279 lines
11 KiB
C
Executable File
279 lines
11 KiB
C
Executable File
/*============================================================================
|
|
This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
|
|
Arithmetic Package, Release 2b.
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) the source code for the derivative work includes prominent notice that
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
|
these four paragraphs for those parts of this code that are retained.
|
|
=============================================================================*/
|
|
|
|
/*============================================================================
|
|
* Adapted for Bochs (x86 achitecture simulator) by
|
|
* Stanislav Shwartsman (gate@fidonet.org.il)
|
|
* ==========================================================================*/
|
|
|
|
typedef int flag;
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Raises the exceptions specified by `flags'. Floating-point traps can be
|
|
| defined here if desired. It is currently not possible for such a trap
|
|
| to substitute a result value. If traps are not implemented, this routine
|
|
| should be simply `float_exception_flags |= flags;'
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
BX_CPP_INLINE void float_raise(float_status_t &status, int flags)
|
|
{
|
|
status.float_exception_flags |= flags;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns current floating point rounding mode specified by status word.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
BX_CPP_INLINE int get_float_rounding_mode(float_status_t &status)
|
|
{
|
|
return status.float_rounding_mode;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns current floating point NaN operands handling mode specified
|
|
| by status word.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
BX_CPP_INLINE int get_float_nan_handling_mode(float_status_t &status)
|
|
{
|
|
return status.float_nan_handling_mode;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the <flush-underflow-to-zero> feature is supported;
|
|
| otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
BX_CPP_INLINE int get_flush_underflow_to_zero(float_status_t &status)
|
|
{
|
|
return status.flush_underflow_to_zero;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns current floating point precision.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
BX_CPP_INLINE int get_float_precision(float_status_t &status)
|
|
{
|
|
return status.float_precision;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Internal canonical NaN format.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
typedef struct {
|
|
flag sign;
|
|
Bit64u hi, lo;
|
|
} commonNaNT;
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated single-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
#define float32_default_nan 0xFFC00000
|
|
/* in another version
|
|
#define float32_default_nan 0x7FFFFFFF
|
|
*/
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is a NaN;
|
|
| otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_is_nan(float32 a)
|
|
{
|
|
return (0xFF000000 < (Bit32u) (a<<1));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is a signaling
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_is_signaling_nan(float32 a)
|
|
{
|
|
return (((a>>22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point NaN
|
|
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
|
| exception is raised.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static commonNaNT float32ToCommonNaN(float32 a, float_status_t &status)
|
|
{
|
|
commonNaNT z;
|
|
|
|
if (float32_is_signaling_nan(a)) float_raise(status, float_flag_invalid);
|
|
z.sign = a>>31;
|
|
z.lo = 0;
|
|
z.hi = ((Bit64u) a)<<41;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the canonical NaN `a' to the single-
|
|
| precision floating-point format.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 commonNaNToFloat32(commonNaNT a)
|
|
{
|
|
return (((Bit32u) a.sign)<<31) | 0x7FC00000 | (a.hi>>41);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes two single-precision floating-point values `a' and `b', one of which
|
|
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
|
| signaling NaN, the invalid exception is raised.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 propagateFloat32NaN(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
|
|
|
aIsNaN = float32_is_nan(a);
|
|
aIsSignalingNaN = float32_is_signaling_nan(a);
|
|
bIsNaN = float32_is_nan(b);
|
|
bIsSignalingNaN = float32_is_signaling_nan(b);
|
|
a |= 0x00400000;
|
|
b |= 0x00400000;
|
|
if (aIsSignalingNaN | bIsSignalingNaN) float_raise(status, float_flag_invalid);
|
|
if (get_float_nan_handling_mode(status) == float_larger_significand_nan) {
|
|
if (aIsSignalingNaN) {
|
|
if (bIsSignalingNaN) goto returnLargerSignificand;
|
|
return bIsNaN ? b : a;
|
|
}
|
|
else if (aIsNaN) {
|
|
if (bIsSignalingNaN | ! bIsNaN) return a;
|
|
returnLargerSignificand:
|
|
if ((Bit32u) (a<<1) < (Bit32u) (b<<1)) return b;
|
|
if ((Bit32u) (b<<1) < (Bit32u) (a<<1)) return a;
|
|
return (a < b) ? a : b;
|
|
}
|
|
else {
|
|
return b;
|
|
}
|
|
} else {
|
|
return (aIsSignalingNaN | aIsNaN) ? a : b;
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The pattern for a default generated double-precision NaN.
|
|
*----------------------------------------------------------------------------*/
|
|
#define float64_default_nan BX_CONST64(0xFFF8000000000000)
|
|
/* in another version
|
|
#define float64_default_nan BX_CONST64(0x7FFFFFFFFFFFFFFF)
|
|
*/
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is a NaN;
|
|
| otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_is_nan(float64 a)
|
|
{
|
|
return (BX_CONST64(0xFFE0000000000000) < (Bit64u) (a<<1));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is a signaling
|
|
| NaN; otherwise returns 0.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_is_signaling_nan(float64 a)
|
|
{
|
|
return (((a>>51) & 0xFFF) == 0xFFE) && (a & BX_CONST64(0x0007FFFFFFFFFFFF));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point NaN
|
|
| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
|
|
| exception is raised.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static commonNaNT float64ToCommonNaN(float64 a, float_status_t &status)
|
|
{
|
|
commonNaNT z;
|
|
|
|
if (float64_is_signaling_nan(a)) float_raise(status, float_flag_invalid);
|
|
z.sign = a>>63;
|
|
z.lo = 0;
|
|
z.hi = a<<12;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the canonical NaN `a' to the double-
|
|
| precision floating-point format.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 commonNaNToFloat64(commonNaNT a)
|
|
{
|
|
return (((Bit64u) a.sign)<<63) | BX_CONST64(0x7FF8000000000000) | (a.hi>>12);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes two double-precision floating-point values `a' and `b', one of which
|
|
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
|
|
| signaling NaN, the invalid exception is raised.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 propagateFloat64NaN(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
flag aIsNaN, aIsSignalingNaN, bIsNaN, bIsSignalingNaN;
|
|
|
|
aIsNaN = float64_is_nan(a);
|
|
aIsSignalingNaN = float64_is_signaling_nan(a);
|
|
bIsNaN = float64_is_nan(b);
|
|
bIsSignalingNaN = float64_is_signaling_nan(b);
|
|
a |= BX_CONST64(0x0008000000000000);
|
|
b |= BX_CONST64(0x0008000000000000);
|
|
if (aIsSignalingNaN | bIsSignalingNaN) float_raise(status, float_flag_invalid);
|
|
if (get_float_nan_handling_mode(status) == float_larger_significand_nan) {
|
|
if (aIsSignalingNaN) {
|
|
if (bIsSignalingNaN) goto returnLargerSignificand;
|
|
return bIsNaN ? b : a;
|
|
}
|
|
else if (aIsNaN) {
|
|
if (bIsSignalingNaN | ! bIsNaN) return a;
|
|
returnLargerSignificand:
|
|
if ((Bit64u) (a<<1) < (Bit64u) (b<<1)) return b;
|
|
if ((Bit64u) (b<<1) < (Bit64u) (a<<1)) return a;
|
|
return (a < b) ? a : b;
|
|
}
|
|
else {
|
|
return b;
|
|
}
|
|
} else {
|
|
return (aIsSignalingNaN | aIsNaN) ? a : b;
|
|
}
|
|
}
|