Bochs/bochs/cpu/access64.cc
2014-07-20 18:19:02 +00:00

967 lines
35 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2008-2014 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_byte_64(unsigned s, Bit64u offset, Bit8u data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, CPL, BX_WRITE, (Bit8u*) &data);
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 1);
*hostAddr = data;
return;
}
}
if (access_write_linear(laddr, 1, CPL, 0x0, (void *) &data) < 0)
exception(int_number(s), 0);
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_word_64(unsigned s, Bit64u offset, Bit16u data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, CPL, BX_WRITE, (Bit8u*) &data);
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 2);
WriteHostWordToLittleEndian(hostAddr, data);
return;
}
}
if (access_write_linear(laddr, 2, CPL, 0x1, (void *) &data) < 0)
exception(int_number(s), 0);
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_dword_64(unsigned s, Bit64u offset, Bit32u data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, CPL, BX_WRITE, (Bit8u*) &data);
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 4);
WriteHostDWordToLittleEndian(hostAddr, data);
return;
}
}
if (! IsCanonical(laddr)) {
BX_ERROR(("write_virtual_dword_64(): canonical failure"));
exception(int_number(s), 0);
}
if (access_write_linear(laddr, 4, CPL, 0x3, (void *) &data) < 0)
exception(int_number(s), 0);
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_qword_64(unsigned s, Bit64u offset, Bit64u data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, CPL, BX_WRITE, (Bit8u*) &data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 8);
WriteHostQWordToLittleEndian(hostAddr, data);
return;
}
}
if (! IsCanonical(laddr)) {
BX_ERROR(("write_virtual_qword_64(): canonical failure"));
exception(int_number(s), 0);
}
if (access_write_linear(laddr, 8, CPL, 0x7, (void *) &data) < 0)
exception(int_number(s), 0);
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_xmmword_64(unsigned s, Bit64u offset, const BxPackedXmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 15);
Bit64u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 16, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 16);
WriteHostQWordToLittleEndian(hostAddr, data->xmm64u(0));
WriteHostQWordToLittleEndian(hostAddr+1, data->xmm64u(1));
return;
}
}
if (access_write_linear(laddr, 16, CPL, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::write_virtual_xmmword_aligned_64(unsigned s, Bit64u offset, const BxPackedXmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = AlignedAccessLPFOf(laddr, 15);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 16, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 16);
WriteHostQWordToLittleEndian(hostAddr, data->xmm64u(0));
WriteHostQWordToLittleEndian(hostAddr+1, data->xmm64u(1));
return;
}
}
if (laddr & 15) {
BX_ERROR(("write_virtual_xmmword_aligned_64(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (access_write_linear(laddr, 16, CPL, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
#if BX_SUPPORT_AVX
void BX_CPU_C::write_virtual_ymmword_64(unsigned s, Bit64u offset, const BxPackedYmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 31);
Bit64u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 32, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 32);
for (unsigned n = 0; n < 4; n++) {
WriteHostQWordToLittleEndian(hostAddr+n, data->ymm64u(n));
}
return;
}
}
if (access_write_linear(laddr, 32, CPL, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
void BX_CPU_C::write_virtual_ymmword_aligned_64(unsigned s, Bit64u offset, const BxPackedYmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = AlignedAccessLPFOf(laddr, 31);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 32, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 32);
for (unsigned n = 0; n < 4; n++) {
WriteHostQWordToLittleEndian(hostAddr+n, data->ymm64u(n));
}
return;
}
}
if (laddr & 31) {
BX_ERROR(("write_virtual_ymmword_aligned_64(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (access_write_linear(laddr, 32, CPL, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
#endif
#if BX_SUPPORT_EVEX
void BX_CPU_C::write_virtual_zmmword_64(unsigned s, Bit64u offset, const BxPackedZmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 63);
Bit64u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 64, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 64);
for (unsigned n = 0; n < 8; n++) {
WriteHostQWordToLittleEndian(hostAddr+n, data->zmm64u(n));
}
return;
}
}
if (access_write_linear(laddr, 64, CPL, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
void BX_CPU_C::write_virtual_zmmword_aligned_64(unsigned s, Bit64u offset, const BxPackedZmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = AlignedAccessLPFOf(laddr, 63);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 64, CPL, BX_WRITE, (Bit8u*) data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 64);
for (unsigned n = 0; n < 8; n++) {
WriteHostQWordToLittleEndian(hostAddr+n, data->zmm64u(n));
}
return;
}
}
if (laddr & 63) {
BX_ERROR(("write_virtual_zmmword_aligned_64(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (access_write_linear(laddr, 64, CPL, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
#endif
Bit8u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_virtual_byte_64(unsigned s, Bit64u offset)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit8u data;
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
data = *hostAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 1, CPL, BX_READ, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 1, CPL, BX_READ, 0x0, (void *) &data) < 0)
exception(int_number(s), 0);
return data;
}
Bit16u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_virtual_word_64(unsigned s, Bit64u offset)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit16u data;
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
ReadHostWordFromLittleEndian(hostAddr, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 2, CPL, BX_READ, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 2, CPL, BX_READ, 0x1, (void *) &data) < 0)
exception(int_number(s), 0);
return data;
}
Bit32u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_virtual_dword_64(unsigned s, Bit64u offset)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit32u data;
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
ReadHostDWordFromLittleEndian(hostAddr, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 4, CPL, BX_READ, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 4, CPL, BX_READ, 0x3, (void *) &data) < 0)
exception(int_number(s), 0);
return data;
}
Bit64u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_virtual_qword_64(unsigned s, Bit64u offset)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u data;
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
ReadHostQWordFromLittleEndian(hostAddr, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 8, CPL, BX_READ, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 8, CPL, BX_READ, 0x7, (void *) &data) < 0)
exception(int_number(s), 0);
return data;
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_xmmword_64(unsigned s, Bit64u offset, BxPackedXmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 15);
Bit64u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
ReadHostQWordFromLittleEndian(hostAddr, data->xmm64u(0));
ReadHostQWordFromLittleEndian(hostAddr+1, data->xmm64u(1));
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 16, CPL, BX_READ, (Bit8u*) data);
return;
}
}
if (access_read_linear(laddr, 16, CPL, BX_READ, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
void BX_CPP_AttrRegparmN(3)
BX_CPU_C::read_virtual_xmmword_aligned_64(unsigned s, Bit64u offset, BxPackedXmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = AlignedAccessLPFOf(laddr, 15);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
ReadHostQWordFromLittleEndian(hostAddr, data->xmm64u(0));
ReadHostQWordFromLittleEndian(hostAddr+1, data->xmm64u(1));
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 16, CPL, BX_READ, (Bit8u*) data);
return;
}
}
if (laddr & 15) {
BX_ERROR(("read_virtual_xmmword_aligned_64(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (access_read_linear(laddr, 16, CPL, BX_READ, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
#if BX_SUPPORT_AVX
void BX_CPU_C::read_virtual_ymmword_64(unsigned s, Bit64u offset, BxPackedYmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 31);
Bit64u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
for (unsigned n=0; n < 4; n++) {
ReadHostQWordFromLittleEndian(hostAddr+n, data->ymm64u(n));
}
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 32, CPL, BX_READ, (Bit8u*) data);
return;
}
}
if (access_read_linear(laddr, 32, CPL, BX_READ, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
void BX_CPU_C::read_virtual_ymmword_aligned_64(unsigned s, Bit64u offset, BxPackedYmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = AlignedAccessLPFOf(laddr, 31);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
for (unsigned n=0; n < 4; n++) {
ReadHostQWordFromLittleEndian(hostAddr+n, data->ymm64u(n));
}
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 32, CPL, BX_READ, (Bit8u*) data);
return;
}
}
if (laddr & 31) {
BX_ERROR(("read_virtual_ymmword_aligned_64(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (access_read_linear(laddr, 32, CPL, BX_READ, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
#endif
#if BX_SUPPORT_EVEX
void BX_CPU_C::read_virtual_zmmword_64(unsigned s, Bit64u offset, BxPackedZmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 63);
Bit64u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
for (unsigned n=0; n < 8; n++) {
ReadHostQWordFromLittleEndian(hostAddr+n, data->zmm64u(n));
}
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 64, CPL, BX_READ, (Bit8u*) data);
return;
}
}
if (access_read_linear(laddr, 64, CPL, BX_READ, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
void BX_CPU_C::read_virtual_zmmword_aligned_64(unsigned s, Bit64u offset, BxPackedZmmRegister *data)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = AlignedAccessLPFOf(laddr, 63);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us read access
// from this CPL.
if (tlbEntry->accessBits & (0x01 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
for (unsigned n=0; n < 8; n++) {
ReadHostQWordFromLittleEndian(hostAddr+n, data->zmm64u(n));
}
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, (tlbEntry->ppf | pageOffset), 64, CPL, BX_READ, (Bit8u*) data);
return;
}
}
if (laddr & 63) {
BX_ERROR(("read_virtual_zmmword_aligned_64(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (access_read_linear(laddr, 64, CPL, BX_READ, 0x0, (void *) data) < 0)
exception(int_number(s), 0);
}
#endif
//////////////////////////////////////////////////////////////
// special Read-Modify-Write operations //
// address translation info is kept across read/write calls //
//////////////////////////////////////////////////////////////
Bit8u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_RMW_virtual_byte_64(unsigned s, Bit64u offset)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit8u data;
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
Bit8u *hostAddr = (Bit8u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 1);
data = *hostAddr;
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 1, CPL, BX_RW, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 1, CPL, BX_RW, 0x0, (void *) &data) < 0)
exception(int_number(s), 0);
return data;
}
Bit16u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_RMW_virtual_word_64(unsigned s, Bit64u offset)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit16u data;
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 2);
ReadHostWordFromLittleEndian(hostAddr, data);
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, CPL, BX_RW, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 2, CPL, BX_RW, 0x1, (void *) &data) < 0)
exception(int_number(s), 0);
return data;
}
Bit32u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_RMW_virtual_dword_64(unsigned s, Bit64u offset)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit32u data;
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 4);
ReadHostDWordFromLittleEndian(hostAddr, data);
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, CPL, BX_RW, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 4, CPL, BX_RW, 0x3, (void *) &data) < 0)
exception(int_number(s), 0);
return data;
}
Bit64u BX_CPP_AttrRegparmN(2)
BX_CPU_C::read_RMW_virtual_qword_64(unsigned s, Bit64u offset)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u data;
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 8);
ReadHostQWordFromLittleEndian(hostAddr, data);
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, CPL, BX_RW, (Bit8u*) &data);
return data;
}
}
if (access_read_linear(laddr, 8, CPL, BX_RW, 0x7, (void *) &data) < 0)
exception(int_number(s), 0);
return data;
}
void BX_CPU_C::read_RMW_virtual_dqword_aligned_64(unsigned s, Bit64u offset, Bit64u *hi, Bit64u *lo)
{
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode == BX_MODE_LONG_64);
Bit64u laddr = get_laddr64(s, offset);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = AlignedAccessLPFOf(laddr, 15);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 16);
ReadHostQWordFromLittleEndian(hostAddr, *lo);
ReadHostQWordFromLittleEndian(hostAddr + 1, *hi);
BX_CPU_THIS_PTR address_xlation.pages = (bx_ptr_equiv_t) hostAddr;
BX_CPU_THIS_PTR address_xlation.paddress1 = pAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, CPL, BX_RW, (Bit8u*) lo);
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr + 8, pAddr + 8, 8, CPL, BX_RW, (Bit8u*) hi);
return;
}
}
if (laddr & 15) {
BX_ERROR(("read_RMW_virtual_dqword_aligned_64(): #GP misaligned access"));
exception(BX_GP_EXCEPTION, 0);
}
if (access_read_linear(laddr, 8, CPL, BX_RW, 0x0, (void *) lo) < 0)
exception(int_number(s), 0);
// the access is always aligned and canonical
access_read_linear(laddr + 8, 8, CPL, BX_RW, 0x0, (void *) hi);
}
void BX_CPU_C::write_RMW_virtual_dqword(Bit64u hi, Bit64u lo)
{
write_RMW_virtual_qword(lo);
BX_CPU_THIS_PTR address_xlation.paddress1 += 8;
if (BX_CPU_THIS_PTR address_xlation.pages > 2) {
// Pages > 2 means it stores a host address for direct access
BX_CPU_THIS_PTR address_xlation.pages += 8;
}
else {
BX_ASSERT(BX_CPU_THIS_PTR address_xlation.pages == 1);
}
write_RMW_virtual_qword(hi);
}
void BX_CPU_C::write_new_stack_word_64(Bit64u laddr, unsigned curr_pl, Bit16u data)
{
bx_bool user = (curr_pl == 3);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 1);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (1 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << user)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 2, curr_pl, BX_WRITE, (Bit8u*) &data);
Bit16u *hostAddr = (Bit16u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 2);
WriteHostWordToLittleEndian(hostAddr, data);
return;
}
}
if (access_write_linear(laddr, 2, curr_pl, 0x1, (void *) &data) < 0)
exception(BX_SS_EXCEPTION, 0);
}
void BX_CPU_C::write_new_stack_dword_64(Bit64u laddr, unsigned curr_pl, Bit32u data)
{
bx_bool user = (curr_pl == 3);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 3);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (3 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << user)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 4, curr_pl, BX_WRITE, (Bit8u*) &data);
Bit32u *hostAddr = (Bit32u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 4);
WriteHostDWordToLittleEndian(hostAddr, data);
return;
}
}
if (access_write_linear(laddr, 4, curr_pl, 0x3, (void *) &data) < 0)
exception(BX_SS_EXCEPTION, 0);
}
void BX_CPU_C::write_new_stack_qword_64(Bit64u laddr, unsigned curr_pl, Bit64u data)
{
bx_bool user = (curr_pl == 3);
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 7);
#if BX_SUPPORT_ALIGNMENT_CHECK && BX_CPU_LEVEL >= 4
Bit64u lpf = AlignedAccessLPFOf(laddr, (7 & BX_CPU_THIS_PTR alignment_check_mask));
#else
Bit64u lpf = LPFOf(laddr);
#endif
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access
// from this CPL.
if (tlbEntry->accessBits & (0x04 << user)) {
bx_hostpageaddr_t hostPageAddr = tlbEntry->hostPageAddr;
Bit32u pageOffset = PAGE_OFFSET(laddr);
bx_phy_address pAddr = tlbEntry->ppf | pageOffset;
BX_NOTIFY_LIN_MEMORY_ACCESS(laddr, pAddr, 8, curr_pl, BX_WRITE, (Bit8u*) &data);
Bit64u *hostAddr = (Bit64u*) (hostPageAddr | pageOffset);
pageWriteStampTable.decWriteStamp(pAddr, 8);
WriteHostQWordToLittleEndian(hostAddr, data);
return;
}
}
if (access_write_linear(laddr, 8, curr_pl, 0x7, (void *) &data) < 0)
exception(BX_SS_EXCEPTION, 0);
}
#endif