a6ad4c3903
For compilers (such as Microsoft VC++) which don't allow "LL" after a constant to make it 64-bit, this patch declares all such constants as BX_CONST64(value). Then in config.in, a switch called BX_64BIT_CONSTANTS_USE_LL controls whether the macro puts the LL's in or not. Configure sets the macro, if you're on a platform that can run such things.
800 lines
19 KiB
C
800 lines
19 KiB
C
/*---------------------------------------------------------------------------+
|
|
| errors.c |
|
|
| |
|
|
| The error handling functions for wm-FPU-emu |
|
|
| |
|
|
| Copyright (C) 1992,1993,1994,1996 |
|
|
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
|
|
| E-mail billm@jacobi.maths.monash.edu.au |
|
|
| |
|
|
| |
|
|
+---------------------------------------------------------------------------*/
|
|
|
|
/*---------------------------------------------------------------------------+
|
|
| Note: |
|
|
| The file contains code which accesses user memory. |
|
|
| Emulator static data may change when user memory is accessed, due to |
|
|
| other processes using the emulator while swapping is in progress. |
|
|
+---------------------------------------------------------------------------*/
|
|
|
|
#include <linux/signal.h>
|
|
#include <asm/uaccess.h>
|
|
#include <stdio.h>
|
|
|
|
#include "fpu_emu.h"
|
|
#include "fpu_system.h"
|
|
#include "exception.h"
|
|
#include "status_w.h"
|
|
#include "control_w.h"
|
|
#include "reg_constant.h"
|
|
#include "version.h"
|
|
|
|
/* */
|
|
#undef PRINT_MESSAGES
|
|
/* */
|
|
|
|
|
|
#ifndef USE_WITH_CPU_SIM
|
|
void Un_impl(void)
|
|
{
|
|
u_char byte1, FPU_modrm;
|
|
u32 address = FPU_ORIG_EIP;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
/* No need to verify_area(), we have previously fetched these bytes. */
|
|
printk("Unimplemented FPU Opcode at eip=%p : ", (void *) address);
|
|
if ( FPU_CS == __USER_CS )
|
|
{
|
|
while ( 1 )
|
|
{
|
|
FPU_get_user(byte1, (u_char *) address);
|
|
if ( (byte1 & 0xf8) == 0xd8 ) break;
|
|
printk("[%02x]", byte1);
|
|
address++;
|
|
}
|
|
printk("%02x ", byte1);
|
|
FPU_get_user(FPU_modrm, 1 + (u_char *) address);
|
|
|
|
if (FPU_modrm >= 0300)
|
|
printk("%02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7);
|
|
else
|
|
printk("/%d\n", (FPU_modrm >> 3) & 7);
|
|
}
|
|
else
|
|
{
|
|
printk("cs selector = %04x\n", FPU_CS);
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
EXCEPTION(EX_Invalid);
|
|
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
Called for opcodes which are illegal and which are known to result in a
|
|
SIGILL with a real 80486.
|
|
*/
|
|
void FPU_illegal(void)
|
|
{
|
|
math_abort(FPU_info,SIGILL);
|
|
}
|
|
|
|
|
|
|
|
#ifndef USE_WITH_CPU_SIM
|
|
void FPU_printall(void)
|
|
{
|
|
int i;
|
|
static const char *tag_desc[] = { "Valid", "Zero", "ERROR", "Empty",
|
|
"DeNorm", "Inf", "NaN" };
|
|
u_char byte1, FPU_modrm;
|
|
u32 address = FPU_ORIG_EIP;
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
/* No need to verify_area(), we have previously fetched these bytes. */
|
|
printk("At %p:", (void *) address);
|
|
if ( FPU_CS == __USER_CS )
|
|
{
|
|
#define MAX_PRINTED_BYTES 20
|
|
for ( i = 0; i < MAX_PRINTED_BYTES; i++ )
|
|
{
|
|
FPU_get_user(byte1, (u_char *) address);
|
|
if ( (byte1 & 0xf8) == 0xd8 )
|
|
{
|
|
printk(" %02x", byte1);
|
|
break;
|
|
}
|
|
printk(" [%02x]", byte1);
|
|
address++;
|
|
}
|
|
if ( i == MAX_PRINTED_BYTES )
|
|
printk(" [more..]\n");
|
|
else
|
|
{
|
|
FPU_get_user(FPU_modrm, 1 + (u_char *) address);
|
|
|
|
if (FPU_modrm >= 0300)
|
|
printk(" %02x (%02x+%d)\n", FPU_modrm, FPU_modrm & 0xf8, FPU_modrm & 7);
|
|
else
|
|
printk(" /%d, mod=%d rm=%d\n",
|
|
(FPU_modrm >> 3) & 7, (FPU_modrm >> 6) & 3, FPU_modrm & 7);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
printk("%04x\n", FPU_CS);
|
|
}
|
|
|
|
partial_status = status_word();
|
|
|
|
|
|
printk(" SW: b=%d st=%ld es=%d sf=%d cc=%d%d%d%d ef=%d%d%d%d%d%d\n",
|
|
partial_status & 0x8000 ? 1 : 0, /* busy */
|
|
(partial_status & 0x3800) >> 11, /* stack top pointer */
|
|
partial_status & 0x80 ? 1 : 0, /* Error summary status */
|
|
partial_status & 0x40 ? 1 : 0, /* Stack flag */
|
|
partial_status & SW_C3?1:0, partial_status & SW_C2?1:0, /* cc */
|
|
partial_status & SW_C1?1:0, partial_status & SW_C0?1:0, /* cc */
|
|
partial_status & SW_Precision?1:0, partial_status & SW_Underflow?1:0,
|
|
partial_status & SW_Overflow?1:0, partial_status & SW_Zero_Div?1:0,
|
|
partial_status & SW_Denorm_Op?1:0, partial_status & SW_Invalid?1:0);
|
|
|
|
printk(" CW: ic=%d rc=%ld%ld pc=%ld%ld iem=%d ef=%d%d%d%d%d%d\n",
|
|
control_word & 0x1000 ? 1 : 0,
|
|
(control_word & 0x800) >> 11, (control_word & 0x400) >> 10,
|
|
(control_word & 0x200) >> 9, (control_word & 0x100) >> 8,
|
|
control_word & 0x80 ? 1 : 0,
|
|
control_word & SW_Precision?1:0, control_word & SW_Underflow?1:0,
|
|
control_word & SW_Overflow?1:0, control_word & SW_Zero_Div?1:0,
|
|
control_word & SW_Denorm_Op?1:0, control_word & SW_Invalid?1:0);
|
|
|
|
for ( i = 0; i < 8; i++ )
|
|
{
|
|
FPU_REG *r = &st(i);
|
|
u_char tagi = FPU_gettagi(i);
|
|
switch (tagi)
|
|
{
|
|
case TAG_Empty:
|
|
continue;
|
|
break;
|
|
case TAG_Zero:
|
|
case TAG_Special:
|
|
tagi = FPU_Special(r);
|
|
case TAG_Valid:
|
|
printk("st(%d) %c .%04lx %04lx %04lx %04lx e%+-6d ", i,
|
|
getsign(r) ? '-' : '+',
|
|
(s32)(r->sigh >> 16),
|
|
(s32)(r->sigh & 0xFFFF),
|
|
(s32)(r->sigl >> 16),
|
|
(s32)(r->sigl & 0xFFFF),
|
|
exponent(r) - EXP_BIAS + 1);
|
|
break;
|
|
default:
|
|
printk("Whoops! Error in errors.c: tag%d is %d ", i, tagi);
|
|
continue;
|
|
break;
|
|
}
|
|
printk("%s\n", tag_desc[(int) (unsigned) tagi]);
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
}
|
|
#endif
|
|
|
|
static struct {
|
|
int type;
|
|
const char *name;
|
|
} exception_names[] = {
|
|
{ EX_StackOver, "stack overflow" },
|
|
{ EX_StackUnder, "stack underflow" },
|
|
{ EX_Precision, "loss of precision" },
|
|
{ EX_Underflow, "underflow" },
|
|
{ EX_Overflow, "overflow" },
|
|
{ EX_ZeroDiv, "divide by zero" },
|
|
{ EX_Denormal, "denormalized operand" },
|
|
{ EX_Invalid, "invalid operation" },
|
|
{ EX_INTERNAL, "INTERNAL BUG in "FPU_VERSION },
|
|
{ 0, NULL }
|
|
};
|
|
|
|
/*
|
|
EX_INTERNAL is always given with a code which indicates where the
|
|
error was detected.
|
|
|
|
Internal error types:
|
|
0x14 in fpu_etc.c
|
|
0x1nn in a *.c file:
|
|
0x101 in reg_add_sub.c
|
|
0x102 in reg_mul.c
|
|
0x104 in poly_atan.c
|
|
0x105 in reg_mul.c
|
|
0x107 in fpu_trig.c
|
|
0x108 in reg_compare.c
|
|
0x109 in reg_compare.c
|
|
0x110 in reg_add_sub.c
|
|
0x111 in fpe_entry.c
|
|
0x112 in fpu_trig.c
|
|
0x113 in errors.c
|
|
0x115 in fpu_trig.c
|
|
0x116 in fpu_trig.c
|
|
0x117 in fpu_trig.c
|
|
0x118 in fpu_trig.c
|
|
0x119 in fpu_trig.c
|
|
0x120 in poly_atan.c
|
|
0x121 in reg_compare.c
|
|
0x122 in reg_compare.c
|
|
0x123 in reg_compare.c
|
|
0x125 in fpu_trig.c
|
|
0x126 in fpu_entry.c
|
|
0x127 in poly_2xm1.c
|
|
0x128 in fpu_entry.c
|
|
0x129 in fpu_entry.c
|
|
0x130 in get_address.c
|
|
0x131 in get_address.c
|
|
0x132 in get_address.c
|
|
0x133 in get_address.c
|
|
0x140 in load_store.c
|
|
0x141 in load_store.c
|
|
0x150 in poly_sin.c
|
|
0x151 in poly_sin.c
|
|
0x160 in reg_ld_str.c
|
|
0x161 in reg_ld_str.c
|
|
0x162 in reg_ld_str.c
|
|
0x163 in reg_ld_str.c
|
|
0x164 in reg_ld_str.c
|
|
0x170 in fpu_tags.c
|
|
0x171 in fpu_tags.c
|
|
0x172 in fpu_tags.c
|
|
0x180 in reg_convert.c
|
|
0x2nn in an *.S file:
|
|
0x201 in reg_u_add.S
|
|
0x202 in reg_u_div.S
|
|
0x203 in reg_u_div.S
|
|
0x204 in reg_u_div.S
|
|
0x205 in reg_u_mul.S
|
|
0x206 in reg_u_sub.S
|
|
0x207 in wm_sqrt.S
|
|
0x208 in reg_div.S
|
|
0x209 in reg_u_sub.S
|
|
0x210 in reg_u_sub.S
|
|
0x211 in reg_u_sub.S
|
|
0x212 in reg_u_sub.S
|
|
0x213 in wm_sqrt.S
|
|
0x214 in wm_sqrt.S
|
|
0x215 in wm_sqrt.S
|
|
0x220 in reg_norm.S
|
|
0x221 in reg_norm.S
|
|
0x230 in reg_round.S
|
|
0x231 in reg_round.S
|
|
0x232 in reg_round.S
|
|
0x233 in reg_round.S
|
|
0x234 in reg_round.S
|
|
0x235 in reg_round.S
|
|
0x236 in reg_round.S
|
|
0x240 in div_Xsig.S
|
|
0x241 in div_Xsig.S
|
|
0x242 in div_Xsig.S
|
|
*/
|
|
|
|
void FPU_exception(int n)
|
|
{
|
|
int i, int_type;
|
|
|
|
int_type = 0; /* Needed only to stop compiler warnings */
|
|
if ( n & EX_INTERNAL )
|
|
{
|
|
int_type = n - EX_INTERNAL;
|
|
n = EX_INTERNAL;
|
|
/* Set lots of exception bits! */
|
|
partial_status |= (SW_Exc_Mask | SW_Summary | SW_Backward);
|
|
}
|
|
else
|
|
{
|
|
/* Extract only the bits which we use to set the status word */
|
|
n &= (SW_Exc_Mask);
|
|
/* Set the corresponding exception bit */
|
|
partial_status |= n;
|
|
/* Set summary bits iff exception isn't masked */
|
|
if ( partial_status & ~control_word & CW_Exceptions )
|
|
partial_status |= (SW_Summary | SW_Backward);
|
|
if ( n & (SW_Stack_Fault | EX_Precision) )
|
|
{
|
|
if ( !(n & SW_C1) )
|
|
/* This bit distinguishes over- from underflow for a stack fault,
|
|
and roundup from round-down for precision loss. */
|
|
partial_status &= ~SW_C1;
|
|
}
|
|
}
|
|
|
|
RE_ENTRANT_CHECK_OFF;
|
|
if ( (~control_word & n & CW_Exceptions) || (n == EX_INTERNAL) )
|
|
{
|
|
#ifdef PRINT_MESSAGES
|
|
/* My message from the sponsor */
|
|
printk(FPU_VERSION" "__DATE__" (C) W. Metzenthen.\n");
|
|
#endif /* PRINT_MESSAGES */
|
|
|
|
/* Get a name string for error reporting */
|
|
for (i=0; exception_names[i].type; i++)
|
|
if ( (exception_names[i].type & n) == exception_names[i].type )
|
|
break;
|
|
|
|
if (exception_names[i].type)
|
|
{
|
|
#ifdef PRINT_MESSAGES
|
|
printk("FP Exception: %s!\n", exception_names[i].name);
|
|
#endif /* PRINT_MESSAGES */
|
|
}
|
|
else
|
|
printk("FPU emulator: Unknown Exception: 0x%04x!\n", n);
|
|
|
|
if ( n == EX_INTERNAL )
|
|
{
|
|
printk("FPU emulator: Internal error type 0x%04x\n", int_type);
|
|
FPU_printall();
|
|
}
|
|
#ifdef PRINT_MESSAGES
|
|
else
|
|
FPU_printall();
|
|
#endif /* PRINT_MESSAGES */
|
|
|
|
/*
|
|
* The 80486 generates an interrupt on the next non-control FPU
|
|
* instruction. So we need some means of flagging it.
|
|
* We use the ES (Error Summary) bit for this.
|
|
*/
|
|
}
|
|
RE_ENTRANT_CHECK_ON;
|
|
|
|
|
|
}
|
|
|
|
|
|
/* Real operation attempted on a NaN. */
|
|
/* Returns < 0 if the exception is unmasked */
|
|
int real_1op_NaN(FPU_REG *a)
|
|
{
|
|
int signalling, isNaN;
|
|
|
|
isNaN = (exponent(a) == EXP_OVER) && (a->sigh & 0x80000000);
|
|
|
|
/* The default result for the case of two "equal" NaNs (signs may
|
|
differ) is chosen to reproduce 80486 behaviour */
|
|
signalling = isNaN && !(a->sigh & 0x40000000);
|
|
|
|
if ( !signalling )
|
|
{
|
|
if ( !isNaN ) /* pseudo-NaN, or other unsupported? */
|
|
{
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* Masked response */
|
|
reg_copy(&CONST_QNaN, a);
|
|
}
|
|
EXCEPTION(EX_Invalid);
|
|
return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
|
|
}
|
|
return TAG_Special;
|
|
}
|
|
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* The masked response */
|
|
if ( !(a->sigh & 0x80000000) ) /* pseudo-NaN ? */
|
|
{
|
|
reg_copy(&CONST_QNaN, a);
|
|
}
|
|
/* ensure a Quiet NaN */
|
|
a->sigh |= 0x40000000;
|
|
}
|
|
|
|
EXCEPTION(EX_Invalid);
|
|
|
|
return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
|
|
}
|
|
|
|
|
|
/* Real operation attempted on two operands, one a NaN. */
|
|
/* Returns < 0 if the exception is unmasked */
|
|
int real_2op_NaN(FPU_REG const *b, u_char tagb,
|
|
int deststnr,
|
|
FPU_REG const *defaultNaN)
|
|
{
|
|
FPU_REG *dest = &st(deststnr);
|
|
FPU_REG const *a = dest;
|
|
u_char taga = FPU_gettagi(deststnr);
|
|
FPU_REG const *x;
|
|
int signalling, unsupported;
|
|
|
|
if ( taga == TAG_Special )
|
|
taga = FPU_Special(a);
|
|
if ( tagb == TAG_Special )
|
|
tagb = FPU_Special(b);
|
|
|
|
/* TW_NaN is also used for unsupported data types. */
|
|
unsupported = ((taga == TW_NaN)
|
|
&& !((exponent(a) == EXP_OVER) && (a->sigh & 0x80000000)))
|
|
|| ((tagb == TW_NaN)
|
|
&& !((exponent(b) == EXP_OVER) && (b->sigh & 0x80000000)));
|
|
if ( unsupported )
|
|
{
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* Masked response */
|
|
FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
|
|
}
|
|
EXCEPTION(EX_Invalid);
|
|
return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
|
|
}
|
|
|
|
if (taga == TW_NaN)
|
|
{
|
|
x = a;
|
|
if (tagb == TW_NaN)
|
|
{
|
|
signalling = !(a->sigh & b->sigh & 0x40000000);
|
|
if ( significand(b) > significand(a) )
|
|
x = b;
|
|
else if ( significand(b) == significand(a) )
|
|
{
|
|
/* The default result for the case of two "equal" NaNs (signs may
|
|
differ) is chosen to reproduce 80486 behaviour */
|
|
x = defaultNaN;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* return the quiet version of the NaN in a */
|
|
signalling = !(a->sigh & 0x40000000);
|
|
}
|
|
}
|
|
else
|
|
#ifdef PARANOID
|
|
if (tagb == TW_NaN)
|
|
#endif /* PARANOID */
|
|
{
|
|
signalling = !(b->sigh & 0x40000000);
|
|
x = b;
|
|
}
|
|
#ifdef PARANOID
|
|
else
|
|
{
|
|
signalling = 0;
|
|
EXCEPTION(EX_INTERNAL|0x113);
|
|
x = &CONST_QNaN;
|
|
}
|
|
#endif /* PARANOID */
|
|
|
|
if ( (!signalling) || (control_word & CW_Invalid) )
|
|
{
|
|
if ( ! x )
|
|
x = b;
|
|
|
|
if ( !(x->sigh & 0x80000000) ) /* pseudo-NaN ? */
|
|
x = &CONST_QNaN;
|
|
|
|
FPU_copy_to_regi(x, TAG_Special, deststnr);
|
|
|
|
if ( !signalling )
|
|
return TAG_Special;
|
|
|
|
/* ensure a Quiet NaN */
|
|
dest->sigh |= 0x40000000;
|
|
}
|
|
|
|
EXCEPTION(EX_Invalid);
|
|
|
|
return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Special;
|
|
}
|
|
|
|
|
|
/* Invalid arith operation on Valid registers */
|
|
/* Returns < 0 if the exception is unmasked */
|
|
asmlinkage int arith_invalid(int deststnr)
|
|
{
|
|
|
|
EXCEPTION(EX_Invalid);
|
|
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* The masked response */
|
|
FPU_copy_to_regi(&CONST_QNaN, TAG_Special, deststnr);
|
|
}
|
|
|
|
return (!(control_word & CW_Invalid) ? FPU_Exception : 0) | TAG_Valid;
|
|
|
|
}
|
|
|
|
|
|
/* Divide a finite number by zero */
|
|
asmlinkage int FPU_divide_by_zero(int deststnr, u_char sign)
|
|
{
|
|
FPU_REG *dest = &st(deststnr);
|
|
int tag = TAG_Valid;
|
|
|
|
if ( control_word & CW_ZeroDiv )
|
|
{
|
|
/* The masked response */
|
|
FPU_copy_to_regi(&CONST_INF, TAG_Special, deststnr);
|
|
setsign(dest, sign);
|
|
tag = TAG_Special;
|
|
}
|
|
|
|
EXCEPTION(EX_ZeroDiv);
|
|
|
|
return (!(control_word & CW_ZeroDiv) ? FPU_Exception : 0) | tag;
|
|
|
|
}
|
|
|
|
|
|
/* This may be called often, so keep it lean */
|
|
int set_precision_flag(int flags)
|
|
{
|
|
if ( control_word & CW_Precision )
|
|
{
|
|
partial_status &= ~(SW_C1 & flags);
|
|
partial_status |= flags; /* The masked response */
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
EXCEPTION(flags);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
/* This may be called often, so keep it lean */
|
|
asmlinkage void set_precision_flag_up(void)
|
|
{
|
|
if ( control_word & CW_Precision )
|
|
partial_status |= (SW_Precision | SW_C1); /* The masked response */
|
|
else
|
|
EXCEPTION(EX_Precision | SW_C1);
|
|
}
|
|
|
|
|
|
/* This may be called often, so keep it lean */
|
|
asmlinkage void set_precision_flag_down(void)
|
|
{
|
|
if ( control_word & CW_Precision )
|
|
{ /* The masked response */
|
|
partial_status &= ~SW_C1;
|
|
partial_status |= SW_Precision;
|
|
}
|
|
else
|
|
EXCEPTION(EX_Precision);
|
|
}
|
|
|
|
|
|
asmlinkage int denormal_operand(void)
|
|
{
|
|
if ( control_word & CW_Denormal )
|
|
{ /* The masked response */
|
|
partial_status |= SW_Denorm_Op;
|
|
return TAG_Special;
|
|
}
|
|
else
|
|
{
|
|
EXCEPTION(EX_Denormal);
|
|
return TAG_Special | FPU_Exception;
|
|
}
|
|
}
|
|
|
|
|
|
asmlinkage int arith_overflow(FPU_REG *dest)
|
|
{
|
|
int tag = TAG_Valid;
|
|
|
|
if ( control_word & CW_Overflow )
|
|
{
|
|
/* The masked response */
|
|
reg_copy(&CONST_INF, dest);
|
|
tag = TAG_Special;
|
|
}
|
|
else
|
|
{
|
|
/* Subtract the magic number from the exponent */
|
|
addexponent(dest, (-3 * (1 << 13)));
|
|
}
|
|
|
|
EXCEPTION(EX_Overflow);
|
|
if ( control_word & CW_Overflow )
|
|
{
|
|
/* The overflow exception is masked. */
|
|
/* By definition, precision is lost.
|
|
The roundup bit (C1) is also set because we have
|
|
"rounded" upwards to Infinity. */
|
|
EXCEPTION(EX_Precision | SW_C1);
|
|
return tag;
|
|
}
|
|
|
|
return tag;
|
|
|
|
}
|
|
|
|
|
|
asmlinkage int arith_round_overflow(FPU_REG *dest, u8 sign)
|
|
{
|
|
int tag = TAG_Valid;
|
|
int largest;
|
|
|
|
if ( control_word & CW_Overflow )
|
|
{
|
|
/* The masked response */
|
|
/* The response here depends upon the rounding mode */
|
|
switch ( control_word & CW_RC )
|
|
{
|
|
case RC_CHOP: /* Truncate */
|
|
largest = 1;
|
|
break;
|
|
case RC_UP: /* Towards +infinity */
|
|
largest = (sign == SIGN_NEG);
|
|
break;
|
|
case RC_DOWN: /* Towards -infinity */
|
|
largest = (sign == SIGN_POS);
|
|
break;
|
|
default:
|
|
largest = 0;
|
|
break;
|
|
}
|
|
if ( ! largest )
|
|
{
|
|
reg_copy(&CONST_INF, dest);
|
|
tag = TAG_Special;
|
|
}
|
|
else
|
|
{
|
|
dest->exp = EXTENDED_Ebias+EXP_OVER-1;
|
|
switch ( control_word & CW_PC )
|
|
{
|
|
case 01:
|
|
case PR_64_BITS:
|
|
significand(dest) = BX_CONST64(0xffffffffffffffff);
|
|
break;
|
|
case PR_53_BITS:
|
|
significand(dest) = BX_CONST64(0xfffffffffffff800);
|
|
break;
|
|
case PR_24_BITS:
|
|
significand(dest) = BX_CONST64(0xffffff0000000000);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Subtract the magic number from the exponent */
|
|
addexponent(dest, (-3 * (1 << 13)));
|
|
largest = 0;
|
|
}
|
|
|
|
EXCEPTION(EX_Overflow);
|
|
if ( control_word & CW_Overflow )
|
|
{
|
|
/* The overflow exception is masked. */
|
|
if ( largest )
|
|
{
|
|
EXCEPTION(EX_Precision);
|
|
}
|
|
else
|
|
{
|
|
/* By definition, precision is lost.
|
|
The roundup bit (C1) is also set because we have
|
|
"rounded" upwards to Infinity. */
|
|
EXCEPTION(EX_Precision | SW_C1);
|
|
}
|
|
return tag;
|
|
}
|
|
|
|
return tag;
|
|
|
|
}
|
|
|
|
|
|
asmlinkage int arith_underflow(FPU_REG *dest)
|
|
{
|
|
int tag = TAG_Valid;
|
|
|
|
if ( control_word & CW_Underflow )
|
|
{
|
|
/* The masked response */
|
|
if ( exponent16(dest) <= EXP_UNDER - 63 )
|
|
{
|
|
reg_copy(&CONST_Z, dest);
|
|
partial_status &= ~SW_C1; /* Round down. */
|
|
tag = TAG_Zero;
|
|
}
|
|
else
|
|
{
|
|
stdexp(dest);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Add the magic number to the exponent. */
|
|
addexponent(dest, (3 * (1 << 13)) + EXTENDED_Ebias);
|
|
}
|
|
|
|
EXCEPTION(EX_Underflow);
|
|
if ( control_word & CW_Underflow )
|
|
{
|
|
/* The underflow exception is masked. */
|
|
EXCEPTION(EX_Precision);
|
|
return tag;
|
|
}
|
|
|
|
return tag;
|
|
|
|
}
|
|
|
|
|
|
void FPU_stack_overflow(void)
|
|
{
|
|
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* The masked response */
|
|
top--;
|
|
FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
|
|
}
|
|
|
|
EXCEPTION(EX_StackOver);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
void FPU_stack_underflow(void)
|
|
{
|
|
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* The masked response */
|
|
FPU_copy_to_reg0(&CONST_QNaN, TAG_Special);
|
|
}
|
|
|
|
EXCEPTION(EX_StackUnder);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
void FPU_stack_underflow_i(int i)
|
|
{
|
|
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* The masked response */
|
|
FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
|
|
}
|
|
|
|
EXCEPTION(EX_StackUnder);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
void FPU_stack_underflow_pop(int i)
|
|
{
|
|
|
|
if ( control_word & CW_Invalid )
|
|
{
|
|
/* The masked response */
|
|
FPU_copy_to_regi(&CONST_QNaN, TAG_Special, i);
|
|
FPU_pop();
|
|
}
|
|
|
|
EXCEPTION(EX_StackUnder);
|
|
|
|
return;
|
|
|
|
}
|
|
|