Bochs/bochs/cpu/cpu.cc

1052 lines
33 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: cpu.cc,v 1.102 2005-03-19 18:43:00 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "iodev/iodev.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SIM_ID == 0 // only need to define once
// This array defines a look-up table for the even parity-ness
// of an 8bit quantity, for optimal assignment of the parity bit
// in the EFLAGS register
const bx_bool bx_parity_lookup[256] = {
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
};
#endif
#if BX_SMP_PROCESSORS==1
// single processor simulation, so there's one of everything
BOCHSAPI BX_CPU_C bx_cpu;
BOCHSAPI BX_MEM_C bx_mem;
#else
// multiprocessor simulation, we need an array of cpus and memories
BOCHSAPI BX_CPU_C *bx_cpu_array[BX_SMP_PROCESSORS];
BOCHSAPI BX_MEM_C *bx_mem_array[BX_ADDRESS_SPACES];
#endif
#if BX_SUPPORT_ICACHE
#define InstrumentICACHE 0
#if InstrumentICACHE
static unsigned iCacheLookups=0;
static unsigned iCacheMisses=0;
#define InstrICache_StatsMask 0xffffff
#define InstrICache_Stats() {\
if ((iCacheLookups & InstrICache_StatsMask) == 0) { \
BX_INFO(("ICACHE lookups: %u, misses: %u, hit rate = %6.2f%% ", \
iCacheLookups, \
iCacheMisses, \
(iCacheLookups-iCacheMisses) * 100.0 / iCacheLookups)); \
iCacheLookups = iCacheMisses = 0; \
} \
}
#define InstrICache_Increment(v) (v)++
#else
#define InstrICache_Stats()
#define InstrICache_Increment(v)
#endif
#endif
// notes:
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
// instructions and then return so that the other processors have a chance to
// run. This is used only when simulating multiple processors.
//
// If maximum instructions have been executed, return. A count less
// than zero means run forever.
#define CHECK_MAX_INSTRUCTIONS(count) \
if (count >= 0) { \
count--; if (count == 0) return; \
}
#if BX_SMP_PROCESSORS==1
# define BX_TICK1_IF_SINGLE_PROCESSOR() BX_TICK1()
#else
# define BX_TICK1_IF_SINGLE_PROCESSOR()
#endif
// Make code more tidy with a few macros.
#if BX_SUPPORT_X86_64==0
#define RIP EIP
#define RSP ESP
#endif
void
BX_CPU_C::cpu_loop(Bit32s max_instr_count)
{
unsigned ret;
bxInstruction_c iStorage BX_CPP_AlignN(32);
bxInstruction_c *i = &iStorage;
#if BX_DEBUGGER
BX_CPU_THIS_PTR break_point = 0;
#if BX_MAGIC_BREAKPOINT
BX_CPU_THIS_PTR magic_break = 0;
#endif
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
#endif
#if BX_INSTRUMENTATION
if (setjmp( BX_CPU_THIS_PTR jmp_buf_env ))
{
// only from exception function can we get here ...
BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID);
}
#elif BX_GDBSTUB
if (bx_dbg.gdbstub_enabled) {
if (setjmp( BX_CPU_THIS_PTR jmp_buf_env )) {
return;
}
} else {
(void) setjmp( BX_CPU_THIS_PTR jmp_buf_env );
}
#else
(void) setjmp( BX_CPU_THIS_PTR jmp_buf_env );
#endif
#if BX_DEBUGGER
// If the exception() routine has encountered a nasty fault scenario,
// the debugger may request that control is returned to it so that
// the situation may be examined.
if (bx_guard.special_unwind_stack) {
printf("CPU_LOOP %d\n", bx_guard.special_unwind_stack);
return;
}
#endif
// We get here either by a normal function call, or by a longjmp
// back from an exception() call. In either case, commit the
// new EIP/ESP, and set up other environmental fields. This code
// mirrors similar code below, after the interrupt() call.
BX_CPU_THIS_PTR prev_eip = RIP; // commit new EIP
BX_CPU_THIS_PTR prev_esp = RSP; // commit new ESP
BX_CPU_THIS_PTR EXT = 0;
BX_CPU_THIS_PTR errorno = 0;
while (1) {
// First check on events which occurred for previous instructions
// (traps) and ones which are asynchronous to the CPU
// (hardware interrupts).
if (BX_CPU_THIS_PTR async_event) {
if (handleAsyncEvent()) {
// If request to return to caller ASAP.
return;
}
}
#if BX_DEBUGGER
{
Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
if ( dbg_is_begin_instr_bpoint(
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
debug_eip,
BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_CS) + debug_eip,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
return;
}
}
#endif // #if BX_DEBUGGER
#if BX_EXTERNAL_DEBUGGER
if (regs.debug_state != debug_run) {
bx_external_debugger(BX_CPU_THIS);
}
#endif
bx_address eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
if (eipBiased >= BX_CPU_THIS_PTR eipPageWindowSize) {
prefetch();
eipBiased = RIP + BX_CPU_THIS_PTR eipPageBias;
}
#if BX_SUPPORT_ICACHE
Bit32u pAddr = BX_CPU_THIS_PTR pAddrA20Page + eipBiased;
unsigned iCacheHash = BX_CPU_THIS_PTR iCache.hash(pAddr);
bxICacheEntry_c *cache_entry = &(BX_CPU_THIS_PTR iCache.entry[iCacheHash]);
i = &(cache_entry->i);
Bit32u pageWriteStamp = BX_CPU_THIS_PTR iCache.getPageWriteStamp(pAddr);
#if BX_SUPPORT_ICACHE
InstrICache_Increment(iCacheLookups);
InstrICache_Stats();
#endif
if ((cache_entry->pAddr == pAddr) &&
(cache_entry->writeStamp == pageWriteStamp))
{
// iCache hit. Instruction is already decoded and stored in the
// instruction cache.
#if BX_INSTRUMENTATION
// An instruction was found in the iCache.
BX_INSTR_OPCODE(BX_CPU_ID, BX_CPU_THIS_PTR eipFetchPtr + eipBiased,
i->ilen(), BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b);
#endif
}
else
#endif
{
// iCache miss. No validated instruction with matching fetch parameters
// is in the iCache. Or we're not compiling iCache support in, in which
// case we always have an iCache miss. :^)
bx_address remainingInPage;
remainingInPage = (BX_CPU_THIS_PTR eipPageWindowSize - eipBiased);
unsigned maxFetch = 15;
if (remainingInPage < 15) maxFetch = remainingInPage;
Bit8u *fetchPtr = BX_CPU_THIS_PTR eipFetchPtr + eipBiased;
#if BX_SUPPORT_ICACHE
// The entry will be marked valid if fetchdecode will succeed
cache_entry->writeStamp = ICacheWriteStampInvalid;
InstrICache_Increment(iCacheMisses);
#endif
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64)
ret = fetchDecode64(fetchPtr, i, maxFetch);
else
#endif
ret = fetchDecode(fetchPtr, i, maxFetch);
if (ret==0) {
#if BX_SUPPORT_ICACHE
i = &iStorage; // Leave entry invalid
#endif
boundaryFetch(fetchPtr, remainingInPage, i);
}
else
{
#if BX_SUPPORT_ICACHE
// In the case where the page is marked ICacheWriteStampInvalid, all
// counter bits will be high, being eqivalent to ICacheWriteStampMax.
// In the case where the page is marked as possibly having associated
// iCache entries, we need to leave the counter as-is, unless we're
// willing to dump all iCache entries which can hash to this page.
// Therefore, in either case, we can keep the counter as-is and
// replace the fetch mode bits.
Bit32u fetchModeMask = BX_CPU_THIS_PTR iCache.fetchModeMask;
pageWriteStamp &= ICacheWriteStampMask; // Clear out old fetch mode bits.
pageWriteStamp |= fetchModeMask; // Add in new ones.
BX_CPU_THIS_PTR iCache.setPageWriteStamp(pAddr, pageWriteStamp);
cache_entry->pAddr = pAddr;
cache_entry->writeStamp = pageWriteStamp;
#endif
#if BX_INSTRUMENTATION
// An instruction was either fetched, or found in the iCache.
BX_INSTR_OPCODE(BX_CPU_ID, fetchPtr, i->ilen(),
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b);
#endif
}
}
BxExecutePtr_tR resolveModRM = i->ResolveModrm; // Get as soon as possible for speculation
BxExecutePtr_t execute = i->execute; // fetch as soon as possible for speculation
if (resolveModRM)
BX_CPU_CALL_METHODR(resolveModRM, (i));
// An instruction will have been fetched using either the normal case,
// or the boundary fetch (across pages), by this point.
BX_INSTR_FETCH_DECODE_COMPLETED(BX_CPU_ID, i);
#if BX_DEBUGGER
if (BX_CPU_THIS_PTR trace) {
// print the instruction that is about to be executed.
bx_dbg_disassemble_current (BX_CPU_ID, 1); // only one cpu, print time stamp
}
#endif
// decoding instruction compeleted -> continue with execution
BX_INSTR_BEFORE_EXECUTION(BX_CPU_ID, i);
if ( !(i->repUsedL() && i->repeatableL()) ) {
// non repeating instruction
RIP += i->ilen();
BX_CPU_CALL_METHOD(execute, (i));
BX_CPU_THIS_PTR prev_eip = RIP; // commit new EIP
BX_CPU_THIS_PTR prev_esp = RSP; // commit new ESP
BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i);
BX_TICK1_IF_SINGLE_PROCESSOR();
}
else {
repeat_loop:
if (i->repeatableZFL()) {
#if BX_SUPPORT_X86_64
if (i->as64L()) {
if (RCX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
RCX --;
}
if ((i->repUsedValue()==3) && (get_ZF()==0)) goto repeat_done;
if ((i->repUsedValue()==2) && (get_ZF()!=0)) goto repeat_done;
if (RCX == 0) goto repeat_done;
goto repeat_not_done;
}
else
#endif
if (i->as32L()) {
if (ECX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
ECX --;
}
if ((i->repUsedValue()==3) && (get_ZF()==0)) goto repeat_done;
if ((i->repUsedValue()==2) && (get_ZF()!=0)) goto repeat_done;
if (ECX == 0) goto repeat_done;
goto repeat_not_done;
}
else {
if (CX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
CX --;
}
if ((i->repUsedValue()==3) && (get_ZF()==0)) goto repeat_done;
if ((i->repUsedValue()==2) && (get_ZF()!=0)) goto repeat_done;
if (CX == 0) goto repeat_done;
goto repeat_not_done;
}
}
else { // normal repeat, no concern for ZF
#if BX_SUPPORT_X86_64
if (i->as64L()) {
if (RCX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
RCX --;
}
if (RCX == 0) goto repeat_done;
goto repeat_not_done;
}
else
#endif
if (i->as32L()) {
if (ECX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
ECX --;
}
if (ECX == 0) goto repeat_done;
goto repeat_not_done;
}
else { // 16bit addrsize
if (CX != 0) {
BX_CPU_CALL_METHOD(execute, (i));
CX --;
}
if (CX == 0) goto repeat_done;
goto repeat_not_done;
}
}
// shouldn't get here from above
repeat_not_done:
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
BX_TICK1_IF_SINGLE_PROCESSOR();
#if BX_DEBUGGER == 0
if (BX_CPU_THIS_PTR async_event) {
invalidate_prefetch_q();
goto debugger_check;
}
goto repeat_loop;
#else /* if BX_DEBUGGER == 1 */
invalidate_prefetch_q();
goto debugger_check;
#endif
repeat_done:
RIP += i->ilen();
BX_CPU_THIS_PTR prev_eip = RIP; // commit new EIP
BX_CPU_THIS_PTR prev_esp = RSP; // commit new ESP
BX_INSTR_REPEAT_ITERATION(BX_CPU_ID, i);
BX_INSTR_AFTER_EXECUTION(BX_CPU_ID, i);
BX_TICK1_IF_SINGLE_PROCESSOR();
}
debugger_check:
// inform instrumentation about new instruction
BX_INSTR_NEW_INSTRUCTION(BX_CPU_ID);
#if (BX_SMP_PROCESSORS>1 && BX_DEBUGGER==0)
// The CHECK_MAX_INSTRUCTIONS macro allows cpu_loop to execute a few
// instructions and then return so that the other processors have a chance
// to run. This is used only when simulating multiple processors. If only
// one processor, don't waste any cycles on it! Also, it is not needed
// with the debugger because its guard mechanism provides the same
// functionality.
CHECK_MAX_INSTRUCTIONS(max_instr_count);
#endif
#if BX_DEBUGGER
// BW vm mode switch support is in dbg_is_begin_instr_bpoint
// note instr generating exceptions never reach this point.
// (mch) Read/write, time break point support
if (BX_CPU_THIS_PTR break_point) {
switch (BX_CPU_THIS_PTR break_point) {
case BREAK_POINT_TIME:
BX_INFO(("[" FMT_LL "d] Caught time breakpoint", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_TIME_BREAK_POINT;
return;
case BREAK_POINT_READ:
BX_INFO(("[" FMT_LL "d] Caught read watch point", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_READ_WATCH_POINT;
return;
case BREAK_POINT_WRITE:
BX_INFO(("[" FMT_LL "d] Caught write watch point", bx_pc_system.time_ticks()));
BX_CPU_THIS_PTR stop_reason = STOP_WRITE_WATCH_POINT;
return;
default:
BX_PANIC(("Weird break point condition"));
}
}
#if BX_MAGIC_BREAKPOINT
// (mch) Magic break point support
if (BX_CPU_THIS_PTR magic_break) {
if (bx_dbg.magic_break_enabled) {
BX_DEBUG(("Stopped on MAGIC BREAKPOINT"));
BX_CPU_THIS_PTR stop_reason = STOP_MAGIC_BREAK_POINT;
return;
}
else {
BX_CPU_THIS_PTR magic_break = 0;
BX_CPU_THIS_PTR stop_reason = STOP_NO_REASON;
BX_DEBUG(("Ignoring MAGIC BREAKPOINT"));
}
}
#endif
{
// check for icount or control-C. If found, set guard reg and return.
Bit32u debug_eip = BX_CPU_THIS_PTR prev_eip;
if ( dbg_is_end_instr_bpoint(
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value,
debug_eip,
BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_CS) + debug_eip,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b) ) {
return;
}
}
#endif // #if BX_DEBUGGER
#if BX_GDBSTUB
if (bx_dbg.gdbstub_enabled) {
unsigned int reason;
if ((reason = bx_gdbstub_check(EIP)) != GDBSTUB_STOP_NO_REASON) {
return;
}
}
#endif
} // while (1)
}
unsigned BX_CPU_C::handleAsyncEvent(void)
{
//
// This area is where we process special conditions and events.
//
if (BX_CPU_THIS_PTR debug_trap & 0x80000000) {
// I made up the bitmask above to mean HALT state.
#if BX_SMP_PROCESSORS==1
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
// for one processor, pass the time as quickly as possible until
// an interrupt wakes up the CPU.
#if BX_DEBUGGER
while (bx_guard.interrupt_requested != 1)
#else
while (1)
#endif
{
if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF ()) {
break;
}
if (BX_CPU_THIS_PTR async_event == 2) {
BX_INFO(("decode: reset detected in halt state"));
break;
}
BX_TICK1();
}
#else /* BX_SMP_PROCESSORS != 1 */
// for multiprocessor simulation, even if this CPU is halted we still
// must give the others a chance to simulate. If an interrupt has
// arrived, then clear the HALT condition; otherwise just return from
// the CPU loop with stop_reason STOP_CPU_HALTED.
if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF ()) {
// interrupt ends the HALT condition
BX_CPU_THIS_PTR debug_trap = 0; // clear traps for after resume
BX_CPU_THIS_PTR inhibit_mask = 0; // clear inhibits for after resume
//bx_printf ("halt condition has been cleared in %s", name);
} else {
// HALT condition remains, return so other CPUs have a chance
#if BX_DEBUGGER
BX_CPU_THIS_PTR stop_reason = STOP_CPU_HALTED;
#endif
return 1; // Return to caller of cpu_loop.
}
#endif
} else if (BX_CPU_THIS_PTR kill_bochs_request) {
// setting kill_bochs_request causes the cpu loop to return ASAP.
return 1; // Return to caller of cpu_loop.
}
// Priority 1: Hardware Reset and Machine Checks
// RESET
// Machine Check
// (bochs doesn't support these)
// Priority 2: Trap on Task Switch
// T flag in TSS is set
if (BX_CPU_THIS_PTR debug_trap & 0x00008000) {
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
// Priority 3: External Hardware Interventions
// FLUSH
// STOPCLK
// SMI
// INIT
// (bochs doesn't support these)
// Priority 4: Traps on Previous Instruction
// Breakpoints
// Debug Trap Exceptions (TF flag set or data/IO breakpoint)
if ( BX_CPU_THIS_PTR debug_trap &&
!(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) )
{
// A trap may be inhibited on this boundary due to an instruction
// which loaded SS. If so we clear the inhibit_mask below
// and don't execute this code until the next boundary.
// Commit debug events to DR6
BX_CPU_THIS_PTR dr6 |= BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
// Priority 5: External Interrupts
// NMI Interrupts
// Maskable Hardware Interrupts
if (BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_INTERRUPTS) {
// Processing external interrupts is inhibited on this
// boundary because of certain instructions like STI.
// inhibit_mask is cleared below, in which case we will have
// an opportunity to check interrupts on the next instruction
// boundary.
}
else if (BX_CPU_INTR && BX_CPU_THIS_PTR get_IF () &&
BX_DBG_ASYNC_INTR)
{
Bit8u vector;
// NOTE: similar code in ::take_irq()
#if BX_SUPPORT_APIC
if (BX_CPU_THIS_PTR local_apic.INTR)
vector = BX_CPU_THIS_PTR local_apic.acknowledge_int ();
else
vector = DEV_pic_iac(); // may set INTR with next interrupt
#else
// if no local APIC, always acknowledge the PIC.
vector = DEV_pic_iac(); // may set INTR with next interrupt
#endif
//BX_DEBUG(("decode: interrupt %u",
// (unsigned) vector));
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; /* external event */
interrupt(vector, 0, 0, 0);
BX_INSTR_HWINTERRUPT(BX_CPU_ID, vector,
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value, EIP);
// Set up environment, as would be when this main cpu loop gets
// invoked. At the end of normal instructions, we always commmit
// the new EIP/ESP values. But here, we call interrupt() much like
// it was a sofware interrupt instruction, and need to effect the
// commit here. This code mirrors similar code above.
BX_CPU_THIS_PTR prev_eip = RIP; // commit new RIP
BX_CPU_THIS_PTR prev_esp = RSP; // commit new RSP
BX_CPU_THIS_PTR EXT = 0;
BX_CPU_THIS_PTR errorno = 0;
}
else if (BX_HRQ && BX_DBG_ASYNC_DMA) {
// NOTE: similar code in ::take_dma()
// assert Hold Acknowledge (HLDA) and go into a bus hold state
DEV_dma_raise_hlda();
}
// Priority 6: Faults from fetching next instruction
// Code breakpoint fault
// Code segment limit violation (priority 7 on 486/Pentium)
// Code page fault (priority 7 on 486/Pentium)
// (handled in main decode loop)
// Priority 7: Faults from decoding next instruction
// Instruction length > 15 bytes
// Illegal opcode
// Coprocessor not available
// (handled in main decode loop etc)
// Priority 8: Faults on executing an instruction
// Floating point execution
// Overflow
// Bound error
// Invalid TSS
// Segment not present
// Stack fault
// General protection
// Data page fault
// Alignment check
// (handled by rest of the code)
if (BX_CPU_THIS_PTR get_TF ())
{
// TF is set before execution of next instruction. Schedule
// a debug trap (#DB) after execution. After completion of
// next instruction, the code above will invoke the trap.
BX_CPU_THIS_PTR debug_trap |= 0x00004000; // BS flag in DR6
}
// Now we can handle things which are synchronous to instruction
// execution.
if (BX_CPU_THIS_PTR get_RF ()) {
BX_CPU_THIS_PTR clear_RF ();
}
#if BX_X86_DEBUGGER
else {
// only bother comparing if any breakpoints enabled
if ( BX_CPU_THIS_PTR dr7 & 0x000000ff ) {
Bit32u iaddr =
BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_CS) +
BX_CPU_THIS_PTR prev_eip;
Bit32u dr6_bits;
if ( (dr6_bits = hwdebug_compare(iaddr, 1, BX_HWDebugInstruction,
BX_HWDebugInstruction)) )
{
// Add to the list of debug events thus far.
BX_CPU_THIS_PTR async_event = 1;
BX_CPU_THIS_PTR debug_trap |= dr6_bits;
// If debug events are not inhibited on this boundary,
// fire off a debug fault. Otherwise handle it on the next
// boundary. (becomes a trap)
if ( !(BX_CPU_THIS_PTR inhibit_mask & BX_INHIBIT_DEBUG) ) {
// Commit debug events to DR6
BX_CPU_THIS_PTR dr6 = BX_CPU_THIS_PTR debug_trap;
exception(BX_DB_EXCEPTION, 0, 0); // no error, not interrupt
}
}
}
}
#endif
// We have ignored processing of external interrupts and
// debug events on this boundary. Reset the mask so they
// will be processed on the next boundary.
BX_CPU_THIS_PTR inhibit_mask = 0;
if ( !(BX_CPU_INTR ||
BX_CPU_THIS_PTR debug_trap ||
BX_HRQ ||
BX_CPU_THIS_PTR get_TF ()
#if BX_X86_DEBUGGER
|| (BX_CPU_THIS_PTR dr7 & 0xff)
#endif
))
BX_CPU_THIS_PTR async_event = 0;
return 0; // Continue executing cpu_loop.
}
// boundaries of consideration:
//
// * physical memory boundary: 1024k (1Megabyte) (increments of...)
// * A20 boundary: 1024k (1Megabyte)
// * page boundary: 4k
// * ROM boundary: 2k (dont care since we are only reading)
// * segment boundary: any
void BX_CPU_C::prefetch(void)
{
// cs:eIP
// prefetch QSIZE byte quantity aligned on corresponding boundary
bx_address laddr;
Bit32u pAddr;
bx_address temp_rip;
Bit32u temp_limit;
bx_address laddrPageOffset0, eipPageOffset0;
temp_rip = RIP;
temp_limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled;
laddr = BX_CPU_THIS_PTR get_segment_base(BX_SEG_REG_CS) + temp_rip;
if (((Bit32u)temp_rip) > temp_limit) {
BX_PANIC(("prefetch: RIP > CS.limit"));
exception(BX_GP_EXCEPTION, 0, 0);
}
#if BX_SUPPORT_PAGING
if (BX_CPU_THIS_PTR cr0.pg) {
// aligned block guaranteed to be all in one page, same A20 address
pAddr = itranslate_linear(laddr, CPL==3);
pAddr = A20ADDR(pAddr);
}
else
#endif // BX_SUPPORT_PAGING
{
pAddr = A20ADDR(laddr);
}
// check if segment boundary comes into play
//if ((temp_limit - (Bit32u)temp_rip) < 4096) {
// }
// Linear address at the beginning of the page.
#if BX_SUPPORT_X86_64
laddrPageOffset0 = laddr & BX_CONST64(0xfffffffffffff000);
#else
laddrPageOffset0 = laddr & 0xfffff000;
#endif
// Calculate RIP at the beginning of the page.
eipPageOffset0 = RIP - (laddr - laddrPageOffset0);
BX_CPU_THIS_PTR eipPageBias = - eipPageOffset0;
BX_CPU_THIS_PTR eipPageWindowSize = 4096; // FIXME:
BX_CPU_THIS_PTR pAddrA20Page = pAddr & 0xfffff000;
BX_CPU_THIS_PTR eipFetchPtr =
BX_CPU_THIS_PTR mem->getHostMemAddr(BX_CPU_THIS, BX_CPU_THIS_PTR pAddrA20Page, BX_READ);
// Sanity checks
if ( !BX_CPU_THIS_PTR eipFetchPtr ) {
if ( pAddr >= BX_CPU_THIS_PTR mem->len ) {
BX_PANIC(("prefetch : running in bogus memory, pAddr=0x%08x", pAddr));
}
else {
BX_PANIC(("prefetch: getHostMemAddr vetoed direct read, pAddr=0x%08x", pAddr));
}
}
#if BX_SUPPORT_ICACHE
Bit32u pageWriteStamp = BX_CPU_THIS_PTR iCache.getPageWriteStamp(pAddr);
Bit32u fetchModeMask = BX_CPU_THIS_PTR iCache.fetchModeMask;
if ((pageWriteStamp & ICacheFetchModeMask) != fetchModeMask)
{
// The current CPU mode does not match iCache entries for this
// physical page.
pageWriteStamp &= ICacheWriteStampMask; // Clear out old fetch mode bits.
pageWriteStamp |= fetchModeMask; // Add in new ones.
BX_CPU_THIS_PTR iCache.setPageWriteStamp(pAddr, pageWriteStamp);
}
#endif
}
void BX_CPU_C::boundaryFetch(Bit8u *fetchPtr, unsigned remainingInPage, bxInstruction_c *i)
{
unsigned j;
Bit8u fetchBuffer[16]; // Really only need 15
unsigned ret;
if (remainingInPage >= 15) {
BX_INFO(("fetchDecode #GP(0): too many instruction prefixes"));
exception(BX_GP_EXCEPTION, 0, 0);
}
// Read all leftover bytes in current page up to boundary.
for (j=0; j<remainingInPage; j++) {
fetchBuffer[j] = *fetchPtr++;
}
// The 2nd chunk of the instruction is on the next page.
// Set RIP to the 0th byte of the 2nd page, and force a
// prefetch so direct access of that physical page is possible, and
// all the associated info is updated.
RIP += remainingInPage;
prefetch();
if (BX_CPU_THIS_PTR eipPageWindowSize < 15) {
BX_PANIC(("fetch_decode: small window size after prefetch"));
}
// We can fetch straight from the 0th byte, which is eipFetchPtr;
fetchPtr = BX_CPU_THIS_PTR eipFetchPtr;
// read leftover bytes in next page
for (; j<15; j++) {
fetchBuffer[j] = *fetchPtr++;
}
#if BX_SUPPORT_X86_64
if (BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64) {
ret = fetchDecode64(fetchBuffer, i, 15);
}
else
#endif
{
ret = fetchDecode(fetchBuffer, i, 15);
}
if (ret==0) {
BX_INFO(("fetchDecode #GP(0): cross boundary"));
exception(BX_GP_EXCEPTION, 0, 0);
}
// Restore EIP since we fudged it to start at the 2nd page boundary.
RIP = BX_CPU_THIS_PTR prev_eip;
// Since we cross an instruction boundary, note that we need a prefetch()
// again on the next instruction. Perhaps we can optimize this to
// eliminate the extra prefetch() since we do it above, but have to
// think about repeated instructions, etc.
BX_CPU_THIS_PTR eipPageWindowSize = 0; // Fixme
BX_INSTR_OPCODE(BX_CPU_ID, fetchBuffer, i->ilen(),
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b);
}
#if BX_EXTERNAL_DEBUGGER
void
BX_CPU_C::ask (int level, const char *prefix, const char *fmt, va_list ap)
{
char buf1[1024];
vsprintf (buf1, fmt, ap);
printf ("%s %s\n", prefix, buf1);
trap_debugger(1);
}
void
BX_CPU_C::trap_debugger (bx_bool callnow)
{
regs.debug_state = debug_step;
if (callnow) {
bx_external_debugger(BX_CPU_THIS);
}
}
#endif // #if BX_EXTERNAL_DEBUGGER
#if BX_DEBUGGER
extern unsigned int dbg_show_mask;
bx_bool
BX_CPU_C::dbg_is_begin_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
Bit32u is_32)
{
//fprintf (stderr, "begin_instr_bp: checking cs:eip %04x:%08x\n", cs, eip);
BX_CPU_THIS_PTR guard_found.cs = cs;
BX_CPU_THIS_PTR guard_found.eip = eip;
BX_CPU_THIS_PTR guard_found.laddr = laddr;
BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
// BW mode switch breakpoint
// instruction which generate exceptions never reach the end of the
// loop due to a long jump. Thats why we check at start of instr.
// Downside is that we show the instruction about to be executed
// (not the one generating the mode switch).
if (BX_CPU_THIS_PTR mode_break &&
(BX_CPU_THIS_PTR debug_vm != BX_CPU_THIS_PTR getB_VM ())) {
BX_INFO(("Caught vm mode switch breakpoint"));
BX_CPU_THIS_PTR debug_vm = BX_CPU_THIS_PTR getB_VM ();
BX_CPU_THIS_PTR stop_reason = STOP_MODE_BREAK_POINT;
return 1;
}
if( (BX_CPU_THIS_PTR show_flag) & (dbg_show_mask)) {
int rv;
if((rv = bx_dbg_symbolic_output()))
return rv;
}
// see if debugger is looking for iaddr breakpoint of any type
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_ALL) {
#if BX_DBG_SUPPORT_VIR_BPOINT
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_VIR) {
if (BX_CPU_THIS_PTR guard_found.icount!=0) {
for (unsigned i=0; i<bx_guard.iaddr.num_virtual; i++) {
if ( bx_guard.iaddr.vir[i].enabled &&
(bx_guard.iaddr.vir[i].cs == cs) &&
(bx_guard.iaddr.vir[i].eip == eip) ) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_VIR;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
return(1); // on a breakpoint
}
}
}
}
#endif
#if BX_DBG_SUPPORT_LIN_BPOINT
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_LIN) {
if (BX_CPU_THIS_PTR guard_found.icount!=0) {
for (unsigned i=0; i<bx_guard.iaddr.num_linear; i++) {
if (bx_guard.iaddr.lin[i].enabled &&
(bx_guard.iaddr.lin[i].addr == BX_CPU_THIS_PTR guard_found.laddr) ) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_LIN;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
return(1); // on a breakpoint
}
}
}
}
#endif
#if BX_DBG_SUPPORT_PHY_BPOINT
if (bx_guard.guard_for & BX_DBG_GUARD_IADDR_PHY) {
Bit32u phy;
bx_bool valid;
dbg_xlate_linear2phy(BX_CPU_THIS_PTR guard_found.laddr,
&phy, &valid);
// The "guard_found.icount!=0" condition allows you to step or
// continue beyond a breakpoint. Bryce tried removing it once,
// and once you get to a breakpoint you are stuck there forever.
// Not pretty.
if (valid && (BX_CPU_THIS_PTR guard_found.icount!=0)) {
for (unsigned i=0; i<bx_guard.iaddr.num_physical; i++) {
if ( bx_guard.iaddr.phy[i].enabled &&
(bx_guard.iaddr.phy[i].addr == phy) ) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_IADDR_PHY;
BX_CPU_THIS_PTR guard_found.iaddr_index = i;
return(1); // on a breakpoint
}
}
}
}
#endif
}
return(0); // not on a breakpoint
}
bx_bool
BX_CPU_C::dbg_is_end_instr_bpoint(Bit32u cs, Bit32u eip, Bit32u laddr,
Bit32u is_32)
{
//fprintf (stderr, "end_instr_bp: checking for icount or ^C\n");
BX_CPU_THIS_PTR guard_found.icount++;
// convenient point to see if user typed Ctrl-C
if (bx_guard.interrupt_requested &&
(bx_guard.guard_for & BX_DBG_GUARD_CTRL_C)) {
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_CTRL_C;
return(1);
}
// see if debugger requesting icount guard
if (bx_guard.guard_for & BX_DBG_GUARD_ICOUNT) {
if (BX_CPU_THIS_PTR guard_found.icount >= bx_guard.icount) {
BX_CPU_THIS_PTR guard_found.cs = cs;
BX_CPU_THIS_PTR guard_found.eip = eip;
BX_CPU_THIS_PTR guard_found.laddr = laddr;
BX_CPU_THIS_PTR guard_found.is_32bit_code = is_32;
BX_CPU_THIS_PTR guard_found.guard_found = BX_DBG_GUARD_ICOUNT;
return(1);
}
}
#if (BX_NUM_SIMULATORS >= 2)
// if async event pending, acknowlege them
if (bx_guard.async_changes_pending.which) {
if (bx_guard.async_changes_pending.which & BX_DBG_ASYNC_PENDING_A20)
bx_dbg_async_pin_ack(BX_DBG_ASYNC_PENDING_A20,
bx_guard.async_changes_pending.a20);
if (bx_guard.async_changes_pending.which) {
BX_PANIC(("decode: async pending unrecognized."));
}
}
#endif
return(0); // no breakpoint
}
void
BX_CPU_C::dbg_take_irq(void)
{
unsigned vector;
// NOTE: similar code in ::cpu_loop()
if ( BX_CPU_INTR && BX_CPU_THIS_PTR get_IF () ) {
if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
// normal return from setjmp setup
vector = DEV_pic_iac(); // may set INTR with next interrupt
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; // external event
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
interrupt(vector, 0, 0, 0);
}
}
}
void
BX_CPU_C::dbg_force_interrupt(unsigned vector)
{
// Used to force slave simulator to take an interrupt, without
// regard to IF
if ( setjmp(BX_CPU_THIS_PTR jmp_buf_env) == 0 ) {
// normal return from setjmp setup
BX_CPU_THIS_PTR errorno = 0;
BX_CPU_THIS_PTR EXT = 1; // external event
BX_CPU_THIS_PTR async_event = 1; // probably don't need this
interrupt(vector, 0, 0, 0);
}
}
void
BX_CPU_C::dbg_take_dma(void)
{
// NOTE: similar code in ::cpu_loop()
if ( BX_HRQ ) {
BX_CPU_THIS_PTR async_event = 1; // set in case INTR is triggered
DEV_dma_raise_hlda();
}
}
#endif // #if BX_DEBUGGER