Bochs/bochs/instrument/example0/instrument.cc

219 lines
6.3 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2006-2015 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#include <assert.h>
#include "bochs.h"
#include "cpu/cpu.h"
#include "disasm/disasm.h"
// maximum size of an instruction
#define MAX_OPCODE_LENGTH 16
// maximum physical addresses an instruction can generate
#define MAX_DATA_ACCESSES 1024
// Use this variable to turn on/off collection of instrumentation data
// If you are not using the debugger to turn this on/off, then possibly
// start this at 1 instead of 0.
static bx_bool active = 1;
static disassembler bx_disassembler;
static struct instruction_t {
bx_bool ready; // is current instruction ready to be printed
unsigned opcode_length;
Bit8u opcode[MAX_OPCODE_LENGTH];
bx_bool is32, is64;
unsigned num_data_accesses;
struct {
bx_address laddr; // linear address
bx_phy_address paddr; // physical address
unsigned rw; // BX_READ, BX_WRITE or BX_RW
unsigned size; // 1 .. 32
} data_access[MAX_DATA_ACCESSES];
bx_bool is_branch;
bx_bool is_taken;
bx_address target_linear;
} *instruction;
static logfunctions *instrument_log = new logfunctions ();
#define LOG_THIS instrument_log->
void bx_instr_init_env(void) {}
void bx_instr_exit_env(void) {}
void bx_instr_initialize(unsigned cpu)
{
assert(cpu < BX_SMP_PROCESSORS);
if (instruction == NULL)
instruction = new struct instruction_t[BX_SMP_PROCESSORS];
fprintf(stderr, "Initialize cpu %u\n", cpu);
}
void bx_instr_reset(unsigned cpu, unsigned type)
{
instruction[cpu].ready = 0;
instruction[cpu].num_data_accesses = 0;
instruction[cpu].is_branch = 0;
}
void bx_print_instruction(unsigned cpu, const instruction_t *i)
{
char disasm_tbuf[512]; // buffer for instruction disassembly
unsigned length = i->opcode_length, n;
bx_disassembler.disasm(i->is32, i->is64, 0, 0, i->opcode, disasm_tbuf);
if(length != 0)
{
fprintf(stderr, "----------------------------------------------------------\n");
fprintf(stderr, "CPU %u: %s\n", cpu, disasm_tbuf);
fprintf(stderr, "LEN %u\tBYTES: ", length);
for(n=0;n < length;n++) fprintf(stderr, "%02x", i->opcode[n]);
if(i->is_branch)
{
fprintf(stderr, "\tBRANCH ");
if(i->is_taken)
fprintf(stderr, "TARGET " FMT_ADDRX " (TAKEN)", i->target_linear);
else
fprintf(stderr, "(NOT TAKEN)");
}
fprintf(stderr, "\n");
for(n=0;n < i->num_data_accesses;n++)
{
fprintf(stderr, "MEM ACCESS[%u]: 0x" FMT_ADDRX " (linear) 0x" FMT_PHY_ADDRX " (physical) %s SIZE: %d\n", n,
i->data_access[n].laddr,
i->data_access[n].paddr,
i->data_access[n].rw == BX_READ ? "RD":"WR",
i->data_access[n].size);
}
fprintf(stderr, "\n");
}
}
void bx_instr_before_execution(unsigned cpu, bxInstruction_c *bx_instr)
{
if (!active) return;
instruction_t *i = &instruction[cpu];
if (i->ready) bx_print_instruction(cpu, i);
// prepare instruction_t structure for new instruction
i->ready = 1;
i->num_data_accesses = 0;
i->is_branch = 0;
i->is32 = BX_CPU(cpu)->sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
i->is64 = BX_CPU(cpu)->long64_mode();
i->opcode_length = bx_instr->ilen();
memcpy(i->opcode, bx_instr->get_opcode_bytes(), i->opcode_length);
}
void bx_instr_after_execution(unsigned cpu, bxInstruction_c *bx_instr)
{
if (!active) return;
instruction_t *i = &instruction[cpu];
if (i->ready) {
bx_print_instruction(cpu, i);
i->ready = 0;
}
}
static void branch_taken(unsigned cpu, bx_address new_eip)
{
if (!active || !instruction[cpu].ready) return;
instruction[cpu].is_branch = 1;
instruction[cpu].is_taken = 1;
// find linear address
instruction[cpu].target_linear = BX_CPU(cpu)->get_laddr(BX_SEG_REG_CS, new_eip);
}
void bx_instr_cnear_branch_taken(unsigned cpu, bx_address branch_eip, bx_address new_eip)
{
branch_taken(cpu, new_eip);
}
void bx_instr_cnear_branch_not_taken(unsigned cpu, bx_address branch_eip)
{
if (!active || !instruction[cpu].ready) return;
instruction[cpu].is_branch = 1;
instruction[cpu].is_taken = 0;
}
void bx_instr_ucnear_branch(unsigned cpu, unsigned what, bx_address branch_eip, bx_address new_eip)
{
branch_taken(cpu, new_eip);
}
void bx_instr_far_branch(unsigned cpu, unsigned what, Bit16u prev_cs, bx_address prev_eip, Bit16u new_cs, bx_address new_eip)
{
branch_taken(cpu, new_eip);
}
void bx_instr_interrupt(unsigned cpu, unsigned vector)
{
if(active)
{
fprintf(stderr, "CPU %u: interrupt %02xh\n", cpu, vector);
}
}
void bx_instr_exception(unsigned cpu, unsigned vector, unsigned error_code)
{
if(active)
{
fprintf(stderr, "CPU %u: exception %02xh, error_code = %x\n", cpu, vector, error_code);
}
}
void bx_instr_hwinterrupt(unsigned cpu, unsigned vector, Bit16u cs, bx_address eip)
{
if(active)
{
fprintf(stderr, "CPU %u: hardware interrupt %02xh\n", cpu, vector);
}
}
void bx_instr_lin_access(unsigned cpu, bx_address lin, bx_phy_address phy, unsigned len, unsigned rw)
{
if(!active || !instruction[cpu].ready) return;
unsigned index = instruction[cpu].num_data_accesses;
if (index < MAX_DATA_ACCESSES) {
instruction[cpu].data_access[index].laddr = lin;
instruction[cpu].data_access[index].paddr = phy;
instruction[cpu].data_access[index].rw = rw;
instruction[cpu].data_access[index].size = len;
instruction[cpu].num_data_accesses++;
index++;
}
}