempt to enter x86-64 LONG mode without enabling CR4.PAE !"));
exception(BX_GP_EXCEPTION, 0, 0);
}
BX_CPU_THIS_PTR msr.lma = 1;
BX_DEBUG(("Enter Compatibility Mode"));
BX_CPU_THIS_PTR cpu_mode = BX_MODE_LONG_COMPAT;
#if BX_EXTERNAL_DEBUGGER
//trap_debugger(0);
#endif
}
}
else if (prev_pg==1 && BX_CPU_THIS_PTR cr0.pg==0) {
if (BX_CPU_THIS_PTR msr.lma) {
if (BX_CPU_THIS_PTR dword.rip_upper != 0) {
BX_PANIC(("SetCR0: attempt to leave x86-64 LONG mode with RIP upper != 0 !!!"));
}
BX_CPU_THIS_PTR msr.lma = 0;
if (BX_CPU_THIS_PTR cr0.pe) {
BX_DEBUG(("Enter Protected Mode"));
BX_CPU_THIS_PTR cpu_mode = BX_MODE_IA32_PROTECTED;
}
else {
BX_DEBUG(("Enter Real Mode"));
BX_CPU_THIS_PTR cpu_mode = BX_MODE_IA32_REAL;
}
#if BX_EXTERNAL_DEBUGGER
//trap_debugger(0);
#endif
}
}
#endif // #if BX_SUPPORT_X86_64
// Give the paging unit a chance to look for changes in bits
// it cares about, like {PG,PE}, so it can flush cache entries etc.
pagingCR0Changed(oldCR0, newCR0);
}
#if BX_CPU_LEVEL >= 4
void BX_CPU_C::SetCR4(Bit32u val_32)
{
Bit32u oldCR4 = BX_CPU_THIS_PTR cr4.getRegister();
Bit32u allowMask = 0;
// CR4 bit definitions from AMD Hammer manual:
// [63-11] Reserved, Must be Zero
// [10] OSXMMEXCPT: Operating System Unmasked Exception Support R/W
// [9] OSFXSR: Operating System FXSAVE/FXRSTOR Support R/W
// [8] PCE: Performance-Monitoring Counter Enable R/W
// [7] PGE: Page-Global Enable R/W
// [6] MCE: Machine Check Enable R/W
// [5] PAE: Physical-Address Extension R/W
// [4] PSE: Page Size Extensions R/W
// [3] DE: Debugging Extensions R/W
// [2] TSD: Time Stamp Disable R/W
// [1] PVI: Protected-Mode Virtual Interrupts R/W
// [0] VME: Virtual-8086 Mode Extensions R/W
#if BX_CPU_LEVEL >= 5
allowMask |= (1<<2); /* TSD */
#endif
allowMask |= (1<<3); /* DE */
#if BX_SUPPORT_4MEG_PAGES
allowMask |= (1<<4);
#endif
#if BX_SupportPAE
allowMask |= (1<<5);
#endif
#if BX_CPU_LEVEL >= 5
// NOTE: exception 18 never appears in Bochs
allowMask |= (1<<6); /* MCE */
#endif
#if BX_SupportGlobalPages
allowMask |= (1<<7);
#endif
#if BX_CPU_LEVEL >= 6
allowMask |= (1<<9); /* OSFXSR */
#endif
#if BX_SUPPORT_SSE
allowMask |= (1<<10); /* OSXMMECPT */
#endif
#if BX_SUPPORT_X86_64
// need to GPF #0 if LME=1 and PAE=0
if ((BX_CPU_THIS_PTR msr.lme)
&& (!(val_32 >> 5) & 1)
&& (BX_CPU_THIS_PTR cr4.get_PAE()))
{
exception(BX_GP_EXCEPTION, 0, 0);
}
#endif
// Need to GPF if trying to set undefined bits.
if (val_32 & ~allowMask) {
BX_INFO(("#GP(0): SetCR4: Write of 0x%08x not supported (allowMask=0x%x)",
val_32, allowMask));
exception(BX_GP_EXCEPTION, 0, 0);
}
val_32 &= allowMask; // Screen out unsupported bits. (not needed, for good measure)
BX_CPU_THIS_PTR cr4.setRegister(val_32);
pagingCR4Changed(oldCR4, BX_CPU_THIS_PTR cr4.getRegister());
}
#endif
void BX_CPU_C::RSM(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 4
invalidate_prefetch_q();
/* If we are not in System Management Mode, then
* #UD should be generated.
*
* Bochs has no SMM.
*/
BX_INFO(("RSM: System Management Mode not implemented yet"));
#endif
UndefinedOpcode(i);
}
void BX_CPU_C::RDPMC(bxInstruction_c *i)
{
/* We need to be Pentium with MMX or later */
#if ((BX_CPU_LEVEL >= 6) || (BX_SUPPORT_MMX && BX_CPU_LEVEL == 5))
bx_bool pce = BX_CPU_THIS_PTR cr4.get_PCE();
if ((pce==1) || (CPL==0) || real_mode())
{
/* According to manual, Pentium 4 has 18 counters,
* previous versions have two. And the P4 also can do
* short read-out (EDX always 0). Otherwise it is
* limited to 40 bits.
*/
#if (BX_CPU_LEVEL == 6 && BX_SUPPORT_SSE >= 2) // Pentium 4 processor (see cpuid.cc)
if ((ECX & 0x7fffffff) >= 18)
exception (BX_GP_EXCEPTION, 0, 0);
#else //
if ((ECX & 0xffffffff) >= 2)
exception (BX_GP_EXCEPTION, 0, 0);
#endif
// Most counters are for hardware specific details, which
// we anyhow do not emulate (like pipeline stalls etc)
// Could be interesting to count number of memory reads,
// writes. Misaligned etc... But to monitor bochs, this
// is easier done from the host.
EAX = 0;
EDX = 0; // if P4 and ECX & 0x10000000, then always 0 (short read 32 bits)
BX_ERROR(("RDPMC: Performance Counters Support not reasonably implemented yet"));
} else {
// not allowed to use RDPMC!
exception (BX_GP_EXCEPTION, 0, 0);
}
#else
UndefinedOpcode(i);
#endif
}
void BX_CPU_C::RDTSC(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 5
bx_bool tsd = BX_CPU_THIS_PTR cr4.get_TSD();
if ((tsd==0) || (tsd==1 && CPL==0)) {
// return ticks
Bit64u ticks = bx_pc_system.time_ticks ();
RAX = (Bit32u) (ticks & 0xffffffff);
RDX = (Bit32u) ((ticks >> 32) & 0xffffffff);
} else {
// not allowed to use RDTSC!
BX_ERROR(("RDTSC: incorrect usage of RDTSC instruction !"));
exception (BX_GP_EXCEPTION, 0, 0);
}
#else
BX_INFO(("RDTSC: Pentium CPU required, use --enable-cpu=5"));
UndefinedOpcode(i);
#endif
}
#if BX_SUPPORT_X86_64
void BX_CPU_C::RDTSCP(bxInstruction_c *i)
{
RDTSC(i);
RCX = MSR_TSC_AUX;
}
#endif
void BX_CPU_C::RDMSR(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 5
invalidate_prefetch_q();
if (v8086_mode()) {
BX_INFO(("RDMSR: Invalid in virtual 8086 mode"));
exception(BX_GP_EXCEPTION, 0, 0);
}
if (protected_mode() && CPL != 0) {
BX_INFO(("RDMSR: CPL != 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
/* We have the requested MSR register in ECX */
switch(ECX) {
#if BX_SUPPORT_SEP
case BX_MSR_SYSENTER_CS:
RAX = BX_CPU_THIS_PTR sysenter_cs_msr;
RDX = 0;
return;
case BX_MSR_SYSENTER_ESP:
RAX = BX_CPU_THIS_PTR sysenter_esp_msr;
RDX = 0;
return;
case BX_MSR_SYSENTER_EIP:
RAX = BX_CPU_THIS_PTR sysenter_eip_msr;
RDX = 0;
return;
#endif
#if BX_CPU_LEVEL == 5
/* The following registers are defined for Pentium only */
case BX_MSR_P5_MC_ADDR:
case BX_MSR_MC_TYPE:
/* TODO */
return;
case BX_MSR_CESR:
/* TODO */
return;
#else
/* These are noops on i686... */
case BX_MSR_P5_MC_ADDR:
case BX_MSR_MC_TYPE:
/* do nothing */
return;
/* ... And these cause an exception on i686 */
case BX_MSR_CESR:
case BX_MSR_CTR0:
case BX_MSR_CTR1:
goto do_exception;
#endif /* BX_CPU_LEVEL == 5 */
case BX_MSR_TSC: {
Bit64u ticks = bx_pc_system.time_ticks ();
RAX = (Bit32u) (ticks & 0xffffffff);
RDX = (Bit32u) ((ticks >> 32) & 0xffffffff);
}
return;
/* MSR_APICBASE
0:7 Reserved
8 This is set if its the BSP
9:10 Reserved
11 APIC Global Enable bit (1=enabled 0=disabled)
12:35 APIC Base Address
36:63 Reserved
*/
case BX_MSR_APICBASE:
/* we return low 32 bits in EAX, and high in EDX */
RAX = Bit32u(BX_CPU_THIS_PTR msr.apicbase & 0xffffffff);
RDX = Bit32u(BX_CPU_THIS_PTR msr.apicbase >> 32);
BX_INFO(("RDMSR: Read %08x:%08x from MSR_APICBASE", EDX, EAX));
return;
#if BX_SUPPORT_X86_64
case BX_MSR_EFER:
RAX = (BX_CPU_THIS_PTR msr.sce << 0)
| (BX_CPU_THIS_PTR msr.lme << 8)
| (BX_CPU_THIS_PTR msr.lma << 10)
| (BX_CPU_THIS_PTR msr.nxe << 11)
| (BX_CPU_THIS_PTR msr.ffxsr << 14);
RDX = 0;
return;
case BX_MSR_STAR:
RAX = MSR_STAR & 0xffffffff;
RDX = MSR_STAR >> 32;
return;
case BX_MSR_LSTAR:
RAX = MSR_LSTAR & 0xffffffff;
RDX = MSR_LSTAR >> 32;
return;
case BX_MSR_CSTAR:
RAX = MSR_CSTAR & 0xffffffff;
RDX = MSR_CSTAR >> 32;
return;
case BX_MSR_FMASK:
RAX = MSR_FMASK & 0xffffffff;
RDX = MSR_FMASK >> 32;
return;
case BX_MSR_FSBASE:
RAX = MSR_FSBASE & 0xffffffff;
RDX = MSR_FSBASE >> 32;
return;
case BX_MSR_GSBASE:
RAX = MSR_GSBASE & 0xffffffff;
RDX = MSR_GSBASE >> 32;
return;
case BX_MSR_KERNELGSBASE:
RAX = MSR_KERNELGSBASE & 0xffffffff;
RDX = MSR_KERNELGSBASE >> 32;
return;
case BX_MSR_TSC_AUX:
RAX = MSR_TSC_AUX; // 32 bit MSR
RDX = 0;
return;
#endif // #if BX_SUPPORT_X86_64
default:
BX_ERROR(("RDMSR: Unknown register %#x", ECX));
#if BX_IGNORE_BAD_MSR
RAX = 0;
RDX = 0;
return;
#endif
}
do_exception:
exception(BX_GP_EXCEPTION, 0, 0);
#else /* BX_CPU_LEVEL >= 5 */
BX_INFO(("RDMSR: Pentium CPU required"));
UndefinedOpcode(i);
#endif
}
void BX_CPU_C::WRMSR(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 5
invalidate_prefetch_q();
if (v8086_mode()) {
BX_INFO(("WRMSR: Invalid in virtual 8086 mode"));
exception(BX_GP_EXCEPTION, 0, 0);
}
if (protected_mode() && CPL != 0) {
BX_INFO(("WDMSR: CPL != 0"));
exception(BX_GP_EXCEPTION, 0, 0);
}
BX_INSTR_WRMSR(BX_CPU_ID, ECX, ((Bit64u) EDX << 32) + EAX);
/* ECX has the MSR to write to */
switch(ECX) {
#if BX_SUPPORT_SEP
case BX_MSR_SYSENTER_CS: {
// not a bug according to book ... but very stOOpid
if (EAX & 3) BX_PANIC(("writing sysenter_cs_msr with non-kernel mode selector %X", EAX));
BX_CPU_THIS_PTR sysenter_cs_msr = EAX;
return;
}
case BX_MSR_SYSENTER_ESP:
BX_CPU_THIS_PTR sysenter_esp_msr = EAX;
return;
case BX_MSR_SYSENTER_EIP:
BX_CPU_THIS_PTR sysenter_eip_msr = EAX;
return;
#endif
#if BX_CPU_LEVEL == 5
/* The following registers are defined for Pentium only */
case BX_MSR_P5_MC_ADDR:
case BX_MSR_MC_TYPE:
case BX_MSR_CESR:
/* TODO */
return;
#else
/* These are noops on i686... */
case BX_MSR_P5_MC_ADDR:
case BX_MSR_MC_TYPE:
/* do nothing */
return;
/* ... And these cause an exception on i686 */
case BX_MSR_CESR:
case BX_MSR_CTR0:
case BX_MSR_CTR1:
goto do_exception;
#endif /* BX_CPU_LEVEL == 5 */
case BX_MSR_TSC:
BX_INFO(("WRMSR: writing to BX_MSR_TSC still not implemented"));
return;
/* MSR_APICBASE
0:7 Reserved
8 This is set if its the BSP
9:10 Reserved
11 APIC Global Enable bit (1=enabled 0=disabled)
12:35 APIC Base Address
36:63 Reserved
*/
#if BX_SUPPORT_APIC
case BX_MSR_APICBASE:
if (BX_CPU_THIS_PTR msr.apicbase & 0x800)
{
BX_CPU_THIS_PTR msr.apicbase = ((Bit64u) EDX << 32) + EAX;
BX_INFO(("WRMSR: wrote %08x:%08x to MSR_APICBASE", EDX, EAX));
BX_CPU_THIS_PTR local_apic.set_base(BX_CPU_THIS_PTR msr.apicbase);
}
else {
BX_INFO(("WRMSR: MSR_APICBASE APIC global enable bit cleared !"));
}
return;
#endif
#if BX_SUPPORT_X86_64
case BX_MSR_EFER:
// GPF #0 if lme 0->1 and cr0.pg = 1
// GPF #0 if lme 1->0 and cr0.pg = 1
if ((BX_CPU_THIS_PTR msr.lme != ((EAX >> 8) & 1)) &&
(BX_CPU_THIS_PTR cr0.pg == 1))
{
exception(BX_GP_EXCEPTION, 0, 0);
}
BX_CPU_THIS_PTR msr.sce = (EAX >> 0) & 1;
BX_CPU_THIS_PTR msr.lme = (EAX >> 8) & 1;
BX_CPU_THIS_PTR msr.nxe = (EAX >> 11) & 1;
BX_CPU_THIS_PTR msr.ffxsr = (EAX >> 14) & 1;
return;
case BX_MSR_STAR:
MSR_STAR = ((Bit64u) EDX << 32) + EAX;
return;
case BX_MSR_LSTAR:
MSR_LSTAR = ((Bit64u) EDX << 32) + EAX;
return;
case BX_MSR_CSTAR:
MSR_CSTAR = ((Bit64u) EDX << 32) + EAX;
return;
case BX_MSR_FMASK:
MSR_FMASK = ((Bit64u) EDX << 32) + EAX;
return;
case BX_MSR_FSBASE:
MSR_FSBASE = ((Bit64u) EDX << 32) + EAX;
return;
case BX_MSR_GSBASE:
MSR_GSBASE = ((Bit64u) EDX << 32) + EAX;
return;
case BX_MSR_KERNELGSBASE:
MSR_KERNELGSBASE = ((Bit64u) EDX << 32) + EAX;
return;
case BX_MSR_TSC_AUX:
MSR_TSC_AUX = EAX;
return;
#endif // #if BX_SUPPORT_X86_64
default:
BX_ERROR(("WRMSR: Unknown register %#x", ECX));
#if BX_IGNORE_BAD_MSR
return;
#endif
}
do_exception:
exception(BX_GP_EXCEPTION, 0, 0);
#else /* BX_CPU_LEVEL >= 5 */
BX_INFO(("RDMSR: Pentium CPU required"));
UndefinedOpcode(i);
#endif
}
void BX_CPU_C::SYSENTER (bxInstruction_c *i)
{
#if BX_SUPPORT_SEP
if (!protected_mode ()) {
BX_INFO (("sysenter not from protected mode"));
exception (BX_GP_EXCEPTION, 0, 0);
return;
}
if (BX_CPU_THIS_PTR sysenter_cs_msr == 0) {
BX_INFO (("sysenter with zero sysenter_cs_msr"));
exception (BX_GP_EXCEPTION, 0, 0);
return;
}
invalidate_prefetch_q();
BX_CPU_THIS_PTR set_VM(0); // do this just like the book says to do
BX_CPU_THIS_PTR set_IF(0);
BX_CPU_THIS_PTR set_RF(0);
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = BX_CPU_THIS_PTR sysenter_cs_msr & BX_SELECTOR_RPL_MASK;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = BX_CPU_THIS_PTR sysenter_cs_msr >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = (BX_CPU_THIS_PTR sysenter_cs_msr >> 2) & 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1; // code segment
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0; // non-conforming
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1; // readable
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1; // accessed
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = 0; // base address
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xFFFF; // segment limit
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xFFFFFFFF; // scaled segment limit
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 1; // 4k granularity
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 1; // 32-bit mode
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0; // available for use by system
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = (BX_CPU_THIS_PTR sysenter_cs_msr + 8) & BX_SELECTOR_RPL_MASK;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = (BX_CPU_THIS_PTR sysenter_cs_msr + 8) >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = ((BX_CPU_THIS_PTR sysenter_cs_msr + 8) >> 2) & 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = 0; // data segment
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = 0; // expand-up
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = 1; // writeable
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = 1; // accessed
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = 0; // base address
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = 0xFFFF; // segment limit
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled = 0xFFFFFFFF; // scaled segment limit
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g = 1; // 4k granularity
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b = 1; // 32-bit mode
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl = 0; // available for use by system
// BX_INFO (("sysenter: old eip %X, esp %x, new eip %x, esp %X, edx %X", BX_CPU_THIS_PTR prev_eip, ESP, BX_CPU_THIS_PTR sysenter_eip_msr, BX_CPU_THIS_PTR sysenter_esp_msr, EDX));
ESP = BX_CPU_THIS_PTR sysenter_esp_msr;
EIP = BX_CPU_THIS_PTR sysenter_eip_msr;
#else
BX_INFO(("SYSENTER: use --enable-sep to enable SYSENTER/SYSEXIT support"));
UndefinedOpcode (i);
#endif
}
void BX_CPU_C::SYSEXIT (bxInstruction_c *i)
{
#if BX_SUPPORT_SEP
if (!protected_mode ()) {
BX_INFO (("sysexit not from protected mode"));
exception (BX_GP_EXCEPTION, 0, 0);
return;
}
if (BX_CPU_THIS_PTR sysenter_cs_msr == 0) {
BX_INFO (("sysexit with zero sysenter_cs_msr"));
exception (BX_GP_EXCEPTION, 0, 0);
return;
}
if (CPL != 0) {
BX_INFO (("sysexit at non-zero cpl %u", CPL));
exception (BX_GP_EXCEPTION, 0, 0);
return;
}
invalidate_prefetch_q();
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = (BX_CPU_THIS_PTR sysenter_cs_msr + 16) | 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = (BX_CPU_THIS_PTR sysenter_cs_msr + 16) >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = ((BX_CPU_THIS_PTR sysenter_cs_msr + 16) >> 2) & 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1; // code segment
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0; // non-conforming
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1; // readable
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1; // accessed
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = 0; // base address
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xFFFF; // segment limit
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xFFFFFFFF; // scaled segment limit
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 1; // 4k granularity
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 1; // 32-bit mode
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0; // available for use by system
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value = (BX_CPU_THIS_PTR sysenter_cs_msr + 24) | 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.index = (BX_CPU_THIS_PTR sysenter_cs_msr + 24) >> 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.ti = ((BX_CPU_THIS_PTR sysenter_cs_msr + 24) >> 2) & 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.rpl = 3;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.executable = 0; // data segment
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed = 0; // expand-up
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.r_w = 1; // writeable
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.a = 1; // accessed
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.base = 0; // base address
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit = 0xFFFF; // segment limit
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled = 0xFFFFFFFF; // scaled segment limit
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.g = 1; // 4k granularity
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b = 1; // 32-bit mode
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.avl = 0; // available for use by system
// BX_INFO (("sysexit: old eip %X, esp %x, new eip %x, esp %X, eax %X", BX_CPU_THIS_PTR prev_eip, ESP, EDX, ECX, EAX));
ESP = ECX;
EIP = EDX;
#else
BX_INFO(("SYSEXIT: use --enable-sep to enable SYSENTER/SYSEXIT support"));
UndefinedOpcode (i);
#endif
}
#if BX_SUPPORT_X86_64
void BX_CPU_C::SYSCALL(bxInstruction_c *i)
{
/* pseudo code from AMD manual.
SYSCALL_START:
IF (MSR_EFER.SCE = 0) // Check if syscall/sysret are enabled.
EXCEPTION [#UD]
IF (LONG_MODE)
SYSCALL_LONG_MODE
ELSE // (LEGACY_MODE)
SYSCALL_LEGACY_MODE
SYSCALL_LONG_MODE:
RCX.q = next_RIP
R11.q = RFLAGS // with rf cleared
IF (64BIT_MODE)
temp_RIP.q = MSR_LSTAR
ELSE // (COMPATIBILITY_MODE)
temp_RIP.q = MSR_CSTAR
CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
CS.attr = 64-bit code,dpl0 // Always switch to 64-bit mode in long mode.
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
SS.sel = MSR_STAR.SYSCALL_CS + 8
SS.attr = 64-bit stack,dpl0
SS.base = 0x00000000
SS.limit = 0xFFFFFFFF
RFLAGS = RFLAGS AND ~MSR_SFMASK
RFLAGS.RF = 0
CPL = 0
RIP = temp_RIP
EXIT
SYSCALL_LEGACY_MODE:
RCX.d = next_RIP
temp_RIP.d = MSR_STAR.EIP
CS.sel = MSR_STAR.SYSCALL_CS AND 0xFFFC
CS.attr = 32-bit code,dpl0 // Always switch to 32-bit mode in legacy mode.
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
SS.sel = MSR_STAR.SYSCALL_CS + 8
SS.attr = 32-bit stack,dpl0
SS.base = 0x00000000
SS.limit = 0xFFFFFFFF
RFLAGS.VM,IF,RF=0
CPL = 0
RIP = temp_RIP
EXIT
*/
bx_address temp_RIP;
bx_descriptor_t cs_descriptor,ss_descriptor;
bx_selector_t cs_selector,ss_selector;
Bit32u dword1, dword2;
if (!BX_CPU_THIS_PTR msr.sce) {
exception(BX_GP_EXCEPTION, 0, 0);
}
invalidate_prefetch_q();
if (BX_CPU_THIS_PTR msr.lma)
{
RCX = RIP;
#ifdef __GNUC__
#warning - PRT: SYSCALL -- do we reset RF/VM before saving to R11?
#endif
R11 = read_eflags();
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
temp_RIP = MSR_LSTAR;
}
else {
temp_RIP = MSR_CSTAR;
}
parse_selector((MSR_STAR >> 32) & 0xFFFC, &cs_selector);
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
load_cs(&cs_selector, &cs_descriptor, 0);
parse_selector((MSR_STAR >> 32) + 8, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
load_ss(&ss_selector, &ss_descriptor, 0);
write_eflags(read_eflags() & (~MSR_FMASK),1,1,1,0);
BX_CPU_THIS_PTR clear_RF ();
RIP = temp_RIP;
}
else {
// legacy mode
ECX = EIP;
temp_RIP = MSR_STAR & 0xFFFFFFFF;
parse_selector((MSR_STAR >> 32) & 0xFFFC, &cs_selector);
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
load_cs(&cs_selector, &cs_descriptor, 0);
parse_selector((MSR_STAR >> 32) + 8, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
load_ss(&ss_selector, &ss_descriptor, 0);
BX_CPU_THIS_PTR clear_VM ();
BX_CPU_THIS_PTR clear_IF ();
BX_CPU_THIS_PTR clear_RF ();
RIP = temp_RIP;
}
}
void BX_CPU_C::SYSRET(bxInstruction_c *i)
{
/* from AMD manual
SYSRET_START:
IF (MSR_EFER.SCE = 0) // Check if syscall/sysret are enabled.
EXCEPTION [#UD]
IF ((!PROTECTED_MODE) || (CPL != 0))
EXCEPTION [#GP(0)] // SYSRET requires protected mode, cpl0
IF (64BIT_MODE)
SYSRET_64BIT_MODE
ELSE // (!64BIT_MODE)
SYSRET_NON_64BIT_MODE
SYSRET_64BIT_MODE:
IF (OPERAND_SIZE = 64) // Return to 64-bit mode.
{
CS.sel = (MSR_STAR.SYSRET_CS + 16) OR 3
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
CS.attr = 64-bit code,dpl3
temp_RIP.q = RCX
}
ELSE // Return to 32-bit compatibility mode.
{
CS.sel = MSR_STAR.SYSRET_CS OR 3
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
CS.attr = 32-bit code,dpl3
temp_RIP.d = RCX
}
SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed,
// SS base, limit, attributes unchanged.
RFLAGS.q = R11 // RF=0,VM=0
CPL = 3
RIP = temp_RIP
EXIT
SYSRET_NON_64BIT_MODE:
CS.sel = MSR_STAR.SYSRET_CS OR 3 // Return to 32-bit legacy protected mode.
CS.base = 0x00000000
CS.limit = 0xFFFFFFFF
CS.attr = 32-bit code,dpl3
temp_RIP.d = RCX
SS.sel = MSR_STAR.SYSRET_CS + 8 // SS selector is changed.
// SS base, limit, attributes unchanged.
RFLAGS.IF = 1
CPL = 3
RIP = temp_RIP
EXIT
*/
bx_address temp_RIP;
bx_descriptor_t cs_descriptor,ss_descriptor;
bx_selector_t cs_selector,ss_selector;
Bit32u dword1, dword2;
if (!BX_CPU_THIS_PTR msr.sce) {
exception(BX_GP_EXCEPTION, 0, 0);
}
if(real_mode() || CPL != 0) {
exception(BX_GP_EXCEPTION, 0, 0);
}
invalidate_prefetch_q();
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
{
if (i->os64L()) { // Return to 64-bit mode.
parse_selector(((MSR_STAR >> 48) + 16) | 3, &cs_selector);
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
load_cs(&cs_selector, &cs_descriptor, 3);
temp_RIP = RCX;
}
else { // Return to 32-bit compatibility mode.
parse_selector((MSR_STAR >> 48) | 3, &cs_selector);
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
load_cs(&cs_selector, &cs_descriptor, 3);
temp_RIP = ECX;
}
parse_selector((MSR_STAR >> 48) + 8, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
load_ss(&ss_selector, &ss_descriptor, 0);
// SS base, limit, attributes unchanged.
write_eflags(R11,1,1,1,1);
RIP = temp_RIP;
}
else { // (!64BIT_MODE)
parse_selector((MSR_STAR >> 48) + 16, &cs_selector);
fetch_raw_descriptor(&cs_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &cs_descriptor);
load_cs(&cs_selector, &cs_descriptor, 3);
temp_RIP = ECX;
parse_selector((MSR_STAR >> 48) + 8, &ss_selector);
fetch_raw_descriptor(&ss_selector, &dword1, &dword2, BX_GP_EXCEPTION);
parse_descriptor(dword1, dword2, &ss_descriptor);
load_ss(&ss_selector, &ss_descriptor, 0);
BX_CPU_THIS_PTR assert_IF ();
RIP = temp_RIP;
}
}
void BX_CPU_C::SWAPGS(bxInstruction_c *i)
{
Bit64u temp_GS_base;
if(CPL != 0)
exception(BX_GP_EXCEPTION, 0, 0);
temp_GS_base = MSR_GSBASE;
MSR_GSBASE = MSR_KERNELGSBASE;
MSR_KERNELGSBASE = temp_GS_base;
}
#endif
#if BX_X86_DEBUGGER
Bit32u BX_CPU_C::hwdebug_compare(Bit32u laddr_0, unsigned size,
unsigned opa, unsigned opb)
{
// Support x86 hardware debug facilities (DR0..DR7)
Bit32u dr7 = BX_CPU_THIS_PTR dr7;
bx_bool ibpoint_found = 0;
Bit32u laddr_n = laddr_0 + (size - 1);
Bit32u dr0, dr1, dr2, dr3;
Bit32u dr0_n, dr1_n, dr2_n, dr3_n;
Bit32u len0, len1, len2, len3;
static unsigned alignment_mask[4] =
// 00b=1 01b=2 10b=undef 11b=4
{ 0xffffffff, 0xfffffffe, 0xffffffff, 0xfffffffc };
Bit32u dr0_op, dr1_op, dr2_op, dr3_op;
len0 = (dr7>>18) & 3;
len1 = (dr7>>22) & 3;
len2 = (dr7>>26) & 3;
len3 = (dr7>>30) & 3;
dr0 = BX_CPU_THIS_PTR dr0 & alignment_mask[len0];
dr1 = BX_CPU_THIS_PTR dr1 & alignment_mask[len1];
dr2 = BX_CPU_THIS_PTR dr2 & alignment_mask[len2];
dr3 = BX_CPU_THIS_PTR dr3 & alignment_mask[len3];
dr0_n = dr0 + len0;
dr1_n = dr1 + len1;
dr2_n = dr2 + len2;
dr3_n = dr3 + len3;
dr0_op = (dr7>>16) & 3;
dr1_op = (dr7>>20) & 3;
dr2_op = (dr7>>24) & 3;
dr3_op = (dr7>>28) & 3;
// See if this instruction address matches any breakpoints
if ( (dr7 & 0x00000003) ) {
if ( (dr0_op==opa || dr0_op==opb) &&
(laddr_0 <= dr0_n) &&
(laddr_n >= dr0) )
ibpoint_found = 1;
}
if ( (dr7 & 0x0000000c) ) {
if ( (dr1_op==opa || dr1_op==opb) &&
(laddr_0 <= dr1_n) &&
(laddr_n >= dr1) )
ibpoint_found = 1;
}
if ( (dr7 & 0x00000030) ) {
if ( (dr2_op==opa || dr2_op==opb) &&
(laddr_0 <= dr2_n) &&
(laddr_n >= dr2) )
ibpoint_found = 1;
}
if ( (dr7 & 0x000000c0) ) {
if ( (dr3_op==opa || dr3_op==opb) &&
(laddr_0 <= dr3_n) &&
(laddr_n >= dr3) )
ibpoint_found = 1;
}
// If *any* enabled breakpoints matched, then we need to
// set status bits for *all* breakpoints, even disabled ones,
// as long as they meet the other breakpoint criteria.
// This code is similar to that above, only without the
// breakpoint enabled check. Seems weird to duplicate effort,
// but its more efficient to do it this way.
if (ibpoint_found) {
// dr6_mask is the return value. These bits represent the bits to
// be OR'd into DR6 as a result of the debug event.
Bit32u dr6_mask=0;
if ( (dr0_op==opa || dr0_op==opb) &&
(laddr_0 <= dr0_n) &&
(laddr_n >= dr0) )
dr6_mask |= 0x01;
if ( (dr1_op==opa || dr1_op==opb) &&
(laddr_0 <= dr1_n) &&
(laddr_n >= dr1) )
dr6_mask |= 0x02;
if ( (dr2_op==opa || dr2_op==opb) &&
(laddr_0 <= dr2_n) &&
(laddr_n >= dr2) )
dr6_mask |= 0x04;
if ( (dr3_op==opa || dr3_op==opb) &&
(laddr_0 <= dr3_n) &&
(laddr_n >= dr3) )
dr6_mask |= 0x08;
return(dr6_mask);
}
return(0);
}
#endif
/*
void BX_CPU_C::LFENCE(bxInstruction_c *i) {}
void BX_CPU_C::MFENCE(bxInstruction_c *i) {}
void BX_CPU_C::SFENCE(bxInstruction_c *i) {}
*/