Bochs/bochs/cpu/crregs.cc
Stanislav Shwartsman 1bf18b8aae ! CPUID: Added TigerLake CPU definition (features CET and CLWB support)
- CPU code refactor, remove uses of bx_bool datatype and use C++ classic bool instead.
  This enable better compiler optimizations and reduce binary size
2021-01-30 08:35:35 +00:00

1797 lines
51 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2010-2020 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_DdRd(bxInstruction_c *i)
{
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_DR_Access(0 /* write */, i->dst(), i->src());
#endif
#if BX_CPU_LEVEL >= 5
if (BX_CPU_THIS_PTR cr4.get_DE()) {
if ((i->dst() & 0xE) == 4) {
BX_ERROR(("%s: access to DR4/DR5 causes #UD", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
}
#endif
// Note: processor clears GD upon entering debug exception
// handler, to allow access to the debug registers
if (BX_CPU_THIS_PTR dr7.get_GD()) {
BX_ERROR(("%s: DR7 GD bit is set", i->getIaOpcodeNameShort()));
BX_CPU_THIS_PTR debug_trap |= BX_DEBUG_DR_ACCESS_BIT;
exception(BX_DB_EXCEPTION, 0);
}
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_DR_WRITE_INTERCEPTED(i->dst()))
Svm_Vmexit(SVM_VMEXIT_DR0_WRITE + i->dst(), BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->src() : 0);
}
#endif
invalidate_prefetch_q();
Bit32u val_32 = BX_READ_32BIT_REG(i->src());
switch (i->dst()) {
case 0: // DR0
case 1: // DR1
case 2: // DR2
case 3: // DR3
BX_CPU_THIS_PTR dr[i->dst()] = val_32;
TLB_invlpg(val_32);
break;
case 4: // DR4
// DR4 aliased to DR6 by default. With Debug Extensions on,
// access to DR4 causes #UD
case 6: // DR6
#if BX_CPU_LEVEL <= 4
// On 386/486 bit12 is settable
BX_CPU_THIS_PTR dr6.val32 = (BX_CPU_THIS_PTR dr6.val32 & 0xffff0ff0) |
(val_32 & 0x0000f00f);
#else
// On Pentium+, bit12 is always zero
BX_CPU_THIS_PTR dr6.val32 = (BX_CPU_THIS_PTR dr6.val32 & 0xffff0ff0) |
(val_32 & 0x0000e00f);
#endif
break;
case 5: // DR5
// DR5 aliased to DR7 by default. With Debug Extensions on,
// access to DR5 causes #UD
case 7: // DR7
// Note: 486+ ignore GE and LE flags. On the 386, exact
// data breakpoint matching does not occur unless it is enabled
// by setting the LE and/or GE flags.
#if BX_CPU_LEVEL <= 4
// 386/486: you can play with all the bits except b10 is always 1
BX_CPU_THIS_PTR dr7.set32(val_32 | 0x00000400);
#else
// Pentium+: bits15,14,12 are hardwired to 0, rest are settable.
// Even bits 11,10 are changeable though reserved.
BX_CPU_THIS_PTR dr7.set32((val_32 & 0xffff2fff) | 0x00000400);
#endif
#if BX_X86_DEBUGGER
// Some sanity checks...
if ((BX_CPU_THIS_PTR dr7.get_R_W0() == BX_HWDebugInstruction && BX_CPU_THIS_PTR dr7.get_LEN0()) ||
(BX_CPU_THIS_PTR dr7.get_R_W1() == BX_HWDebugInstruction && BX_CPU_THIS_PTR dr7.get_LEN1()) ||
(BX_CPU_THIS_PTR dr7.get_R_W2() == BX_HWDebugInstruction && BX_CPU_THIS_PTR dr7.get_LEN2()) ||
(BX_CPU_THIS_PTR dr7.get_R_W3() == BX_HWDebugInstruction && BX_CPU_THIS_PTR dr7.get_LEN3()))
{
// Instruction breakpoint with LENx not 00b (1-byte length)
BX_ERROR(("%s: write of 0x%08x, R/W=00b LEN!=00b", i->getIaOpcodeNameShort(), val_32));
}
#endif
TLB_flush(); // the DR7 write could enable some breakpoints
break;
default:
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RdDd(bxInstruction_c *i)
{
Bit32u val_32;
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_DR_Access(1 /* read */, i->src(), i->dst());
#endif
#if BX_CPU_LEVEL >= 5
if (BX_CPU_THIS_PTR cr4.get_DE()) {
if ((i->src() & 0xE) == 4) {
BX_ERROR(("%s: access to DR4/DR5 causes #UD", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
}
#endif
// Note: processor clears GD upon entering debug exception
// handler, to allow access to the debug registers
if (BX_CPU_THIS_PTR dr7.get_GD()) {
BX_ERROR(("%s: DR7 GD bit is set", i->getIaOpcodeNameShort()));
BX_CPU_THIS_PTR debug_trap |= BX_DEBUG_DR_ACCESS_BIT;
exception(BX_DB_EXCEPTION, 0);
}
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_DR_READ_INTERCEPTED(i->src()))
Svm_Vmexit(SVM_VMEXIT_DR0_READ + i->src(), BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->dst() : 0);
}
#endif
switch (i->src()) {
case 0: // DR0
case 1: // DR1
case 2: // DR2
case 3: // DR3
val_32 = (Bit32u) BX_CPU_THIS_PTR dr[i->src()];
break;
case 4: // DR4
// DR4 aliased to DR6 by default. With Debug Extensions ON,
// access to DR4 causes #UD
case 6: // DR6
val_32 = BX_CPU_THIS_PTR dr6.get32();
break;
case 5: // DR5
// DR5 aliased to DR7 by default. With Debug Extensions ON,
// access to DR5 causes #UD
case 7: // DR7
val_32 = BX_CPU_THIS_PTR dr7.get32();
break;
default:
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
BX_WRITE_32BIT_REGZ(i->dst(), val_32);
BX_NEXT_INSTR(i);
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_DqRq(bxInstruction_c *i)
{
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_DR_Access(0 /* write */, i->dst(), i->src());
#endif
if (BX_CPU_THIS_PTR cr4.get_DE()) {
if ((i->dst() & 0xE) == 4) {
BX_ERROR(("%s: access to DR4/DR5 causes #UD", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
}
if (i->dst() >= 8) {
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
// Note: processor clears GD upon entering debug exception
// handler, to allow access to the debug registers
if (BX_CPU_THIS_PTR dr7.get_GD()) {
BX_ERROR(("%s: DR7 GD bit is set", i->getIaOpcodeNameShort()));
BX_CPU_THIS_PTR debug_trap |= BX_DEBUG_DR_ACCESS_BIT;
exception(BX_DB_EXCEPTION, 0);
}
/* #GP(0) if CPL is not 0 */
if (CPL != 0) {
BX_ERROR(("%s: #GP(0) if CPL is not 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_DR_WRITE_INTERCEPTED(i->dst()))
Svm_Vmexit(SVM_VMEXIT_DR0_WRITE + i->dst(), BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->src() : 0);
}
#endif
invalidate_prefetch_q();
Bit64u val_64 = BX_READ_64BIT_REG(i->src());
switch (i->dst()) {
case 0: // DR0
case 1: // DR1
case 2: // DR2
case 3: // DR3
BX_CPU_THIS_PTR dr[i->dst()] = val_64;
TLB_invlpg(val_64);
break;
case 4: // DR4
// DR4 aliased to DR6 by default. With Debug Extensions ON,
// access to DR4 causes #UD
case 6: // DR6
if (GET32H(val_64)) {
BX_ERROR(("%s: attempt to set upper part of DR6", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
// On Pentium+, bit12 is always zero
BX_CPU_THIS_PTR dr6.val32 = (BX_CPU_THIS_PTR dr6.val32 & 0xffff0ff0) |
(val_64 & 0x0000e00f);
break;
case 5: // DR5
// DR5 aliased to DR7 by default. With Debug Extensions ON,
// access to DR5 causes #UD
case 7: // DR7
// Note: 486+ ignore GE and LE flags. On the 386, exact
// data breakpoint matching does not occur unless it is enabled
// by setting the LE and/or GE flags.
if (GET32H(val_64)) {
BX_ERROR(("%s: attempt to set upper part of DR7", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
// Pentium+: bits15,14,12 are hardwired to 0, rest are settable.
// Even bits 11,10 are changeable though reserved.
BX_CPU_THIS_PTR dr7.set32((val_64 & 0xffff2fff) | 0x00000400);
#if BX_X86_DEBUGGER
if ((BX_CPU_THIS_PTR dr7.get_R_W0() == BX_HWDebugInstruction && BX_CPU_THIS_PTR dr7.get_LEN0()) ||
(BX_CPU_THIS_PTR dr7.get_R_W1() == BX_HWDebugInstruction && BX_CPU_THIS_PTR dr7.get_LEN1()) ||
(BX_CPU_THIS_PTR dr7.get_R_W2() == BX_HWDebugInstruction && BX_CPU_THIS_PTR dr7.get_LEN2()) ||
(BX_CPU_THIS_PTR dr7.get_R_W3() == BX_HWDebugInstruction && BX_CPU_THIS_PTR dr7.get_LEN3()))
{
// Instruction breakpoint with LENx not 00b (1-byte length)
BX_ERROR(("%s: write of 0x%08x, R/W=00b LEN!=00b", i->getIaOpcodeNameShort(), BX_CPU_THIS_PTR dr7.get32()));
}
#endif
TLB_flush(); // the DR7 write could enable some breakpoints
break;
default:
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RqDq(bxInstruction_c *i)
{
Bit64u val_64;
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_DR_Access(1 /* read */, i->src(), i->dst());
#endif
if (BX_CPU_THIS_PTR cr4.get_DE()) {
if ((i->src() & 0xE) == 4) {
BX_ERROR(("%s: access to DR4/DR5 causes #UD", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
}
if (i->src() >= 8) {
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
// Note: processor clears GD upon entering debug exception
// handler, to allow access to the debug registers
if (BX_CPU_THIS_PTR dr7.get_GD()) {
BX_ERROR(("%s: DR7 GD bit is set", i->getIaOpcodeNameShort()));
BX_CPU_THIS_PTR debug_trap |= BX_DEBUG_DR_ACCESS_BIT;
exception(BX_DB_EXCEPTION, 0);
}
/* #GP(0) if CPL is not 0 */
if (CPL != 0) {
BX_ERROR(("%s: #GP(0) if CPL is not 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_DR_READ_INTERCEPTED(i->src()))
Svm_Vmexit(SVM_VMEXIT_DR0_READ + i->src(), BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->dst() : 0);
}
#endif
switch (i->src()) {
case 0: // DR0
case 1: // DR1
case 2: // DR2
case 3: // DR3
val_64 = BX_CPU_THIS_PTR dr[i->src()];
break;
case 4: // DR4
// DR4 aliased to DR6 by default. With Debug Extensions ON,
// access to DR4 causes #UD
case 6: // DR6
val_64 = BX_CPU_THIS_PTR dr6.get32();
break;
case 5: // DR5
// DR5 aliased to DR7 by default. With Debug Extensions ON,
// access to DR5 causes #UD
case 7: // DR7
val_64 = BX_CPU_THIS_PTR dr7.get32();
break;
default:
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
BX_WRITE_64BIT_REG(i->dst(), val_64);
BX_NEXT_INSTR(i);
}
#endif // #if BX_SUPPORT_X86_64
#if BX_SUPPORT_SVM
const Bit64u BX_SVM_CR_WRITE_MASK = (BX_CONST64(1) << 63);
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_CR0Rd(bxInstruction_c *i)
{
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
invalidate_prefetch_q();
Bit32u val_32 = BX_READ_32BIT_REG(i->src());
if (i->dst() == 0) {
// CR0
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
val_32 = (Bit32u) VMexit_CR0_Write(i, val_32);
#endif
if (! SetCR0(i, val_32))
exception(BX_GP_EXCEPTION, 0);
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_MOV_CR0, val_32);
}
#if BX_CPU_LEVEL >= 6
else {
// AMD feature: LOCK CR0 allows CR8 access even in 32-bit mode
WriteCR8(i, val_32);
}
#endif
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_CR2Rd(bxInstruction_c *i)
{
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_WRITE_INTERCEPTED(2)) {
if (BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST))
Svm_Vmexit(SVM_VMEXIT_CR2_WRITE, BX_SVM_CR_WRITE_MASK | i->src());
else
Svm_Vmexit(SVM_VMEXIT_CR2_WRITE);
}
}
#endif
BX_CPU_THIS_PTR cr2 = BX_READ_32BIT_REG(i->src());
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_CR3Rd(bxInstruction_c *i)
{
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
invalidate_prefetch_q();
Bit32u val_32 = BX_READ_32BIT_REG(i->src());
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_CR3_Write(i, val_32);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_WRITE_INTERCEPTED(3)) {
if (BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST))
Svm_Vmexit(SVM_VMEXIT_CR3_WRITE, BX_SVM_CR_WRITE_MASK | i->src());
else
Svm_Vmexit(SVM_VMEXIT_CR3_WRITE);
}
}
#endif
#if BX_CPU_LEVEL >= 6
if (BX_CPU_THIS_PTR cr0.get_PG() && BX_CPU_THIS_PTR cr4.get_PAE() && !long_mode()) {
if (! CheckPDPTR(val_32)) {
BX_ERROR(("%s: PDPTR check failed !", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
}
#endif
if (! SetCR3(val_32))
exception(BX_GP_EXCEPTION, 0);
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_MOV_CR3, val_32);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_CR4Rd(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 5
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
invalidate_prefetch_q();
Bit32u val_32 = BX_READ_32BIT_REG(i->src());
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
val_32 = (Bit32u) VMexit_CR4_Write(i, val_32);
#endif
if (! SetCR4(i, val_32))
exception(BX_GP_EXCEPTION, 0);
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_MOV_CR4, val_32);
#endif
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RdCR0(bxInstruction_c *i)
{
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
Bit32u val_32 = 0;
if (i->src() == 0) {
// CR0
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_READ_INTERCEPTED(0))
Svm_Vmexit(SVM_VMEXIT_CR0_READ, BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->dst() : 0);
}
#endif
val_32 = (Bit32u) read_CR0(); /* correctly handle VMX */
}
#if BX_CPU_LEVEL >= 6
else {
// AMD feature: LOCK CR0 allows CR8 access even in 32-bit mode
val_32 = ReadCR8(i);
}
#endif
BX_WRITE_32BIT_REGZ(i->dst(), val_32);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RdCR2(bxInstruction_c *i)
{
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_READ_INTERCEPTED(2))
Svm_Vmexit(SVM_VMEXIT_CR2_READ, BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->dst() : 0);
}
#endif
BX_WRITE_32BIT_REGZ(i->dst(), (Bit32u) BX_CPU_THIS_PTR cr2);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RdCR3(bxInstruction_c *i)
{
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_READ_INTERCEPTED(3))
Svm_Vmexit(SVM_VMEXIT_CR3_READ, BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->dst() : 0);
}
#endif
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_CR3_Read(i);
#endif
Bit32u val_32 = (Bit32u) BX_CPU_THIS_PTR cr3;
BX_WRITE_32BIT_REGZ(i->dst(), val_32);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RdCR4(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 5
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_READ_INTERCEPTED(4))
Svm_Vmexit(SVM_VMEXIT_CR4_READ, BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->dst() : 0);
}
#endif
Bit32u val_32 = (Bit32u) read_CR4(); /* correctly handle VMX */
BX_WRITE_32BIT_REGZ(i->dst(), val_32);
#endif
BX_NEXT_INSTR(i);
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_CR0Rq(bxInstruction_c *i)
{
if (CPL!=0) {
BX_ERROR(("%s: #GP(0) if CPL is not 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
invalidate_prefetch_q();
Bit64u val_64 = BX_READ_64BIT_REG(i->src());
if (i->dst() == 0) {
// CR0
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
val_64 = VMexit_CR0_Write(i, val_64);
#endif
if (! SetCR0(i, val_64))
exception(BX_GP_EXCEPTION, 0);
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_MOV_CR0, (Bit32u) val_64);
}
else {
WriteCR8(i, val_64);
}
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_CR2Rq(bxInstruction_c *i)
{
if (i->dst() != 2) {
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
if (CPL!=0) {
BX_ERROR(("%s: #GP(0) if CPL is not 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_WRITE_INTERCEPTED(2)) {
if (BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST))
Svm_Vmexit(SVM_VMEXIT_CR2_WRITE, BX_SVM_CR_WRITE_MASK | i->src());
else
Svm_Vmexit(SVM_VMEXIT_CR2_WRITE);
}
}
#endif
BX_CPU_THIS_PTR cr2 = BX_READ_64BIT_REG(i->src());
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_CR3Rq(bxInstruction_c *i)
{
if (i->dst() != 3) {
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
if (CPL!=0) {
BX_ERROR(("%s: #GP(0) if CPL is not 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
invalidate_prefetch_q();
Bit64u val_64 = BX_READ_64BIT_REG(i->src());
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_CR3_Write(i, val_64);
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_WRITE_INTERCEPTED(3)) {
if (BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST))
Svm_Vmexit(SVM_VMEXIT_CR3_WRITE, BX_SVM_CR_WRITE_MASK | i->src());
else
Svm_Vmexit(SVM_VMEXIT_CR3_WRITE);
}
}
#endif
// allow bit 63 (hint that TLB doesn't need to be cleared) to be set when
// PCIDE is set, but ignore the hint if given
if (BX_CPU_THIS_PTR cr4.get_PCIDE()) {
val_64 &= ~(BX_CONST64(1)<<63);
}
if (! SetCR3(val_64))
exception(BX_GP_EXCEPTION, 0);
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_MOV_CR3, val_64);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_CR4Rq(bxInstruction_c *i)
{
if (i->dst() != 4) {
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
if (CPL!=0) {
BX_ERROR(("%s: #GP(0) if CPL is not 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
invalidate_prefetch_q();
Bit64u val_64 = BX_READ_64BIT_REG(i->src());
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
val_64 = VMexit_CR4_Write(i, val_64);
#endif
if (! SetCR4(i, val_64))
exception(BX_GP_EXCEPTION, 0);
BX_INSTR_TLB_CNTRL(BX_CPU_ID, BX_INSTR_MOV_CR4, (Bit32u) val_64);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RqCR0(bxInstruction_c *i)
{
if (CPL!=0) {
BX_ERROR(("%s: #GP(0) if CPL is not 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
Bit64u val_64;
if (i->src() == 0) {
// CR0
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_READ_INTERCEPTED(0))
Svm_Vmexit(SVM_VMEXIT_CR0_READ, BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->dst() : 0);
}
#endif
val_64 = read_CR0(); /* correctly handle VMX */
}
else {
// CR8
val_64 = ReadCR8(i);
}
BX_WRITE_64BIT_REG(i->dst(), val_64);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RqCR2(bxInstruction_c *i)
{
if (i->src() != 2) {
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
if (CPL!=0) {
BX_ERROR(("%s: #GP(0) if CPL is not 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_READ_INTERCEPTED(2))
Svm_Vmexit(SVM_VMEXIT_CR2_READ, BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->dst() : 0);
}
#endif
BX_WRITE_64BIT_REG(i->dst(), BX_CPU_THIS_PTR cr2);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RqCR3(bxInstruction_c *i)
{
if (i->src() != 3) {
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
if (CPL!=0) {
BX_ERROR(("%s: #GP(0) if CPL is not 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_READ_INTERCEPTED(3))
Svm_Vmexit(SVM_VMEXIT_CR3_READ, BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->dst() : 0);
}
#endif
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_CR3_Read(i);
#endif
BX_WRITE_64BIT_REG(i->dst(), BX_CPU_THIS_PTR cr3);
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOV_RqCR4(bxInstruction_c *i)
{
if (i->src() != 4) {
BX_ERROR(("%s: #UD - register index out of range", i->getIaOpcodeNameShort()));
exception(BX_UD_EXCEPTION, 0);
}
if (CPL!=0) {
BX_ERROR(("%s: #GP(0) if CPL is not 0", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_READ_INTERCEPTED(4))
Svm_Vmexit(SVM_VMEXIT_CR4_READ, BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST) ? i->dst() : 0);
}
#endif
Bit64u val_64 = read_CR4(); /* correctly handle VMX */
BX_WRITE_64BIT_REG(i->dst(), val_64);
BX_NEXT_INSTR(i);
}
#endif // #if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LMSW_Ew(bxInstruction_c *i)
{
Bit16u msw;
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: CPL!=0 not in real mode", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_WRITE_INTERCEPTED(0)) Svm_Vmexit(SVM_VMEXIT_CR0_WRITE);
}
#endif
if (i->modC0()) {
msw = BX_READ_16BIT_REG(i->src());
}
else {
/* use RMAddr(i) to save address for VMexit */
RMAddr(i) = BX_CPU_RESOLVE_ADDR(i);
/* pointer, segment address pair */
msw = read_virtual_word(i->seg(), RMAddr(i));
}
// LMSW does not affect PG,CD,NW,AM,WP,NE,ET bits, and cannot clear PE
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
msw = VMexit_LMSW(i, msw);
#endif
// LMSW cannot clear PE
if (BX_CPU_THIS_PTR cr0.get_PE())
msw |= BX_CR0_PE_MASK; // adjust PE bit to current value of 1
msw &= 0xf; // LMSW only affects last 4 flags
Bit32u cr0 = (BX_CPU_THIS_PTR cr0.get32() & 0xfffffff0) | msw;
if (! SetCR0(i, cr0))
exception(BX_GP_EXCEPTION, 0);
BX_NEXT_TRACE(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SMSW_EwR(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 5
if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) {
BX_ERROR(("SMSW: CPL != 0 causes #GP when CR4.UMIP set"));
exception(BX_GP_EXCEPTION, 0);
}
#endif
Bit32u msw = (Bit32u) read_CR0(); // handle CR0 shadow in VMX
if (i->os32L()) {
BX_WRITE_32BIT_REGZ(i->dst(), msw);
}
else {
BX_WRITE_16BIT_REG(i->dst(), msw & 0xffff);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SMSW_EwM(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 5
if (CPL!=0 && BX_CPU_THIS_PTR cr4.get_UMIP()) {
BX_ERROR(("SMSW: CPL != 0 causes #GP when CR4.UMIP set"));
exception(BX_GP_EXCEPTION, 0);
}
#endif
Bit16u msw = read_CR0() & 0xffff; // handle CR0 shadow in VMX
bx_address eaddr = BX_CPU_RESOLVE_ADDR(i);
write_virtual_word(i->seg(), eaddr, msw);
BX_NEXT_INSTR(i);
}
bx_address BX_CPU_C::read_CR0(void)
{
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
// used for SMSW instruction only
if(SVM_CR_READ_INTERCEPTED(0)) Svm_Vmexit(SVM_VMEXIT_CR0_READ);
}
#endif
bx_address cr0_val = BX_CPU_THIS_PTR cr0.get32();
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest) {
VMCS_CACHE *vm = &BX_CPU_THIS_PTR vmcs;
cr0_val = (cr0_val & ~vm->vm_cr0_mask) | (vm->vm_cr0_read_shadow & vm->vm_cr0_mask);
}
#endif
return cr0_val;
}
#if BX_CPU_LEVEL >= 5
bx_address BX_CPU_C::read_CR4(void)
{
bx_address cr4_val = BX_CPU_THIS_PTR cr4.get32();
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest) {
VMCS_CACHE *vm = &BX_CPU_THIS_PTR vmcs;
cr4_val = (cr4_val & ~vm->vm_cr4_mask) | (vm->vm_cr4_read_shadow & vm->vm_cr4_mask);
}
#endif
return cr4_val;
}
#endif
bool BX_CPP_AttrRegparmN(1) BX_CPU_C::check_CR0(bx_address cr0_val)
{
bx_cr0_t temp_cr0;
#if BX_SUPPORT_X86_64
if (GET32H(cr0_val)) {
BX_ERROR(("check_CR0(): trying to set CR0 > 32 bits"));
return 0;
}
#endif
temp_cr0.set32((Bit32u) cr0_val);
#if BX_SUPPORT_SVM
if (! BX_CPU_THIS_PTR in_svm_guest) // it should be fine to enter paged real mode in SVM guest
#endif
{
if (temp_cr0.get_PG() && !temp_cr0.get_PE()) {
BX_ERROR(("check_CR0(0x%08x): attempt to set CR0.PG with CR0.PE cleared !", temp_cr0.get32()));
return 0;
}
}
#if BX_CPU_LEVEL >= 4
if (temp_cr0.get_NW() && !temp_cr0.get_CD()) {
BX_ERROR(("check_CR0(0x%08x): attempt to set CR0.NW with CR0.CD cleared !", temp_cr0.get32()));
return 0;
}
#endif
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx) {
if (!temp_cr0.get_NE()) {
BX_ERROR(("check_CR0(0x%08x): attempt to clear CR0.NE in vmx mode !", temp_cr0.get32()));
return 0;
}
if (!BX_CPU_THIS_PTR in_vmx_guest && !SECONDARY_VMEXEC_CONTROL(VMX_VM_EXEC_CTRL3_UNRESTRICTED_GUEST)) {
if (!temp_cr0.get_PE() || !temp_cr0.get_PG()) {
BX_ERROR(("check_CR0(0x%08x): attempt to clear CR0.PE/CR0.PG in vmx mode !", temp_cr0.get32()));
return 0;
}
}
}
#endif
return 1;
}
bool BX_CPU_C::SetCR0(bxInstruction_c *i, bx_address val)
{
if (! check_CR0(val)) return 0;
Bit32u val_32 = GET32L(val);
#if BX_SUPPORT_CET
if ((val_32 & BX_CR0_WP_MASK) == 0 && BX_CPU_THIS_PTR cr4.get_CET()) {
BX_ERROR(("SetCR0: attempt to clear CR0.WP when CR4.CET=1"));
return 0;
}
#endif
#if BX_CPU_LEVEL >= 6
bool pg = (val_32 >> 31) & 0x1;
#endif
#if BX_SUPPORT_X86_64
if (! BX_CPU_THIS_PTR cr0.get_PG() && pg) {
if (BX_CPU_THIS_PTR efer.get_LME()) {
if (!BX_CPU_THIS_PTR cr4.get_PAE()) {
BX_ERROR(("SetCR0: attempt to enter x86-64 long mode without enabling CR4.PAE !"));
return 0;
}
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.l) {
BX_ERROR(("SetCR0: attempt to enter x86-64 long mode with CS.L !"));
return 0;
}
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
BX_ERROR(("SetCR0: attempt to enter x86-64 long mode with TSS286 in TR !"));
return 0;
}
BX_CPU_THIS_PTR efer.set_LMA(1);
}
}
else if (BX_CPU_THIS_PTR cr0.get_PG() && ! pg) {
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
BX_ERROR(("SetCR0(): attempt to leave 64 bit mode directly to legacy mode !"));
return 0;
}
if (BX_CPU_THIS_PTR efer.get_LMA()) {
if (BX_CPU_THIS_PTR cr4.get_PCIDE()) {
BX_ERROR(("SetCR0(): attempt to leave 64 bit mode with CR4.PCIDE set !"));
return 0;
}
if (BX_CPU_THIS_PTR gen_reg[BX_64BIT_REG_RIP].dword.hrx != 0) {
BX_PANIC(("SetCR0(): attempt to leave x86-64 LONG mode with RIP upper != 0"));
}
BX_CPU_THIS_PTR efer.set_LMA(0);
}
}
#endif // #if BX_SUPPORT_X86_64
// handle reserved bits behaviour
#if BX_CPU_LEVEL == 3
val_32 = val_32 | 0x7ffffff0;
#elif BX_CPU_LEVEL == 4
val_32 = (val_32 | 0x00000010) & 0xe005003f;
#elif BX_CPU_LEVEL == 5
val_32 = val_32 | 0x00000010;
#elif BX_CPU_LEVEL == 6
val_32 = (val_32 | 0x00000010) & 0xe005003f;
#else
#error "SetCR0: implement reserved bits behaviour for this CPU_LEVEL"
#endif
Bit32u oldCR0 = BX_CPU_THIS_PTR cr0.get32();
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_WRITE_INTERCEPTED(0)) {
// LMSW instruction should VMEXIT before
if (BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST))
Svm_Vmexit(SVM_VMEXIT_CR0_WRITE, BX_SVM_CR_WRITE_MASK | i->src());
else
Svm_Vmexit(SVM_VMEXIT_CR0_WRITE);
}
if (SVM_INTERCEPT(SVM_INTERCEPT0_CR0_WRITE_NO_TS_MP)) {
if ((oldCR0 & 0xfffffff5) != (val_32 & 0xfffffff5)) {
// any other bit except TS or MP had changed
Svm_Vmexit(SVM_VMEXIT_CR0_SEL_WRITE);
}
}
}
#endif
#if BX_CPU_LEVEL >= 6
if (pg && BX_CPU_THIS_PTR cr4.get_PAE() && !long_mode()) {
if (! CheckPDPTR(BX_CPU_THIS_PTR cr3)) {
BX_ERROR(("SetCR0(): PDPTR check failed !"));
return 0;
}
}
#endif
BX_CPU_THIS_PTR cr0.set32(val_32);
#if BX_CPU_LEVEL >= 4
handleAlignmentCheck(/* CR0.AC reloaded */);
#endif
handleCpuModeChange();
#if BX_CPU_LEVEL >= 6
handleSseModeChange();
#if BX_SUPPORT_AVX
handleAvxModeChange();
#endif
#endif
// Modification of PG,PE flushes TLB cache according to docs.
// Additionally, the TLB strategy is based on the current value of
// WP, so if that changes we must also flush the TLB.
if ((oldCR0 & 0x80010001) != (val_32 & 0x80010001)) {
TLB_flush(); // Flush Global entries also
#if BX_SUPPORT_PKEYS
set_PKeys(BX_CPU_THIS_PTR pkru, BX_CPU_THIS_PTR pkrs); // recalculate protection keys due to CR0.WP change
#endif
}
return 1;
}
#if BX_CPU_LEVEL >= 5
Bit32u BX_CPU_C::get_cr4_allow_mask(void)
{
Bit32u allowMask = 0;
// CR4 bits definitions:
// [31-24] Reserved, Must be Zero
// [23] CET: Control Flow Enforcement R/W
// [22] PKE: Protection Keys Enable R/W
// [21] SMAP: Supervisor Mode Access Prevention R/W
// [20] SMEP: Supervisor Mode Execution Protection R/W
// [19] Reserved, Must be Zero
// [18] OSXSAVE: Operating System XSAVE Support R/W
// [17] PCIDE: PCID Support R/W
// [16] FSGSBASE: FS/GS BASE access R/W
// [15] Reserved, Must be Zero
// [14] SMXE: SMX Extensions R/W
// [13] VMXE: VMX Extensions R/W
// [12] Reserved, Must be Zero
// [11] UMIP: User Mode Instruction Prevention R/W
// [10] OSXMMEXCPT: Operating System Unmasked Exception Support R/W
// [9] OSFXSR: Operating System FXSAVE/FXRSTOR Support R/W
// [8] PCE: Performance-Monitoring Counter Enable R/W
// [7] PGE: Page-Global Enable R/W
// [6] MCE: Machine Check Enable R/W
// [5] PAE: Physical-Address Extension R/W
// [4] PSE: Page Size Extensions R/W
// [3] DE: Debugging Extensions R/W
// [2] TSD: Time Stamp Disable R/W
// [1] PVI: Protected-Mode Virtual Interrupts R/W
// [0] VME: Virtual-8086 Mode Extensions R/W
/* VME */
if (is_cpu_extension_supported(BX_ISA_VME))
allowMask |= BX_CR4_VME_MASK | BX_CR4_PVI_MASK;
if (is_cpu_extension_supported(BX_ISA_PENTIUM))
allowMask |= BX_CR4_TSD_MASK;
if (is_cpu_extension_supported(BX_ISA_DEBUG_EXTENSIONS))
allowMask |= BX_CR4_DE_MASK;
if (is_cpu_extension_supported(BX_ISA_PSE))
allowMask |= BX_CR4_PSE_MASK;
#if BX_CPU_LEVEL >= 6
if (is_cpu_extension_supported(BX_ISA_PAE))
allowMask |= BX_CR4_PAE_MASK;
#endif
// NOTE: exception 18 (#MC) never appears in Bochs
allowMask |= BX_CR4_MCE_MASK;
#if BX_CPU_LEVEL >= 6
if (is_cpu_extension_supported(BX_ISA_PGE))
allowMask |= BX_CR4_PGE_MASK;
allowMask |= BX_CR4_PCE_MASK;
/* OSFXSR */
if (is_cpu_extension_supported(BX_ISA_SSE))
allowMask |= BX_CR4_OSFXSR_MASK;
/* OSXMMEXCPT */
if (is_cpu_extension_supported(BX_ISA_SSE))
allowMask |= BX_CR4_OSXMMEXCPT_MASK;
#if BX_SUPPORT_VMX
if (is_cpu_extension_supported(BX_ISA_VMX))
allowMask |= BX_CR4_VMXE_MASK;
#endif
if (is_cpu_extension_supported(BX_ISA_SMX))
allowMask |= BX_CR4_SMXE_MASK;
#if BX_SUPPORT_X86_64
if (is_cpu_extension_supported(BX_ISA_PCID))
allowMask |= BX_CR4_PCIDE_MASK;
if (is_cpu_extension_supported(BX_ISA_FSGSBASE))
allowMask |= BX_CR4_FSGSBASE_MASK;
#endif
/* OSXSAVE */
if (is_cpu_extension_supported(BX_ISA_XSAVE))
allowMask |= BX_CR4_OSXSAVE_MASK;
if (is_cpu_extension_supported(BX_ISA_SMEP))
allowMask |= BX_CR4_SMEP_MASK;
if (is_cpu_extension_supported(BX_ISA_SMAP))
allowMask |= BX_CR4_SMAP_MASK;
#if BX_SUPPORT_PKEYS
if (is_cpu_extension_supported(BX_ISA_PKU))
allowMask |= BX_CR4_PKE_MASK;
#endif
if (is_cpu_extension_supported(BX_ISA_UMIP))
allowMask |= BX_CR4_UMIP_MASK;
#if BX_SUPPORT_CET
if (is_cpu_extension_supported(BX_ISA_CET))
allowMask |= BX_CR4_CET_MASK;
#endif
#if BX_SUPPORT_PKEYS
if (is_cpu_extension_supported(BX_ISA_PKS))
allowMask |= BX_CR4_PKS_MASK;
#endif
#endif
return allowMask;
}
bool BX_CPP_AttrRegparmN(1) BX_CPU_C::check_CR4(bx_address cr4_val)
{
// check if trying to set undefined bits
if (cr4_val & ~((bx_address) BX_CPU_THIS_PTR cr4_suppmask)) {
BX_ERROR(("check_CR4(): write of 0x%08x not supported (allowMask=0x%x)", (Bit32u) cr4_val, BX_CPU_THIS_PTR cr4_suppmask));
return 0;
}
bx_cr4_t temp_cr4;
temp_cr4.set32((Bit32u) cr4_val);
#if BX_SUPPORT_X86_64
if (long_mode()) {
if(! temp_cr4.get_PAE()) {
BX_ERROR(("check_CR4(): attempt to clear CR4.PAE when EFER.LMA=1"));
return 0;
}
}
else {
if (temp_cr4.get_PCIDE()) {
BX_ERROR(("check_CR4(): attempt to set CR4.PCIDE when EFER.LMA=0"));
return 0;
}
}
#endif
#if BX_SUPPORT_VMX
if(! temp_cr4.get_VMXE()) {
if (BX_CPU_THIS_PTR in_vmx) {
BX_ERROR(("check_CR4(): attempt to clear CR4.VMXE in vmx mode"));
return 0;
}
}
else {
if (BX_CPU_THIS_PTR in_smm) {
BX_ERROR(("check_CR4(): attempt to set CR4.VMXE in smm mode"));
return 0;
}
}
#endif
return 1;
}
bool BX_CPU_C::SetCR4(bxInstruction_c *i, bx_address val)
{
if (! check_CR4(val)) return 0;
#if BX_SUPPORT_CET
if((val & BX_CR4_CET_MASK) && !BX_CPU_THIS_PTR cr0.get_WP()) {
BX_ERROR(("check_CR4(): attempt to set CR4.CET when CR0.WP=0"));
return 0;
}
#endif
#if BX_CPU_LEVEL >= 6
// Modification of PGE,PAE,PSE,PCIDE,SMEP flushes TLB cache according to docs.
if ((val & BX_CR4_FLUSH_TLB_MASK) != (BX_CPU_THIS_PTR cr4.val32 & BX_CR4_FLUSH_TLB_MASK)) {
// reload PDPTR if needed
if (BX_CPU_THIS_PTR cr0.get_PG() && (val & BX_CR4_PAE_MASK) != 0 && !long_mode()) {
if (! CheckPDPTR(BX_CPU_THIS_PTR cr3)) {
BX_ERROR(("SetCR4(): PDPTR check failed !"));
return 0;
}
}
#if BX_SUPPORT_X86_64
else {
// if trying to enable CR4.PCIDE
if (! BX_CPU_THIS_PTR cr4.get_PCIDE() && (val & BX_CR4_PCIDE_MASK)) {
if (BX_CPU_THIS_PTR cr3 & 0xfff) {
BX_ERROR(("SetCR4(): Attempt to enable CR4.PCIDE with non-zero PCID !"));
return 0;
}
}
}
#endif
TLB_flush(); // Flush Global entries also.
}
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_WRITE_INTERCEPTED(4)) {
if (BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST))
Svm_Vmexit(SVM_VMEXIT_CR4_WRITE, BX_SVM_CR_WRITE_MASK | i->src());
else
Svm_Vmexit(SVM_VMEXIT_CR4_WRITE);
}
}
#endif
BX_CPU_THIS_PTR cr4.set32((Bit32u) val);
#if BX_CPU_LEVEL >= 6
handleSseModeChange();
#if BX_SUPPORT_AVX
handleAvxModeChange();
#endif
#endif
// re-calculate protection keys if CR4.PKE/CR4.PKS was set
#if BX_SUPPORT_PKEYS
set_PKeys(BX_CPU_THIS_PTR pkru, BX_CPU_THIS_PTR pkrs);
#endif
return 1;
}
#endif // BX_CPU_LEVEL >= 5
bool BX_CPP_AttrRegparmN(1) BX_CPU_C::SetCR3(bx_address val)
{
#if BX_SUPPORT_X86_64
if (long_mode()) {
if (! IsValidPhyAddr(val)) {
BX_ERROR(("SetCR3(): Attempt to write to reserved bits of CR3 !"));
return 0;
}
}
#endif
BX_CPU_THIS_PTR cr3 = val;
// flush TLB even if value does not change
#if BX_CPU_LEVEL >= 6
if (BX_CPU_THIS_PTR cr4.get_PGE())
TLB_flushNonGlobal(); // Don't flush Global entries.
else
#endif
TLB_flush(); // Flush Global entries also.
return 1;
}
#if BX_CPU_LEVEL >= 5
bool BX_CPP_AttrRegparmN(1) BX_CPU_C::SetEFER(bx_address val_64)
{
Bit32u val32 = (Bit32u) val_64;
if (val_64 & ~((Bit64u) BX_CPU_THIS_PTR efer_suppmask)) {
BX_ERROR(("SetEFER(0x%08x): attempt to set reserved bits of EFER MSR !", val32));
return 0;
}
#if BX_SUPPORT_X86_64
/* #GP(0) if changing EFER.LME when cr0.pg = 1 */
if ((BX_CPU_THIS_PTR efer.get_LME() != ((val32 >> 8) & 1)) &&
BX_CPU_THIS_PTR cr0.get_PG())
{
BX_ERROR(("SetEFER: attempt to change LME when CR0.PG=1"));
return 0;
}
#endif
BX_CPU_THIS_PTR efer.set32((val32 & BX_CPU_THIS_PTR efer_suppmask & ~BX_EFER_LMA_MASK)
| (BX_CPU_THIS_PTR efer.get32() & BX_EFER_LMA_MASK)); // keep LMA untouched
return 1;
}
#endif
#if BX_CPU_LEVEL >= 6
void BX_CPU_C::WriteCR8(bxInstruction_c *i, bx_address val)
{
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_WRITE_INTERCEPTED(8)) {
if (BX_SUPPORT_SVM_EXTENSION(BX_CPUID_SVM_DECODE_ASSIST))
Svm_Vmexit(SVM_VMEXIT_CR8_WRITE, BX_SVM_CR_WRITE_MASK | i->src());
else
Svm_Vmexit(SVM_VMEXIT_CR8_WRITE);
}
}
#endif
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_CR8_Write(i);
#endif
// CR8 is aliased to APIC->TASK PRIORITY register
// APIC.TPR[7:4] = CR8[3:0]
// APIC.TPR[3:0] = 0
// Reads of CR8 return zero extended APIC.TPR[7:4]
// Write to CR8 update APIC.TPR[7:4]
if (val & BX_CONST64(0xfffffffffffffff0)) {
BX_ERROR(("WriteCR8: Attempt to set reserved bits of CR8"));
exception(BX_GP_EXCEPTION, 0);
}
unsigned tpr = (val & 0xf) << 4;
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
SVM_V_TPR = tpr;
handleInterruptMaskChange();
if (SVM_V_INTR_MASKING) return;
}
#endif
#if BX_SUPPORT_VMX && BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR in_vmx_guest && VMEXIT(VMX_VM_EXEC_CTRL2_TPR_SHADOW)) {
VMX_Write_Virtual_APIC(BX_LAPIC_TPR, tpr);
VMX_TPR_Virtualization();
return;
}
#endif
BX_CPU_THIS_PTR lapic.set_tpr(tpr);
}
Bit32u BX_CPU_C::ReadCR8(bxInstruction_c *i)
{
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if (SVM_CR_READ_INTERCEPTED(8)) Svm_Vmexit(SVM_VMEXIT_CR8_READ);
if (SVM_V_INTR_MASKING) return SVM_V_TPR;
}
#endif
#if BX_SUPPORT_VMX && BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR in_vmx_guest)
VMexit_CR8_Read(i);
if (BX_CPU_THIS_PTR in_vmx_guest && VMEXIT(VMX_VM_EXEC_CTRL2_TPR_SHADOW)) {
Bit32u tpr = (VMX_Read_Virtual_APIC(BX_LAPIC_TPR) >> 4) & 0xf;
return tpr;
}
#endif
// CR8 is aliased to APIC->TASK PRIORITY register
// APIC.TPR[7:4] = CR8[3:0]
// APIC.TPR[3:0] = 0
// Reads of CR8 return zero extended APIC.TPR[7:4]
// Write to CR8 update APIC.TPR[7:4]
return BX_CPU_THIS_PTR get_cr8();
}
#endif
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CLTS(bxInstruction_c *i)
{
// CPL is always 0 in real mode
if (/* !real_mode() && */ CPL!=0) {
BX_ERROR(("%s: priveledge check failed, generate #GP(0)", i->getIaOpcodeNameShort()));
exception(BX_GP_EXCEPTION, 0);
}
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest) {
if(VMexit_CLTS()) {
BX_NEXT_TRACE(i);
}
}
#endif
#if BX_SUPPORT_SVM
if (BX_CPU_THIS_PTR in_svm_guest) {
if(SVM_CR_WRITE_INTERCEPTED(0)) Svm_Vmexit(SVM_VMEXIT_CR0_WRITE);
}
#endif
BX_CPU_THIS_PTR cr0.set_TS(0);
#if BX_CPU_LEVEL >= 6
handleSseModeChange();
#if BX_SUPPORT_AVX
handleAvxModeChange();
#endif
#endif
BX_NEXT_TRACE(i);
}
#if BX_X86_DEBUGGER
bool BX_CPU_C::hwbreakpoint_check(bx_address laddr, unsigned opa, unsigned opb)
{
laddr = LPFOf(laddr);
Bit32u dr_op[4];
dr_op[0] = BX_CPU_THIS_PTR dr7.get_R_W0();
dr_op[1] = BX_CPU_THIS_PTR dr7.get_R_W1();
dr_op[2] = BX_CPU_THIS_PTR dr7.get_R_W2();
dr_op[3] = BX_CPU_THIS_PTR dr7.get_R_W3();
for (int n=0;n<4;n++) {
if ((dr_op[n] == opa || dr_op[n] == opb) && laddr == LPFOf(BX_CPU_THIS_PTR dr[n])) {
return 1;
}
}
return 0;
}
Bit32u BX_CPU_C::code_breakpoint_match(bx_address laddr)
{
if (BX_CPU_THIS_PTR get_RF() || BX_CPU_THIS_PTR in_repeat)
return 0;
if (BX_CPU_THIS_PTR dr7.get_bp_enabled()) {
Bit32u dr6_bits = hwdebug_compare(laddr, 1, BX_HWDebugInstruction, BX_HWDebugInstruction);
return dr6_bits;
}
return 0;
}
void BX_CPU_C::hwbreakpoint_match(bx_address laddr, unsigned len, unsigned rw)
{
if (BX_CPU_THIS_PTR dr7.get_bp_enabled()) {
// Only compare debug registers if any breakpoints are enabled
unsigned opa, opb, write = rw & 1;
opa = BX_HWDebugMemRW; // Read or Write always compares vs 11b
if (! write) // only compares vs 11b
opb = opa;
else // BX_WRITE or BX_RW; also compare vs 01b
opb = BX_HWDebugMemW;
Bit32u dr6_bits = hwdebug_compare(laddr, len, opa, opb);
if (dr6_bits) {
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_HIT) {
BX_ERROR(("#DB: Code/Data breakpoint hit - report debug trap on next instruction"));
BX_CPU_THIS_PTR async_event = 1;
}
}
}
}
Bit32u BX_CPU_C::hwdebug_compare(bx_address laddr_0, unsigned size,
unsigned opa, unsigned opb)
{
Bit32u dr7 = BX_CPU_THIS_PTR dr7.get32();
static bx_address alignment_mask[4] =
// 00b=1 01b=2 10b=undef(8) 11b=4
{ 0x0, 0x1, 0x7, 0x3 };
bx_address laddr_n = laddr_0 + (size - 1);
Bit32u dr_op[4], dr_len[4];
// If *any* enabled breakpoints matched, then we need to
// set status bits for *all* breakpoints, even disabled ones,
// as long as they meet the other breakpoint criteria.
// dr6_mask is the return value. These bits represent the bits
// to be OR'd into DR6 as a result of the debug event.
Bit32u dr6_mask = 0;
dr_len[0] = BX_CPU_THIS_PTR dr7.get_LEN0();
dr_len[1] = BX_CPU_THIS_PTR dr7.get_LEN1();
dr_len[2] = BX_CPU_THIS_PTR dr7.get_LEN2();
dr_len[3] = BX_CPU_THIS_PTR dr7.get_LEN3();
dr_op[0] = BX_CPU_THIS_PTR dr7.get_R_W0();
dr_op[1] = BX_CPU_THIS_PTR dr7.get_R_W1();
dr_op[2] = BX_CPU_THIS_PTR dr7.get_R_W2();
dr_op[3] = BX_CPU_THIS_PTR dr7.get_R_W3();
for (unsigned n=0;n<4;n++) {
bx_address dr_start = BX_CPU_THIS_PTR dr[n] & ~alignment_mask[dr_len[n]];
bx_address dr_end = dr_start + alignment_mask[dr_len[n]];
// See if this instruction address matches any breakpoints
if ((dr_op[n]==opa || dr_op[n]==opb) &&
(laddr_0 <= dr_end) &&
(laddr_n >= dr_start)) {
dr6_mask |= (1<<n);
// tell if breakpoint was enabled
if (dr7 & (3 << n*2)) {
dr6_mask |= BX_DEBUG_TRAP_HIT;
}
}
}
return dr6_mask;
}
#if BX_CPU_LEVEL >= 5
void BX_CPU_C::iobreakpoint_match(unsigned port, unsigned len)
{
// Only compare debug registers if any breakpoints are enabled
if (BX_CPU_THIS_PTR cr4.get_DE() && BX_CPU_THIS_PTR dr7.get_bp_enabled())
{
Bit32u dr6_bits = hwdebug_compare(port, len, BX_HWDebugIO, BX_HWDebugIO);
if (dr6_bits) {
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
if (BX_CPU_THIS_PTR debug_trap & BX_DEBUG_TRAP_HIT) {
BX_ERROR(("#DB: I/O breakpoint hit - report debug trap on next instruction"));
BX_CPU_THIS_PTR async_event = 1;
}
}
}
}
#endif
#endif
#if BX_CPU_LEVEL >= 6
XSaveRestoreStateHelper xsave_restore[xcr0_t::BX_XCR0_LAST] = { {0, 0, NULL, NULL, NULL, NULL} };
void BX_CPU_C::xsave_xrestor_init(void)
{
// XCR0[0]: x87 state
xsave_restore[xcr0_t::BX_XCR0_FPU_BIT].len = XSAVE_FPU_STATE_LEN;
xsave_restore[xcr0_t::BX_XCR0_FPU_BIT].xstate_in_use_method = &BX_CPU_C::xsave_x87_state_xinuse;
xsave_restore[xcr0_t::BX_XCR0_FPU_BIT].xsave_method = &BX_CPU_C::xsave_x87_state;
xsave_restore[xcr0_t::BX_XCR0_FPU_BIT].xrstor_method = &BX_CPU_C::xrstor_x87_state;
xsave_restore[xcr0_t::BX_XCR0_FPU_BIT].xrstor_init_method = &BX_CPU_C::xrstor_init_x87_state;
// XCR0[1]: SSE state
xsave_restore[xcr0_t::BX_XCR0_SSE_BIT].len = XSAVE_SSE_STATE_LEN;
xsave_restore[xcr0_t::BX_XCR0_SSE_BIT].offset = XSAVE_SSE_STATE_OFFSET;
xsave_restore[xcr0_t::BX_XCR0_SSE_BIT].xstate_in_use_method = &BX_CPU_C::xsave_sse_state_xinuse;
xsave_restore[xcr0_t::BX_XCR0_SSE_BIT].xsave_method = &BX_CPU_C::xsave_sse_state;
xsave_restore[xcr0_t::BX_XCR0_SSE_BIT].xrstor_method = &BX_CPU_C::xrstor_sse_state;
xsave_restore[xcr0_t::BX_XCR0_SSE_BIT].xrstor_init_method = &BX_CPU_C::xrstor_init_sse_state;
#if BX_SUPPORT_AVX
// XCR0[2]: YMM state
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX)) {
xsave_restore[xcr0_t::BX_XCR0_YMM_BIT].len = XSAVE_YMM_STATE_LEN;
xsave_restore[xcr0_t::BX_XCR0_YMM_BIT].offset = XSAVE_YMM_STATE_OFFSET;
xsave_restore[xcr0_t::BX_XCR0_YMM_BIT].xstate_in_use_method = &BX_CPU_C::xsave_ymm_state_xinuse;
xsave_restore[xcr0_t::BX_XCR0_YMM_BIT].xsave_method = &BX_CPU_C::xsave_ymm_state;
xsave_restore[xcr0_t::BX_XCR0_YMM_BIT].xrstor_method = &BX_CPU_C::xrstor_ymm_state;
xsave_restore[xcr0_t::BX_XCR0_YMM_BIT].xrstor_init_method = &BX_CPU_C::xrstor_init_ymm_state;
}
#endif
// XCR0[3]: BNDREGS state (not implemented)
// XCR0[4]: BNDCFG state (not implemented)
#if BX_SUPPORT_EVEX
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX512)) {
// XCR0[5]: OPMASK state
xsave_restore[xcr0_t::BX_XCR0_OPMASK_BIT].len = XSAVE_OPMASK_STATE_LEN;
xsave_restore[xcr0_t::BX_XCR0_OPMASK_BIT].offset = XSAVE_OPMASK_STATE_OFFSET;
xsave_restore[xcr0_t::BX_XCR0_OPMASK_BIT].xstate_in_use_method = &BX_CPU_C::xsave_opmask_state_xinuse;
xsave_restore[xcr0_t::BX_XCR0_OPMASK_BIT].xsave_method = &BX_CPU_C::xsave_opmask_state;
xsave_restore[xcr0_t::BX_XCR0_OPMASK_BIT].xrstor_method = &BX_CPU_C::xrstor_opmask_state;
xsave_restore[xcr0_t::BX_XCR0_OPMASK_BIT].xrstor_init_method = &BX_CPU_C::xrstor_init_opmask_state;
// XCR0[6]: ZMM_HI256 state
xsave_restore[xcr0_t::BX_XCR0_ZMM_HI256_BIT].len = XSAVE_ZMM_HI256_STATE_LEN;
xsave_restore[xcr0_t::BX_XCR0_ZMM_HI256_BIT].offset = XSAVE_ZMM_HI256_STATE_OFFSET;
xsave_restore[xcr0_t::BX_XCR0_ZMM_HI256_BIT].xstate_in_use_method = &BX_CPU_C::xsave_zmm_hi256_state_xinuse;
xsave_restore[xcr0_t::BX_XCR0_ZMM_HI256_BIT].xsave_method = &BX_CPU_C::xsave_zmm_hi256_state;
xsave_restore[xcr0_t::BX_XCR0_ZMM_HI256_BIT].xrstor_method = &BX_CPU_C::xrstor_zmm_hi256_state;
xsave_restore[xcr0_t::BX_XCR0_ZMM_HI256_BIT].xrstor_init_method = &BX_CPU_C::xrstor_init_zmm_hi256_state;
// XCR0[7]: ZMM_HI state
xsave_restore[xcr0_t::BX_XCR0_HI_ZMM_BIT].len = XSAVE_HI_ZMM_STATE_LEN;
xsave_restore[xcr0_t::BX_XCR0_HI_ZMM_BIT].offset = XSAVE_HI_ZMM_STATE_OFFSET;
xsave_restore[xcr0_t::BX_XCR0_HI_ZMM_BIT].xstate_in_use_method = &BX_CPU_C::xsave_hi_zmm_state_xinuse;
xsave_restore[xcr0_t::BX_XCR0_HI_ZMM_BIT].xsave_method = &BX_CPU_C::xsave_hi_zmm_state;
xsave_restore[xcr0_t::BX_XCR0_HI_ZMM_BIT].xrstor_method = &BX_CPU_C::xrstor_hi_zmm_state;
xsave_restore[xcr0_t::BX_XCR0_HI_ZMM_BIT].xrstor_init_method = &BX_CPU_C::xrstor_init_hi_zmm_state;
}
#endif
// XCR0[8]: Processor Trace state (not implemented)
#if BX_SUPPORT_PKEYS
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_PKU)) {
// XCR0[9]: PKRU state
xsave_restore[xcr0_t::BX_XCR0_PKRU_BIT].len = XSAVE_PKRU_STATE_LEN;
xsave_restore[xcr0_t::BX_XCR0_PKRU_BIT].offset = XSAVE_PKRU_STATE_OFFSET;
xsave_restore[xcr0_t::BX_XCR0_PKRU_BIT].xstate_in_use_method = &BX_CPU_C::xsave_pkru_state_xinuse;
xsave_restore[xcr0_t::BX_XCR0_PKRU_BIT].xsave_method = &BX_CPU_C::xsave_pkru_state;
xsave_restore[xcr0_t::BX_XCR0_PKRU_BIT].xrstor_method = &BX_CPU_C::xrstor_pkru_state;
xsave_restore[xcr0_t::BX_XCR0_PKRU_BIT].xrstor_init_method = &BX_CPU_C::xrstor_init_pkru_state;
}
#endif
// XCR0[10]: Reserved
#if BX_SUPPORT_CET
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_CET)) {
// XCR0[11]: CET User State
xsave_restore[xcr0_t::BX_XCR0_CET_U_BIT].len = XSAVE_CET_U_STATE_LEN;
xsave_restore[xcr0_t::BX_XCR0_CET_U_BIT].offset = 0; // IA32_XSS only
xsave_restore[xcr0_t::BX_XCR0_CET_U_BIT].xstate_in_use_method = &BX_CPU_C::xsave_cet_u_state_xinuse;
xsave_restore[xcr0_t::BX_XCR0_CET_U_BIT].xsave_method = &BX_CPU_C::xsave_cet_u_state;
xsave_restore[xcr0_t::BX_XCR0_CET_U_BIT].xrstor_method = &BX_CPU_C::xrstor_cet_u_state;
xsave_restore[xcr0_t::BX_XCR0_CET_U_BIT].xrstor_init_method = &BX_CPU_C::xrstor_init_cet_u_state;
// XCR0[12]: CET Supervisor State
xsave_restore[xcr0_t::BX_XCR0_CET_S_BIT].len = XSAVE_CET_S_STATE_LEN;
xsave_restore[xcr0_t::BX_XCR0_CET_S_BIT].offset = 0; // IA32_XSS only
xsave_restore[xcr0_t::BX_XCR0_CET_S_BIT].xstate_in_use_method = &BX_CPU_C::xsave_cet_s_state_xinuse;
xsave_restore[xcr0_t::BX_XCR0_CET_S_BIT].xsave_method = &BX_CPU_C::xsave_cet_s_state;
xsave_restore[xcr0_t::BX_XCR0_CET_S_BIT].xrstor_method = &BX_CPU_C::xrstor_cet_s_state;
xsave_restore[xcr0_t::BX_XCR0_CET_S_BIT].xrstor_init_method = &BX_CPU_C::xrstor_init_cet_s_state;
}
#endif
}
Bit32u BX_CPU_C::get_xcr0_allow_mask(void)
{
Bit32u allowMask = 0x3;
#if BX_SUPPORT_AVX
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX))
allowMask |= BX_XCR0_YMM_MASK;
#if BX_SUPPORT_EVEX
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_AVX512))
allowMask |= BX_XCR0_OPMASK_MASK | BX_XCR0_ZMM_HI256_MASK | BX_XCR0_HI_ZMM_MASK;
#endif
#endif // BX_SUPPORT_AVX
#if BX_SUPPORT_PKEYS
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_ISA_PKU))
allowMask |= BX_XCR0_PKRU_MASK;
#endif
return allowMask;
}
Bit32u BX_CPU_C::get_ia32_xss_allow_mask(void)
{
Bit64u ia32_xss_support_mask = 0;
#if BX_SUPPORT_CET
ia32_xss_support_mask |= BX_XCR0_CET_U_MASK | BX_XCR0_CET_S_MASK;
#endif
return ia32_xss_support_mask;
}
#endif