Bochs/bochs/cpu/cpu.cc

1212 lines
37 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: cpu.cc,v 1.191 2007-12-16 21:03:45 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#include "iodev/iodev.h"
#if BX_EXTERNAL_DEBUGGER
#include "extdb.h"
#endif
#if BX_SUPPORT_ICACHE
bxPageWriteStampTable pageWriteStampTable;
void purgeICaches(void)
{
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++)
BX_CPU(i)->iCache.purgeICacheEntries();
pageWriteStampTable.purgeWriteStamps();
}
void flushICaches(void)
{
for (unsigned i=0; i<BX_SMP_PROCESSORS; i++)
BX_CPU(i)->iCache.flushICacheEntries();
pageWriteStampTable.resetWriteStamps();
}
#define InstrumentTRACECACHE 0
#if InstrumentTRACECACHE
static Bit32u iCacheLookups=0;
static Bit32u iCacheMisses=0;
static Bit32u iCacheMergeTraces=0;
static Bit32u iCacheTraceLengh[BX_MAX_TRACE_LENGTH];
#define InstrICache_StatsMask 0x3ffffff
#define InstrICache_Stats() {\
if ((iCacheLookups & InstrICache_StatsMask) == 0) { \
BX_INFO(("ICACHE lookups: %u, misses: %u, merges: %u, hit rate = %3.2f%%", \
(unsigned) iCacheLookups, \
(unsigned) iCacheMisses, \
(unsigned) iCacheMergeTraces, \
(iCacheLookups-iCacheMisses) * 100.0 / iCacheLookups)); \
for (unsigned trace_len_idx=0; trace_len_idx<BX_MAX_TRACE_LENGTH;trace_len_idx++) { \
BX_INFO(("trace[%02d]: %u\t(%3.2f%%)", trace_len_idx+1, \
iCacheTraceLengh[trace_len_idx], \
iCacheTraceLengh[trace_len_idx] * 100.0/(iCacheLookups-iCacheMisses))); \
iCacheTraceLengh[trace_len_idx] = 0; \
} \
iCacheLookups = iCacheMisses = iCacheMergeTraces = 0; \
} \
}
#define InstrICache_Increment(v) (v)++
#else
#define InstrICache_Stats()
#define InstrICache_Increment(v)
#endif
#endif // InstrumentTRACECACHE
// Make code more tidy with a few macros.
#if BX_SUPPORT_X86_64==0
#define RIP EIP
#define RCX ECX
#endif
#if BX_SUPPORT_TRACE_CACHE
bxICacheEntry_c* BX_CPU_C::fetchInstructionTrace(bxInstruction_c *iStorage, bx_address eipBiased)
{
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrA20Page + eipBiased;
unsigned iCacheHash = BX_CPU_THIS_PTR iCache.hash(pAddr);
bxICacheEntry_c *trace = &(BX_CPU_THIS_PTR iCache.entry[iCacheHash]);
Bit32u pageWriteStamp = *(BX_CPU_THIS_PTR currPageWriteStampPtr);
InstrICache_Increment(iCacheLookups);
InstrICache_Stats();
if ((trace->pAddr == pAddr) &&
(trace->writeStamp == pageWriteStamp))
{
InstrICache_Increment(iCacheTraceLengh[trace->ilen-1]);
return trace; // We are lucky - trace cache hit !
}
// We are not so lucky, but let's be optimistic - try to build trace from
// incoming instruction bytes stream !
trace->pAddr = pAddr;
trace->writeStamp = pageWriteStamp;
trace->ilen = 0;
InstrICache_Increment(iCacheMisses);
bx_address remainingInPage = (BX_CPU_THIS_PTR eipPageWindowSize - eipBiased);
unsigned maxFetch = 15;
if (remainingInPage < 15) maxFetch = remainingInPage;
Bit8u *fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
unsigned ret;
// We could include in trace maximum BX_MAX_TRACE_LEN instructions
unsigned max_length = BX_MAX_TRACE_LENGTH;
if ((pageWriteStamp & ICacheWriteStampMask) != ICacheWriteStampStart)
max_length = 1; // seems like the entry has SMC ping-pong problem
bxInstruction_c *i = trace->i;
for (unsigned len=0;len<max_length;len++,i++)
{
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
ret = fetchDecode64(fetchPtr, i, maxFetch);
else
#endif
ret = fetchDecode32(fetchPtr, i, maxFetch);
if (ret==0) {
// Fetching instruction on segment/page boundary
if (len > 0) {
// The trace is already valid, it has several instructions inside,
// in this case just drop the boundary instruction and stop
// tracing.
break;
}
// First instruction is boundary fetch, return iStorage and leave
// the trace cache entry invalid (do not cache the instruction)
trace->writeStamp = ICacheWriteStampInvalid;
boundaryFetch(fetchPtr, remainingInPage, iStorage);
return 0;
}
// add instruction to the trace ...
unsigned iLen = i->ilen();
trace->ilen++;
// ... and continue to the next instruction
remainingInPage -= iLen;
if (remainingInPage == 0) break;
if (remainingInPage < 15) maxFetch = remainingInPage;
pAddr += iLen;
fetchPtr += iLen;
if (i->getStopTraceAttr()) {
unsigned b1 = i->b1() & 0x1f0;
if (b1 == 0x70 || b1 == 0x180) { // JCC instruction
// try cross JCC branch merge of traces
mergeTraces(trace, i+1, pAddr);
}
break;
}
// try to find a trace starting from current pAddr and merge
if (mergeTraces(trace, i+1, pAddr)) break;
}
return trace;
}
bx_bool BX_CPU_C::mergeTraces(bxICacheEntry_c *trace, bxInstruction_c *i, bx_phy_address pAddr)
{
bxICacheEntry_c *e = &(BX_CPU_THIS_PTR iCache.entry[BX_CPU_THIS_PTR iCache.hash(pAddr)]);
if ((e->pAddr == pAddr) && (e->writeStamp == trace->writeStamp))
{
// We are lucky - another trace hit !
InstrICache_Increment(iCacheMergeTraces);
// determine max amount of instruction to take from another trace
unsigned max_length = e->ilen;
if (max_length + trace->ilen > BX_MAX_TRACE_LENGTH)
max_length = BX_MAX_TRACE_LENGTH - trace->ilen;
if(max_length == 0) return 0;
memcpy(i, e->i, sizeof(bxInstruction_c)*max_length);
trace->ilen += max_length;
BX_ASSERT(trace->ilen <= BX_MAX_TRACE_LENGTH);
return 1;
}
return 0;
}
void BX_CPU_C::instrumentTraces(void)
{
Bit32u currPageWriteStamp = *(BX_CPU_THIS_PTR currPageWriteStampPtr);
bxICacheEntry_c *e = BX_CPU_THIS_PTR iCache.entry;
Bit32u trace_length[BX_MAX_TRACE_LENGTH], invalid_entries = 0;
unsigned i;
for (i=0; i < BX_MAX_TRACE_LENGTH; i++) trace_length[i] = 0;
for (i=0; i<BxICacheEntries; i++, e++) {
if (e->writeStamp == currPageWriteStamp)
trace_length[e->ilen-1]++;
else
invalid_entries++;
}
for (i=0; i < BX_MAX_TRACE_LENGTH; i++) {
BX_INFO(("traces[%02d]: %u\t%f%%", i+1,
trace_length[i], trace_length[i]*100.0/BxICacheEntries));
}
BX_INFO(("invalid entries: %u\t%f%%",
invalid_entries, invalid_entries*100.0/BxICacheEntries));
}
#else
bxInstruction_c* BX_CPU_C::fetchInstruction(bxInstruction_c *iStorage, bx_address eipBiased)
{
unsigned ret;
bxInstruction_c *i = iStorage;
#if BX_SUPPORT_ICACHE
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrA20Page + eipBiased;
unsigned iCacheHash = BX_CPU_THIS_PTR iCache.hash(pAddr);
bxICacheEntry_c *cache_entry = &(BX_CPU_THIS_PTR iCache.entry[iCacheHash]);
i = &(cache_entry->i);
Bit32u pageWriteStamp = *(BX_CPU_THIS_PTR currPageWriteStampPtr);
InstrICache_Increment(iCacheLookups);
InstrICache_Stats();
if ((cache_entry->pAddr == pAddr) &&
(cache_entry->writeStamp == pageWriteStamp))
{
// iCache hit. Instruction is already decoded and stored in the
// instruction cache.
#if BX_INSTRUMENTATION
// An instruction was found in the iCache.
BX_INSTR_OPCODE(BX_CPU_ID, BX_CPU_THIS_PTR eipFetchPtr + eipBiased,
i->ilen(), BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, Is64BitMode());
#endif
return i;
}
#endif
// iCache miss. No validated instruction with matching fetch parameters
// is in the iCache. Or we're not compiling iCache support in, in which
// case we always have an iCache miss. :^)
bx_address remainingInPage = (BX_CPU_THIS_PTR eipPageWindowSize - eipBiased);
unsigned maxFetch = 15;
if (remainingInPage < 15) maxFetch = remainingInPage;
Bit8u *fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
#if BX_SUPPORT_ICACHE
// The entry will be marked valid if fetchdecode will succeed
cache_entry->writeStamp = ICacheWriteStampInvalid;
InstrICache_Increment(iCacheMisses);
#endif
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
ret = fetchDecode64(fetchPtr, i, maxFetch);
else
#endif
ret = fetchDecode32(fetchPtr, i, maxFetch);
if (ret==0) {
// return iStorage and leave icache entry invalid (do not cache instr)
boundaryFetch(fetchPtr, remainingInPage, iStorage);
return iStorage;
}
else
{
#if BX_SUPPORT_ICACHE
cache_entry->pAddr = pAddr;
cache_entry->writeStamp = pageWriteStamp;
#endif
#if BX_INSTRUMENTATION
// An instruction was either fetched, or found in the iCache.
BX_INSTR_OPCODE(BX_CPU_ID, fetchPtr, i->ilen(),
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, Is64BitMode());
#endif
}
return i;
}
#endif
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
// instructions and then return so that the other processors have a chance to
// run. This is used by bochs internal debugger or when simulating
// multiple processors.
//
// If maximum instructions have been executed, return. The zero-count
// means run forever.
#if BX_SUPPORT_SMP || BX_DEBUGGER
#define CHECK_MAX_INSTRUCTIONS(count) \
if ((count) > 0) { \
(count)--; \
if ((count) == 0) return; \
}
#else
#define CHECK_MAX_INSTRUCTIONS(count)
#endif
void BX_CPU_C::cpu_loop(Bit32u max_instr_count)
{
bxInstruction_c iStorage BX_CPP_AlignN(32);
#if BX_DEBUGGER
BX_CPU_THIS_PTR break_point = 0;
#if BX_MAGIC_BREAKPOINT
BX_CPU_THIS_PTR magic_break = 0;
#endif
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
#endif
if (setjmp(BX_CPU_THIS_PTR jmp_buf_env))
{
// only from exception function we can get here ...
BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID);
#if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
if (dbg_instruction_epilog()) return;
#endif
CHECK_MAX_INSTRUCTIONS(max_instr_count);
#if BX_GDBSTUB
if (bx_dbg.gdbstub_enabled) return;
#endif
}
#if BX_DEBUGGER
// If the exception() routine has encountered a nasty fault scenario,
// the debugger may request that control is returned to it so that
// the situation may be examined.
if (bx_guard.interrupt_requested) {
BX_ERROR(("CPU_LOOP bx_guard.interrupt_requested=%d", bx_guard.interrupt_requested));
return;
}
#endif
// We get here either by a normal function call, or by a longjmp
// back from an exception() call. In either case, commit the
// new EIP/ESP, and set up other environmental fields. This code
// mirrors similar code below, after the interrupt() call.
BX_CPU_THIS_PTR prev_rip = RIP; // commit new EIP
BX_CPU_THIS_PTR speculative_rsp = 0;
BX_CPU_THIS_PTR EXT = 0;
BX_CPU_THIS_PTR errorno = 0;
while (1) {
#if BX_SUPPORT_TRACE_CACHE
// clear stop trace magic indication that probably was set by branch32/64
BX_CPU_THIS_PTR async_event &= ~BX_ASYNC_EVENT_STOP_TRACE;
#endif
// First check on events which occurred for previous instructions
// (traps) and ones which are asynchronous to the CPU
// (hardware interrupts).
if (BX_CPU_THIS_PTR async_event) {
if (handleAsyncEvent()) {
// If request to return to caller ASAP.
return;
}
}
bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) {
prefetch();
eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
}
#if BX_SUPPORT_TRACE_CACHE == 0
// fetch and decode single instruction
bxInstruction_c *i = fetchInstruction(&iStorage, eipBiased);
#else
unsigned n, length = 1;
bxInstruction_c *i = &iStorage;
bxICacheEntry_c *trace = fetchInstructionTrace(&iStorage, eipBiased);
if (trace) {
i = trace->i; // execute from first instruction in trace
length = trace->ilen;
}
Bit32u currPageWriteStamp = *(BX_CPU_THIS_PTR currPageWriteStampPtr);
for (n=0; n < length; n++, i++) {
#endif
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
// An instruction will have been fetched using either the normal case,
// or the boundary fetch (across pages), by this point.
BX_INSTR_FETCH_DECODE_COMPLETED(BX_CPU_ID, i);
#if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
if (dbg_instruction_prolog()) return;
#endif
#if BX_DISASM
if (BX_CPU_THIS_PTR trace) {
// print the instruction that is about to be executed
#if BX_DEBUGGER
bx_dbg_disassemble_current(BX_CPU_ID, 1); // only one cpu, print time stamp
#else
debug_disasm_instruction(BX_CPU_THIS_PTR prev_rip);
#endif
}
#endif
// decoding instruction compeleted -> continue with execution
BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
RIP += i->ilen();
BX_CPU_CALL_METHOD(i->execute, (i)); // might iterate repeat instruction
BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i);
BX_TICK1_IF_SINGLE_PROCESSOR();
// inform instrumentation about new instruction
BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID);
// note instructions generating exceptions never reach this point
#if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
if (dbg_instruction_epilog()) return;
#endif
CHECK_MAX_INSTRUCTIONS(max_instr_count);
#if BX_SUPPORT_TRACE_CACHE
if (currPageWriteStamp != *(BX_CPU_THIS_PTR currPageWriteStampPtr))
break; // probably it is self modifying code ...
if (BX_CPU_THIS_PTR async_event) break;
}
#endif
} // while (1)
}
void BX_CPU_C::repeat(bxInstruction_c *i, BxExecutePtr_t execute)
{
// non repeated instruction
if (! i->repUsedL()) {
BX_CPU_CALL_METHOD(execute, (i));
return;
}
#if BX_SUPPORT_X86_64
if (i->as64L()) {
while(1) {
if (RCX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
RCX --;
}
if (RCX == 0) return;
BX_TICK1_IF_SINGLE_PROCESSOR();
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
}
}
else
#endif
if (i->as32L()) {
while(1) {
if (ECX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
RCX = ECX - 1;
}
if (ECX == 0) return;
BX_TICK1_IF_SINGLE_PROCESSOR();
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
}
}
else // 16bit addrsize
{
while(1) {
if (CX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
CX --;
}
if (CX == 0) return;
BX_TICK1_IF_SINGLE_PROCESSOR();
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
}
}
RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP
}
void BX_CPU_C::repeat_ZFL(bxInstruction_c *i, BxExecutePtr_t execute)
{
// non repeated instruction
if (! i->repUsedL()) {
BX_CPU_CALL_METHOD(execute, (i));
return;
}
unsigned rep = i->repUsedValue();
#if BX_SUPPORT_X86_64
if (i->as64L()) {
while(1) {
if (RCX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
RCX --;
}
if (rep==3 && get_ZF()==0) return;
if (rep==2 && get_ZF()!=0) return;
if (RCX == 0) return;
BX_TICK1_IF_SINGLE_PROCESSOR();
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
}
}
else
#endif
if (i->as32L()) {
while(1) {
if (ECX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
RCX = ECX - 1;
}
if (rep==3 && get_ZF()==0) return;
if (rep==2 && get_ZF()!=0) return;
if (ECX == 0) return;
BX_TICK1_IF_SINGLE_PROCESSOR();
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
}
}
else // 16bit addrsize
{
while(1) {
if (CX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
CX --;
}
if (rep==3 && get_ZF()==0) return;
if (rep==2 && get_ZF()!=0) return;
if (CX == 0) return;
BX_TICK1_IF_SINGLE_PROCESSOR();
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event)
#endif
break; // exit always if debugger enabled
}
}
RIP = BX_CPU_THIS_PTR prev_rip; // repeat loop not done, restore RIP
}
unsigned BX_CPU_C::handleAsyncEvent(void)
{
//
// This area is where we process special conditions and events.
//
if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_SPECIAL) {
// I made up the bitmask above to mean HALT state.
// for one processor, pass the time as quickly as possible until
// an interrupt wakes up the CPU.
#if BX_DEBUGGER
while (bx_guard.interrupt_requested != 1)
#else
while (1)
#endif
{
if ((BX_CPU_INTR && (BX_CPU_THIS_PTR get_IF() || (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_MWAIT_IF))) ||
BX_CPU_THIS_PTR nmi_pending || BX_CPU_THIS_PTR smi_pending)
{
// interrupt ends the HALT condition
#if BX_SUPPORT_MONITOR_MWAIT
if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_MWAIT)
BX_CPU_THIS_PTR mem->clear_monitor(BX_CPU_THIS_PTR bx_cpuid);
#endif
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
break;
}
if ((BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_SPECIAL) == 0) {
BX_INFO(("handleAsyncEvent: reset detected in HLT state"));
break;
}
// for multiprocessor simulation, even if this CPU is halted we still
// must give the others a chance to simulate. If an interrupt has
// arrived, then clear the HALT condition; otherwise just return from
// the CPU loop with stop_reason STOP_CPU_HALTED.
#if BX_SUPPORT_SMP
if (BX_SMP_PROCESSORS > 1) {
// HALT condition remains, return so other CPUs have a chance
#if BX_DEBUGGER
BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED;
#endif
return 1; // Return to caller of cpu_loop.
}
#endif
BX_TICK1();
}
} else if (bx_pc_system.kill_bochs_request) {
// setting kill_bochs_request causes the cpu loop to return ASAP.
return 1; // Return to caller of cpu_loop.
}
// Priority 1: Hardware Reset and Machine Checks
// RESET
// Machine Check
// (bochs doesn't support these)
// Priority 2: Trap on Task Switch
// T flag in TSS is set
if (BX_CPU_THIS_PTR debug_trap & 0x00008000) {
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
// Priority 3: External Hardware Interventions
// FLUSH
// STOPCLK
// SMI
// INIT
// (bochs doesn't support these)
if (BX_CPU_THIS_PTR smi_pending && ! BX_CPU_THIS_PTR smm_mode())
{
// clear SMI pending flag and disable NMI when SMM was accepted
BX_CPU_THIS_PTR smi_pending = 0;
BX_CPU_THIS_PTR nmi_disable = 1;
enter_system_management_mode();
}
// Priority 4: Traps on Previous Instruction
// Breakpoints
// Debug Trap Exceptions (TF flag set or data/IO breakpoint)
if (BX_CPU_THIS_PTR debug_trap &&
!(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG))
{
// A trap may be inhibited on this boundary due to an instruction
// which loaded SS. If so we clear the inhibit_mask below
// and don't execute this code until the next boundary.
// Commit debug events to DR6
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
// Priority 5: External Interrupts
// NMI Interrupts
// Maskable Hardware Interrupts
if (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_INTERRUPTS) {
// Processing external interrupts is inhibited on this
// boundary because of certain instructions like STI.
// inhibit_mask is cleared below, in which case we will have
// an opportunity to check interrupts on the next instruction
// boundary.
}
else if (BX_CPU_THIS_PTR nmi_pending) {
BX_CPU_THIS_PTR nmi_pending = 0;
BX_CPU_THIS_PTR nmi_disable = 1;
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; /* external event */
BX_INSTR_HWINTERRUPT(BX_CPU_ID, 2, BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP);
interrupt(2, 0, 0, 0);
}
else if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF() && BX_DBG_ASYNC_INTR)
{
Bit8u vector;
// NOTE: similar code in ::take_irq()
#if BX_SUPPORT_APIC
if (BX_CPU_THIS_PTR local_apic.INTR)
vector = BX_CPU_THIS_PTR local_apic.acknowledge_int();
else
#endif
// if no local APIC, always acknowledge the PIC.
vector = DEV_pic_iac(); // may set INTR with next interrupt
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; /* external event */
BX_INSTR_HWINTERRUPT(BX_CPU_ID, vector,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, RIP);
interrupt(vector, 0, 0, 0);
// Set up environment, as would be when this main cpu loop gets
// invoked. At the end of normal instructions, we always commmit
// the new EIP/ESP values. But here, we call interrupt() much like
// it was a sofware interrupt instruction, and need to effect the
// commit here. This code mirrors similar code above.
BX_CPU_THIS_PTR prev_rip = RIP; // commit new RIP
BX_CPU_THIS_PTR speculative_rsp = 0;
BX_CPU_THIS_PTR EXT = 0;
BX_CPU_THIS_PTR errorno = 0;
}
else if (BX_HRQ && BX_DBG_ASYNC_DMA) {
// NOTE: similar code in ::take_dma()
// assert Hold Acknowledge (HLDA) and go into a bus hold state
DEV_dma_raise_hlda();
}
// Priority 6: Faults from fetching next instruction
// Code breakpoint fault
// Code segment limit violation (priority 7 on 486/Pentium)
// Code page fault (priority 7 on 486/Pentium)
// (handled in main decode loop)
// Priority 7: Faults from decoding next instruction
// Instruction length > 15 bytes
// Illegal opcode
// Coprocessor not available
// (handled in main decode loop etc)
// Priority 8: Faults on executing an instruction
// Floating point execution
// Overflow
// Bound error
// Invalid TSS
// Segment not present
// Stack fault
// General protection
// Data page fault
// Alignment check
// (handled by rest of the code)
if (BX_CPU_THIS_PTR get_TF())
{
// TF is set before execution of next instruction. Schedule
// a debug trap (#DB) after execution. After completion of
// next instruction, the code above will invoke the trap.
BX_CPU_THIS_PTR debug_trap |= 0x00004000; // BS flag in DR6
}
// Now we can handle things which are synchronous to instruction
// execution.
if (BX_CPU_THIS_PTR get_RF()) {
BX_CPU_THIS_PTR clear_RF();
}
#if BX_X86_DEBUGGER
else {
// only bother comparing if any breakpoints enabled
if (BX_CPU_THIS_PTR dr7 & 0x000000ff) {
bx_address iaddr = BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_CS) + BX_CPU_THIS_PTR prev_rip;
Bit32u dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction, BX_HWDebugInstruction);
if (dr6_bits)
{
// Add to the list of debug events thus far.
BX_CPU_THIS_PTR async_event = 1;
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
// If debug events are not inhibited on this boundary,
// fire off a debug fault. Otherwise handle it on the next
// boundary. (becomes a trap)
if (! (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG)) {
// Commit debug events to DR6
BX_CPU_THIS_PTR dr6 = BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
}
}
}
#endif
// We have ignored processing of external interrupts and
// debug events on this boundary. Reset the mask so they
// will be processed on the next boundary.
BX_CPU_THIS_PTR inhibit_mask = 0;
if ( !(BX_CPU_INTR ||
BX_CPU_THIS_PTR debug_trap ||
BX_HRQ ||
BX_CPU_THIS_PTR get_TF()
#if BX_X86_DEBUGGER
|| (BX_CPU_THIS_PTR dr7 & 0xff)
#endif
))
BX_CPU_THIS_PTR async_event = 0;
return 0; // Continue executing cpu_loop.
}
// boundaries of consideration:
//
// * physical memory boundary: 1024k (1Megabyte) (increments of...)
// * A20 boundary: 1024k (1Megabyte)
// * page boundary: 4k
// * ROM boundary: 2k (dont care since we are only reading)
// * segment boundary: any
void BX_CPU_C::prefetch(void)
{
bx_address temp_rip = RIP;
bx_address laddr = BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_CS) + temp_rip;
bx_phy_address pAddr;
// Calculate RIP at the beginning of the page.
bx_address eipPageOffset0 = RIP - (laddr & 0xfff);
BX_CPU_THIS_PTR eipPageBias = -eipPageOffset0;
BX_CPU_THIS_PTR eipPageWindowSize = 4096;
if (! Is64BitMode()) {
Bit32u temp_limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled;
if (((Bit32u) temp_rip) > temp_limit) {
BX_ERROR(("prefetch: EIP [%08x] > CS.limit [%08x]", (Bit32u) temp_rip, temp_limit));
exception(BX_GP_EXCEPTION, 0, 0);
}
if (temp_limit + BX_CPU_THIS_PTR eipPageBias < 4096) {
BX_CPU_THIS_PTR eipPageWindowSize = temp_limit + BX_CPU_THIS_PTR eipPageBias + 1;
}
}
if (BX_CPU_THIS_PTR cr0.get_PG()) {
// aligned block guaranteed to be all in one page, same A20 address
pAddr = itranslate_linear(laddr, CPL);
pAddr = A20ADDR(pAddr);
}
else
{
pAddr = A20ADDR(laddr);
}
BX_CPU_THIS_PTR pAddrA20Page = pAddr & 0xfffff000;
BX_CPU_THIS_PTR eipFetchPtr =
BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS,
BX_CPU_THIS_PTR pAddrA20Page, BX_READ, CODE_ACCESS);
// Sanity checks
if (! BX_CPU_THIS_PTR eipFetchPtr) {
if (pAddr >= BX_CPU_THIS_PTR mem->len) {
BX_PANIC(("prefetch: running in bogus memory, pAddr=0x%08x", pAddr));
}
else {
BX_PANIC(("prefetch: getHostMemAddr vetoed direct read, pAddr=0x%08x", pAddr));
}
}
#if BX_SUPPORT_ICACHE
BX_CPU_THIS_PTR currPageWriteStampPtr = pageWriteStampTable.getPageWriteStampPtr(pAddr);
Bit32u pageWriteStamp = *(BX_CPU_THIS_PTR currPageWriteStampPtr);
Bit32u fetchModeMask = BX_CPU_THIS_PTR fetchModeMask;
if ((pageWriteStamp & ICacheFetchModeMask) != fetchModeMask)
{
// The current CPU mode does not match iCache entries for this
// physical page.
pageWriteStamp &= ICacheWriteStampMask; // Clear out old fetch mode bits.
pageWriteStamp |= fetchModeMask; // Add in new ones.
pageWriteStampTable.setPageWriteStamp(pAddr, pageWriteStamp);
}
#endif
}
void BX_CPU_C::boundaryFetch(Bit8u *fetchPtr, unsigned remainingInPage, bxInstruction_c *i)
{
unsigned j;
Bit8u fetchBuffer[16]; // Really only need 15
unsigned ret;
if (remainingInPage >= 15) {
BX_INFO(("fetchDecode #GP(0): too many instruction prefixes"));
exception(BX_GP_EXCEPTION, 0, 0);
}
// Read all leftover bytes in current page up to boundary.
for (j=0; j<remainingInPage; j++) {
fetchBuffer[j] = *fetchPtr++;
}
// The 2nd chunk of the instruction is on the next page.
// Set RIP to the 0th byte of the 2nd page, and force a
// prefetch so direct access of that physical page is possible, and
// all the associated info is updated.
RIP += remainingInPage;
prefetch();
if (BX_CPU_THIS_PTR eipPageWindowSize < 15) {
BX_PANIC(("fetch_decode: small window size after prefetch"));
}
// We can fetch straight from the 0th byte, which is eipFetchPtr;
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr;
// read leftover bytes in next page
for (; j<15; j++) {
fetchBuffer[j] = *fetchPtr++;
}
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
ret = fetchDecode64(fetchBuffer, i, 15);
}
else
#endif
{
ret = fetchDecode32(fetchBuffer, i, 15);
}
if (ret==0) {
BX_INFO(("fetchDecode #GP(0): too many instruction prefixes"));
exception(BX_GP_EXCEPTION, 0, 0);
}
// Restore EIP since we fudged it to start at the 2nd page boundary.
RIP = BX_CPU_THIS_PTR prev_rip;
// Since we cross an instruction boundary, note that we need a prefetch()
// again on the next instruction. Perhaps we can optimize this to
// eliminate the extra prefetch() since we do it above, but have to
// think about repeated instructions, etc.
invalidate_prefetch_q();
BX_INSTR_OPCODE(BX_CPU_ID, fetchBuffer, i->ilen(),
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b, Is64BitMode());
}
void BX_CPU_C::deliver_NMI(void)
{
BX_CPU_THIS_PTR nmi_pending = 1;
BX_CPU_THIS_PTR async_event = 1;
}
void BX_CPU_C::deliver_SMI(void)
{
BX_CPU_THIS_PTR smi_pending = 1;
BX_CPU_THIS_PTR async_event = 1;
}
#if BX_EXTERNAL_DEBUGGER
void BX_CPU_C::ask(int level, const char *prefix, const char *fmt, va_list ap)
{
char buf1[1024];
vsprintf (buf1, fmt, ap);
printf ("%s %s\n", prefix, buf1);
trap_debugger(1);
}
#endif
#if BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
bx_bool BX_CPU_C::dbg_instruction_prolog(void)
{
#if BX_DEBUGGER
if(dbg_check_begin_instr_bpoint()) return 1;
#endif
#if BX_EXTERNAL_DEBUGGER
bx_external_debugger(BX_CPU_THIS);
#endif
return 0;
}
bx_bool BX_CPU_C::dbg_instruction_epilog(void)
{
#if BX_DEBUGGER
if (dbg_check_end_instr_bpoint()) return 1;
#endif
#if BX_GDBSTUB
if (bx_dbg.gdbstub_enabled) {
unsigned reason = bx_gdbstub_check(EIP);
if (reason != GDBSTUB_STOP_NO_REASON) return 1;
}
#endif
return 0;
}
#endif // BX_DEBUGGER || BX_EXTERNAL_DEBUGGER || BX_GDBSTUB
#if BX_DEBUGGER
extern unsigned dbg_show_mask;
bx_bool BX_CPU_C::dbg_check_begin_instr_bpoint(void)
{
Bit64u tt = bx_pc_system.time_ticks();
bx_address debug_eip = RIP;
Bit16u cs = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
BX_CPU_THIS_PTR guard_found.cs = cs;
BX_CPU_THIS_PTR guard_found.eip = debug_eip;
BX_CPU_THIS_PTR guard_found.laddr =
BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_CS) + debug_eip;
BX_CPU_THIS_PTR guard_found.is_32bit_code =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
BX_CPU_THIS_PTR guard_found.is_64bit_code = Is64BitMode();
// mode switch breakpoint
// instruction which generate exceptions never reach the end of the
// loop due to a long jump. Thats why we check at start of instr.
// Downside is that we show the instruction about to be executed
// (not the one generating the mode switch).
if (BX_CPU_THIS_PTR mode_break &&
(BX_CPU_THIS_PTR dbg_cpu_mode != BX_CPU_THIS_PTR get_cpu_mode()))
{
BX_INFO(("[" FMT_LL "d] Caught mode switch breakpoint, switching from '%s' to '%s'",
bx_pc_system.time_ticks(), cpu_mode_string(BX_CPU_THIS_PTR dbg_cpu_mode),
cpu_mode_string(BX_CPU_THIS_PTR get_cpu_mode())));
BX_CPU_THIS_PTR dbg_cpu_mode = BX_CPU_THIS_PTR get_cpu_mode();
BX_CPU_THIS_PTR stop_reason = STOP_MODE_BREAK_POINT;
return(1);
}
// support for 'show' command in debugger
if(dbg_show_mask) {
int rv = bx_dbg_show_symbolic();
if (rv) return(rv);
}
// see if debugger is looking for iaddr breakpoint of any type
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) {
#if (BX_DBG_MAX_VIR_BPOINTS > 0)
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) {
if ((BX_CPU_THIS_PTR guard_found.icount!=0) ||
(tt != BX_CPU_THIS_PTR guard_found.time_tick))
{
for (unsigned i=0; i<bx_guard.iaddr.num_virtual; i++) {
if (bx_guard.iaddr.vir[i].enabled &&
(bx_guard.iaddr.vir[i].cs == cs) &&
(bx_guard.iaddr.vir[i].eip == debug_eip))
{
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
BX_CPU_THIS_PTR guard_found.time_tick = tt;
return(1); // on a breakpoint
}
}
}
}
#endif
#if (BX_DBG_MAX_LIN_BPOINTS > 0)
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) {
if ((BX_CPU_THIS_PTR guard_found.icount!=0) ||
(tt != BX_CPU_THIS_PTR guard_found.time_tick))
{
for (unsigned i=0; i<bx_guard.iaddr.num_linear; i++) {
if (bx_guard.iaddr.lin[i].enabled &&
(bx_guard.iaddr.lin[i].addr == BX_CPU_THIS_PTR guard_found.laddr))
{
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
BX_CPU_THIS_PTR guard_found.time_tick = tt;
return(1); // on a breakpoint
}
}
}
}
#endif
#if (BX_DBG_MAX_PHY_BPOINTS > 0)
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) {
bx_phy_address phy;
bx_bool valid = dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr, &phy);
// The "guard_found.icount!=0" condition allows you to step or
// continue beyond a breakpoint. Bryce tried removing it once,
// and once you get to a breakpoint you are stuck there forever.
// Not pretty.
if (valid && ((BX_CPU_THIS_PTR guard_found.icount!=0) ||
(tt != BX_CPU_THIS_PTR guard_found.time_tick)))
{
for (unsigned i=0; i<bx_guard.iaddr.num_physical; i++) {
if (bx_guard.iaddr.phy[i].enabled && (bx_guard.iaddr.phy[i].addr == phy))
{
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
BX_CPU_THIS_PTR guard_found.time_tick = tt;
return(1); // on a breakpoint
}
}
}
}
#endif
}
return(0); // not on a breakpoint
}
bx_bool BX_CPU_C::dbg_check_end_instr_bpoint(void)
{
BX_CPU_THIS_PTR guard_found.icount++;
BX_CPU_THIS_PTR guard_found.cs =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
BX_CPU_THIS_PTR guard_found.eip = RIP;
BX_CPU_THIS_PTR guard_found.laddr =
BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_CS) + RIP;
BX_CPU_THIS_PTR guard_found.is_32bit_code =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b;
BX_CPU_THIS_PTR guard_found.is_64bit_code = Is64BitMode();
// Check if we hit read/write or time breakpoint
if (BX_CPU_THIS_PTR break_point) {
switch (BX_CPU_THIS_PTR break_point) {
case BREAK_POINT_TIME:
BX_INFO(("[" FMT_LL "d] Caught time breakpoint", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT;
return(1); // on a breakpoint
case BREAK_POINT_READ:
BX_INFO(("[" FMT_LL "d] Caught read watch point", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT;
return(1); // on a breakpoint
case BREAK_POINT_WRITE:
BX_INFO(("[" FMT_LL "d] Caught write watch point", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT;
return(1); // on a breakpoint
default:
BX_PANIC(("Weird break point condition"));
}
}
#if BX_MAGIC_BREAKPOINT
if (BX_CPU_THIS_PTR magic_break) {
BX_INFO(("[" FMT_LL "d] Stopped on MAGIC BREAKPOINT", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT;
return(1); // on a breakpoint
}
#endif
// convenient point to see if user typed Ctrl-C
if (bx_guard.interrupt_requested &&
(bx_guard.guard_for & BX_DBG_GUARD_CTRL_C))
{
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_CTRL_C;
return(1); // Ctrl-C pressed
}
return(0); // no breakpoint
}
void BX_CPU_C::dbg_take_irq(void)
{
// NOTE: similar code in ::cpu_loop()
if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF()) {
if (setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0) {
// normal return from setjmp setup
unsigned vector = DEV_pic_iac(); // may set INTR with next interrupt
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; // external event
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
interrupt(vector, 0, 0, 0);
}
}
}
void BX_CPU_C::dbg_force_interrupt(unsigned vector)
{
// Used to force simulator to take an interrupt, without
// regard to IF
if (setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0) {
// normal return from setjmp setup
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; // external event
BX_CPU_THIS_PTR async_event = 1; // probably don't need this
interrupt(vector, 0, 0, 0);
}
}
void BX_CPU_C::dbg_take_dma(void)
{
// NOTE: similar code in ::cpu_loop()
if (BX_HRQ) {
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
DEV_dma_raise_hlda();
}
}
#endif // #if BX_DEBUGGER