Bochs/bochs/bios/rombios.c
Volker Ruppert efbcf33bc7 - real mode PCI BIOS modifies the iret flags on stack if no error is present
- bug in the 'find PCI device' functions fixed
- register for the PCI i/o addresses is always DX
2002-09-20 19:36:05 +00:00

10520 lines
279 KiB
C

/////////////////////////////////////////////////////////////////////////
// $Id: rombios.c,v 1.62 2002-09-20 19:35:20 vruppert Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2002 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/* includes a subset of config.h that can be compiled by bcc, and applies
to this file */
#include "biosconfig.h"
// ROM BIOS for use with Bochs/Plex x86 emulation environment
// ROM BIOS compatability entry points:
// ===================================
// $e05b ; POST Entry Point
// $e2c3 ; NMI Handler Entry Point
// $e3fe ; INT 13h Fixed Disk Services Entry Point
// $e401 ; Fixed Disk Parameter Table
// $e6f2 ; INT 19h Boot Load Service Entry Point
// $e6f5 ; Configuration Data Table
// $e729 ; Baud Rate Generator Table
// $e739 ; INT 14h Serial Communications Service Entry Point
// $e82e ; INT 16h Keyboard Service Entry Point
// $e987 ; INT 09h Keyboard Service Entry Point
// $ec59 ; INT 13h Diskette Service Entry Point
// $ef57 ; INT 0Eh Diskette Hardware ISR Entry Point
// $efc7 ; Diskette Controller Parameter Table
// $efd2 ; INT 17h Printer Service Entry Point
// $f045 ; INT 10 Functions 0-Fh Entry Point
// $f065 ; INT 10h Video Support Service Entry Point
// $f0a4 ; MDA/CGA Video Parameter Table (INT 1Dh)
// $f841 ; INT 12h Memory Size Service Entry Point
// $f84d ; INT 11h Equipment List Service Entry Point
// $f859 ; INT 15h System Services Entry Point
// $fa6e ; Character Font for 320x200 & 640x200 Graphics (lower 128 characters)
// $fe6e ; INT 1Ah Time-of-day Service Entry Point
// $fea5 ; INT 08h System Timer ISR Entry Point
// $fef3 ; Initial Interrupt Vector Offsets Loaded by POST
// $ff53 ; IRET Instruction for Dummy Interrupt Handler
// $ff54 ; INT 05h Print Screen Service Entry Point
// $fff0 ; Power-up Entry Point
// $fff5 ; ASCII Date ROM was built - 8 characters in MM/DD/YY
// $fffe ; System Model ID
// NOTES for ATA/ATAPI driver (cbbochs@free.fr)
// - The driver is based on source code by Hale Landis (www.ata-atapi.com)
// The source code is in the public domain and free for any use
// Many, many thanks to Hale Landis (hlandis@ata-atapi.com)
// - All ATA/ATAPI driver functions can be deactivated with
// #define BX_USE_ATADRV 0
// - From the initial source code, I deleted all references to
// the pci-dma, isa-dma, interrupt and trace functions
// - The driver makes use of EBDA segment.
// I used memory starting at 0x5D in the segment (used for 2nd ide
// interface in usual AMI bios).
// It can easily be moved, look in EbdaData definition
// The filler in this structure can be splitted in members if needed
// - if performance tests are ok, the ATA driver could be used to handle
// Hard-Disks
// - Code can easily modified to handle multiple cdrom/harddrives
// NOTES for El-Torito Boot (cbbochs@free.fr)
// - CD-ROM booting is only available if ATA/ATAPI Driver is available
// - El-Torito booting can be deactivated with
// #define BX_ELTORITO_BOOT 0
// - Current code is only able to boot mono-session cds
// - Current code can not boot and emulate a hard-disk
// the bios will panic otherwise
// - Current code also use memory in EBDA segement.
// - I used cmos byte 0x3D to store extended information on boot-device
// - Code has to be modified modified to handle to handle multiple cdrom drives
// - Here are the cdrom boot failure codes:
// 1 : no atapi device found
// 2 : no atapi cdrom found
// 3 : can not read cd - BRVD
// 4 : cd is not eltorito (BRVD)
// 5 : cd is not eltorito (ISO TAG)
// 6 : cd is not eltorito (ELTORITO TAG)
// 7 : can not read cd - boot catalog
// 8 : boot catalog : bad header
// 9 : boot catalog : bad platform
// 10 : boot catalog : bad signature
// 11 : boot catalog : bootable flag not set
// 12 : can not read cd - boot image
//
//
// TODO :
// int74
// - needs to be reworked. Uses direct [bp] offsets. (?)
//
// int13:
// - f04 (verify sectors) isn't complete (?)
// - f02/03/04 should set current cyl,etc in BDA (?)
// - rewrite int13_relocated
// - boot sector signature check should be conditionnal
//
// int1a:
// - f03/f05 are not complete - just CLC for now (?)
//
// NOTES:
// - NMI access (bit7 of addr written to 70h)
// - timer ISR should deal with floppy counter and turn floppy motor off
//
// El-Torito
// - Emulate a Hard-disk (currently only diskette can be emulated) see "FIXME ElTorito Harddisk"
// - Implement remaining int13_cdemu functions (as defined by El-Torito specs)
// - cdrom drive is hardcoded to ide 0 device 1 in several places. see "FIXME ElTorito Hardcoded"
// - int13 Fix DL when emulating a cd. In that case DL is decremented before calling real int13.
// This is ok. But DL should be reincremented afterwards.
// - Fix all "FIXME ElTorito Various"
// - Change cmos reg 0x3d to 0x39 & 0x3a
#define BX_CPU 3
#define BX_USE_PS2_MOUSE 1
#define BX_CALL_INT15_4F 1
#define BX_USE_EBDA 1
#define BX_SUPPORT_FLOPPY 1
#define BX_PCIBIOS 1
#define BX_USE_ATADRV 1
#define BX_ELTORITO_BOOT 1
#define BX_MAX_ATA_DEVICES 2
/* model byte 0xFC = AT */
#define SYS_MODEL_ID 0xFC
#define SYS_SUBMODEL_ID 0x00
#define BIOS_REVISION 1
#define BIOS_CONFIG_TABLE 0xe6f5
// 1K of base memory used for Extended Bios Data Area (EBDA)
// EBDA is used for PS/2 mouse support, and IDE BIOS, etc.
#define BASE_MEM_IN_K (640 - 1)
#define EBDA_SEG 0x9FC0
// Define the application NAME
#ifdef PLEX86
# define BX_APPNAME "Plex86"
#else
# define BX_APPNAME "Bochs"
#endif
// Sanity Checks
#if BX_USE_ATADRV && BX_CPU<3
# error ATA/ATAPI Driver can ony be used with 386+ cpu
#endif
#if BX_USE_ATADRV && !BX_USE_EBDA
# error ATA/ATAPI Driver can ony be used if EBDA is available
#endif
#if BX_ELTORITO_BOOT && !BX_USE_ATADRV
# error El-Torito Boot can only be use if ATA/ATAPI Driver is available
#endif
#if BX_PCIBIOS && BX_CPU<3
# error PCI BIOS can only be used with 386+ cpu
#endif
#define DEBUG_ROMBIOS 0
#define PANIC_PORT 0x400
#define PANIC_PORT2 0x401
#define INFO_PORT 0x402
#define DEBUG_PORT 0x403
// #20 is dec 20
// #$20 is hex 20 = 32
// LDA #$20
// JSR $E820
// LDD .i,S
// JSR $C682
// mov al, #$20
// all hex literals should be prefixed with '0x'
// grep "#[0-9a-fA-F][0-9a-fA-F]" rombios.c
// no mov SEG-REG, #value, must mov register into seg-reg
// grep -i "mov[ ]*.s" rombios.c
// This is for compiling with gcc2 and gcc3
#define ASM_START #asm
#define ASM_END #endasm
ASM_START
.rom
.org 0x0000
#if BX_CPU >= 3
use16 386
#else
use16 286
#endif
MACRO HALT
;; the HALT macro is called with the line number of the HALT call.
;; The line number is then sent to the PANIC_PORT, causing Bochs/Plex
;; to print a BX_PANIC message. This will normally halt the simulation
;; with a message such as "BIOS panic at rombios.c, line 4091".
;; However, users can choose to make panics non-fatal and continue.
mov dx,#PANIC_PORT
mov ax,#?1
out dx,ax
MEND
MACRO HALT2
;; the HALT macro is called with the line number of the HALT call.
;; The line number is then sent to the PANIC_PORT, causing Bochs/Plex
;; to print a BX_PANIC message. This will normally halt the simulation
;; with a message such as "BIOS panic at rombios.c, line 4091".
;; However, users can choose to make panics non-fatal and continue.
mov dx,#PANIC_PORT2
mov ax,#?1
out dx,ax
MEND
MACRO JMP_AP
db 0xea
dw ?2
dw ?1
MEND
MACRO SET_INT_VECTOR
mov ax, ?3
mov ?1*4, ax
mov ax, ?2
mov ?1*4+2, ax
MEND
ASM_END
typedef unsigned char Bit8u;
typedef unsigned short Bit16u;
typedef unsigned short Boolean;
typedef unsigned long Bit32u;
#if BX_USE_ATADRV
void memsetb(seg,offset,value,count);
void memcpyb(dseg,doffset,sseg,soffset,count);
void memcpyd(dseg,doffset,sseg,soffset,count);
// memset of count bytes
void
memsetb(seg,offset,value,count)
Bit16u seg;
Bit16u offset;
Bit16u value;
Bit16u count;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push es
push di
mov cx, 10[bp] ; count
cmp cx, #0x00
je memsetb_end
mov ax, 4[bp] ; segment
mov es, ax
mov ax, 6[bp] ; offset
mov di, ax
mov al, 8[bp] ; value
cld
rep
stosb
memsetb_end:
pop di
pop es
pop cx
pop ax
pop bp
ASM_END
}
// memcpy of count bytes
void
memcpyb(dseg,doffset,sseg,soffset,count)
Bit16u dseg;
Bit16u doffset;
Bit16u sseg;
Bit16u soffset;
Bit16u count;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push es
push di
push ds
push si
mov cx, 12[bp] ; count
cmp cx, #0x0000
je memcpyb_end
mov ax, 4[bp] ; dsegment
mov es, ax
mov ax, 6[bp] ; doffset
mov di, ax
mov ax, 8[bp] ; ssegment
mov ds, ax
mov ax, 10[bp] ; soffset
mov si, ax
cld
rep
movsb
memcpyb_end:
pop si
pop ds
pop di
pop es
pop cx
pop ax
pop bp
ASM_END
}
// memcpy of count dword
void
memcpyd(dseg,doffset,sseg,soffset,count)
Bit16u dseg;
Bit16u doffset;
Bit16u sseg;
Bit16u soffset;
Bit16u count;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push es
push di
push ds
push si
mov cx, 12[bp] ; count
cmp cx, #0x0000
je memcpyd_end
mov ax, 4[bp] ; dsegment
mov es, ax
mov ax, 6[bp] ; doffset
mov di, ax
mov ax, 8[bp] ; ssegment
mov ds, ax
mov ax, 10[bp] ; soffset
mov si, ax
cld
rep
movsd
memcpyd_end:
pop si
pop ds
pop di
pop es
pop cx
pop ax
pop bp
ASM_END
}
// read_dword and write_dword functions
static Bit32u read_dword();
static void write_dword();
Bit32u
read_dword(seg, offset)
Bit16u seg;
Bit16u offset;
{
ASM_START
push bp
mov bp, sp
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov ax, [bx]
inc bx
inc bx
mov dx, [bx]
;; ax = return value (word)
;; dx = return value (word)
pop ds
pop bx
pop bp
ASM_END
}
void
write_dword(seg, offset, data)
Bit16u seg;
Bit16u offset;
Bit32u data;
{
ASM_START
push bp
mov bp, sp
push ax
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov ax, 8[bp] ; data word
mov [bx], ax ; write data word
inc bx
inc bx
mov ax, 10[bp] ; data word
mov [bx], ax ; write data word
pop ds
pop bx
pop ax
pop bp
ASM_END
}
#endif //BX_USE_ATADRV
// Bit32u (unsigned long) and long helper functions
ASM_START
;; and function
landl:
landul:
and ax,[di]
and bx,2[di]
ret
;; add function
laddl:
laddul:
add ax,[di]
adc bx,2[di]
ret
;; cmp function
lcmpl:
lcmpul:
;; cmp bx,2[di]
;; je lcmp_firstw_equal
;; ret
;;lcmp_firstw_equal:
;; cmp ax,[di]
;; jb lcmp_below
;; jge lcmp_exit
;; inc bx
;;lcmp_exit:
;; ret
;;lcmp_below:
;; dec bx
and eax, #0x0000FFFF
shl ebx, #16
add eax, ebx
shr ebx, #16
cmp eax, dword ptr [di]
ret
;; sub function
lsubl:
lsubul:
sub ax,[di]
sbb bx,2[di]
ret
;; mul function
lmull:
lmulul:
;; mov cx,ax
;; mul word ptr 2[di]
;; xchg ax,bx
;; mul word ptr [di]
;; add bx,ax
;; mov ax,ptr [di]
;; mul cx
;; add bx,dx
and eax, #0x0000FFFF
shl ebx, #16
add eax, ebx
mul eax, dword ptr [di]
mov ebx, eax
shr ebx, #16
ret
;; dec function
ldecl:
ldecul:
;; cmp word ptr [bx],*0
;; je ldec_both
;; dec word ptr [bx]
;; ret
;;ldec_both:
;; dec word ptr [bx]
;; dec word ptr 2[bx]
dec dword ptr [bx]
ret
;; or function
lorl:
lorul:
or ax,[di]
or bx,2[di]
ret
;; inc function
lincl:
lincul:
;; inc word ptr [bx]
;; je linc_hword
;; ret
;;linc_hword:
;; inc word ptr 2[bx]
inc dword ptr [bx]
ret
;; tst function
ltstl:
ltstul:
;; test bx,bx
;; je ltst_firstw_equal
;; ret
;;ltst_firstw_equal:
;; test ax,ax
;; js ltst_sign
;; ret
;;ltst_sign:
;; inc bx
and eax, #0x0000FFFF
shl ebx, #16
add eax, ebx
shr ebx, #16
test eax, eax
ret
;; sr function
lsrul:
;; mov cx,di
;; jcxz lsru_exit
;; cmp cx,*32
;; jae lsru_zero
;;lsru_loop:
;; shr bx,*1
;; rcr ax,*1
;; loop lsru_loop
;;lsru_exit:
;; ret
;;lsru_zero:
;; xor ax,ax
;; mov bx,ax
mov cx,di
jcxz lsr_exit
and eax, #0x0000FFFF
shl ebx, #16
add eax, ebx
lsr_loop:
shr eax, #1
loop lsr_loop
mov ebx, eax
shr ebx, #16
lsr_exit:
ret
;; sl function
lsll:
lslul:
;; mov cx,di
;; jcxz lsl_exit
;; cmp cx,*32
;; jae lsl_zero
;;lsl_loop:
;; shl ax,*1
;; rcl bx,*1
;; loop lsl_loop
;; lsl_exit:
;; ret
;;lsl_zero:
;; xor ax,ax
;; mov bx,ax
;; ret
mov cx,di
jcxz lsl_exit
and eax, #0x0000FFFF
shl ebx, #16
add eax, ebx
lsl_loop:
shl eax, #1
loop lsl_loop
mov ebx, eax
shr ebx, #16
lsl_exit:
ret
ASM_END
// for access to RAM area which is used by interrupt vectors
// and BIOS Data Area
typedef struct {
unsigned char filler1[0x400];
unsigned char filler2[0x6c];
Bit16u ticks_low;
Bit16u ticks_high;
Bit8u midnight_flag;
} bios_data_t;
#define BiosData ((bios_data_t *) 0)
#if BX_USE_ATADRV
// Global defines -- ATA register and register bits.
// command block & control block regs
// these are the offsets into pio_reg_addrs[]
#define CB_DATA 0 // data reg in/out pio_base_addr1+0
#define CB_ERR 1 // error in pio_base_addr1+1
#define CB_FR 1 // feature reg out pio_base_addr1+1
#define CB_SC 2 // sector count in/out pio_base_addr1+2
#define CB_SN 3 // sector number in/out pio_base_addr1+3
#define CB_CL 4 // cylinder low in/out pio_base_addr1+4
#define CB_CH 5 // cylinder high in/out pio_base_addr1+5
#define CB_DH 6 // device head in/out pio_base_addr1+6
#define CB_STAT 7 // primary status in pio_base_addr1+7
#define CB_CMD 7 // command out pio_base_addr1+7
#define CB_ASTAT 8 // alternate status in pio_base_addr2+6
#define CB_DC 8 // device control out pio_base_addr2+6
#define CB_DA 9 // device address in pio_base_addr2+7
#define CB_ER_ICRC 0x80 // ATA Ultra DMA bad CRC
#define CB_ER_BBK 0x80 // ATA bad block
#define CB_ER_UNC 0x40 // ATA uncorrected error
#define CB_ER_MC 0x20 // ATA media change
#define CB_ER_IDNF 0x10 // ATA id not found
#define CB_ER_MCR 0x08 // ATA media change request
#define CB_ER_ABRT 0x04 // ATA command aborted
#define CB_ER_NTK0 0x02 // ATA track 0 not found
#define CB_ER_NDAM 0x01 // ATA address mark not found
#define CB_ER_P_SNSKEY 0xf0 // ATAPI sense key (mask)
#define CB_ER_P_MCR 0x08 // ATAPI Media Change Request
#define CB_ER_P_ABRT 0x04 // ATAPI command abort
#define CB_ER_P_EOM 0x02 // ATAPI End of Media
#define CB_ER_P_ILI 0x01 // ATAPI Illegal Length Indication
// ATAPI Interrupt Reason bits in the Sector Count reg (CB_SC)
#define CB_SC_P_TAG 0xf8 // ATAPI tag (mask)
#define CB_SC_P_REL 0x04 // ATAPI release
#define CB_SC_P_IO 0x02 // ATAPI I/O
#define CB_SC_P_CD 0x01 // ATAPI C/D
// bits 7-4 of the device/head (CB_DH) reg
#define CB_DH_DEV0 0xa0 // select device 0
#define CB_DH_DEV1 0xb0 // select device 1
// status reg (CB_STAT and CB_ASTAT) bits
#define CB_STAT_BSY 0x80 // busy
#define CB_STAT_RDY 0x40 // ready
#define CB_STAT_DF 0x20 // device fault
#define CB_STAT_WFT 0x20 // write fault (old name)
#define CB_STAT_SKC 0x10 // seek complete
#define CB_STAT_SERV 0x10 // service
#define CB_STAT_DRQ 0x08 // data request
#define CB_STAT_CORR 0x04 // corrected
#define CB_STAT_IDX 0x02 // index
#define CB_STAT_ERR 0x01 // error (ATA)
#define CB_STAT_CHK 0x01 // check (ATAPI)
// device control reg (CB_DC) bits
#define CB_DC_HD15 0x08 // bit should always be set to one
#define CB_DC_SRST 0x04 // soft reset
#define CB_DC_NIEN 0x02 // disable interrupts
// Most mandtory and optional ATA commands (from ATA-3),
#define CMD_CFA_ERASE_SECTORS 0xC0
#define CMD_CFA_REQUEST_EXT_ERR_CODE 0x03
#define CMD_CFA_TRANSLATE_SECTOR 0x87
#define CMD_CFA_WRITE_MULTIPLE_WO_ERASE 0xCD
#define CMD_CFA_WRITE_SECTORS_WO_ERASE 0x38
#define CMD_CHECK_POWER_MODE1 0xE5
#define CMD_CHECK_POWER_MODE2 0x98
#define CMD_DEVICE_RESET 0x08
#define CMD_EXECUTE_DEVICE_DIAGNOSTIC 0x90
#define CMD_FLUSH_CACHE 0xE7
#define CMD_FORMAT_TRACK 0x50
#define CMD_IDENTIFY_DEVICE 0xEC
#define CMD_IDENTIFY_DEVICE_PACKET 0xA1
#define CMD_IDENTIFY_PACKET_DEVICE 0xA1
#define CMD_IDLE1 0xE3
#define CMD_IDLE2 0x97
#define CMD_IDLE_IMMEDIATE1 0xE1
#define CMD_IDLE_IMMEDIATE2 0x95
#define CMD_INITIALIZE_DRIVE_PARAMETERS 0x91
#define CMD_INITIALIZE_DEVICE_PARAMETERS 0x91
#define CMD_NOP 0x00
#define CMD_PACKET 0xA0
#define CMD_READ_BUFFER 0xE4
#define CMD_READ_DMA 0xC8
#define CMD_READ_DMA_QUEUED 0xC7
#define CMD_READ_MULTIPLE 0xC4
#define CMD_READ_SECTORS 0x20
#define CMD_READ_VERIFY_SECTORS 0x40
#define CMD_RECALIBRATE 0x10
#define CMD_SEEK 0x70
#define CMD_SET_FEATURES 0xEF
#define CMD_SET_MULTIPLE_MODE 0xC6
#define CMD_SLEEP1 0xE6
#define CMD_SLEEP2 0x99
#define CMD_STANDBY1 0xE2
#define CMD_STANDBY2 0x96
#define CMD_STANDBY_IMMEDIATE1 0xE0
#define CMD_STANDBY_IMMEDIATE2 0x94
#define CMD_WRITE_BUFFER 0xE8
#define CMD_WRITE_DMA 0xCA
#define CMD_WRITE_DMA_QUEUED 0xCC
#define CMD_WRITE_MULTIPLE 0xC5
#define CMD_WRITE_SECTORS 0x30
#define CMD_WRITE_VERIFY 0x3C
#define REG_CONFIG_TYPE_NONE 0x00
#define REG_CONFIG_TYPE_UNKN 0x01
#define REG_CONFIG_TYPE_ATA 0x02
#define REG_CONFIG_TYPE_ATAPI 0x03
#define ATA_TYPE_HD 0xFF
#define ATA_TYPE_CDROM 0x05
#define DELAY400NS { atapio_inbyte( CB_ASTAT ); atapio_inbyte( CB_ASTAT ); \
atapio_inbyte( CB_ASTAT ); atapio_inbyte( CB_ASTAT ); }
// Extended error information returned by
// reg_reset(), reg_non_data(), reg_pio_data_in() and reg_pio_data_out().
typedef struct {
Bit8u ec; // detailed error code
Bit8u to; // not zero if time out error
Bit8u st2; // status reg
Bit8u as2; // alt. status reg
Bit8u er2; // error reg
Bit32u totalBytesXfer; // total bytes transfered
unsigned int failbits; // failure bits (ATAPI protocol errors
#define FAILBIT15 0x8000 // extra interrupts detected
#define FAILBIT14 0x4000
#define FAILBIT13 0x2000
#define FAILBIT12 0x1000
#define FAILBIT11 0x0800
#define FAILBIT10 0x0400
#define FAILBIT9 0x0200
#define FAILBIT8 0x0100 // SC( CD/IO bits) wrong at end of cmd
#define FAILBIT7 0x0080 // byte count odd at data packet xfer time
#define FAILBIT6 0x0040 // byte count wrong at data packet xfer time
#define FAILBIT5 0x0020 // SC (IO bit) wrong at data packet xfer time
#define FAILBIT4 0x0010 // SC (CD bit) wrong at data packet xfer time
#define FAILBIT3 0x0008 // byte count wrong at cmd packet xfer time
#define FAILBIT2 0x0004 // SC wrong at cmd packet xfer time
#define FAILBIT1 0x0002 // got interrupt before cmd packet xfer
#define FAILBIT0 0x0001 // slow setting BSY=1 or DRQ=1 after AO cmd
Bit32u drqPackets; // number of PIO DRQ packets
} reg_cmd_info_t;
// ATA/ATAPI Driver data
typedef struct {
// PIO vars
Bit16u pio_base_addr1;
Bit16u pio_base_addr2;
Bit16u pio_memory_seg;
Bit16u pio_reg_addrs[10];
Bit8u pio_last_write[10];
Bit8u pio_last_read[10];
Bit16u pio_xfer_width;
// REG vars
reg_cmd_info_t reg_cmd_info;
// Configuration data for device 0 and 1
// returned by the reg_config() function.
Bit8u reg_config_info[BX_MAX_ATA_DEVICES];
// Type of device 0 and 1
Bit8u device_type[BX_MAX_ATA_DEVICES];
// no delay if the flag is zero.
Bit8u reg_atapi_delay_flag;
// the values in these variables are placed into the Feature,
// Sector Count, Sector Number and Device/Head register by
// reg_packet() before the A0H command is issued. reg_packet()
// sets these variables to zero before returning. These variables
// are initialized to zero. Only bits 3,2,1,0 of reg_atapi_reg_dh
// are used.
Bit8u reg_atapi_reg_fr;
Bit8u reg_atapi_reg_sc;
Bit8u reg_atapi_reg_sn;
Bit8u reg_atapi_reg_dh;
// flag to control the slow data transfer option:
// 0 = no slow data transfer
// !0= slow data transfer before this sector
Bit16u reg_slow_xfer_flag;
// the maximum number of bytes that the reg_packet() function
// will transfer on the next packet command. the caller
// can set this to the caller's buffer size minus the
// maximum DRQ packet size so that the packet command
// does not overrun the caller's buffer in memory.
// this is set to 65536 at the end of each packet command.
Bit32u reg_atapi_max_bytes;
// last ATAPI command packet size and data
Bit16u reg_atapi_cp_size;
Bit8u reg_atapi_cp_data[16];
// Public timeout data
Bit32u tmr_time_out; // current time to timeout
Bit8u tmr_timeout_delay; // command time out in seconds
} atadrv_data_t;
#if BX_ELTORITO_BOOT
// ElTorito Device Emulation data (14 bytes)
typedef struct {
Bit8u active;
Bit8u media;
Bit8u emulated_drive;
Bit8u controller_index;
Bit16u device_spec;
Bit32u ilba;
Bit16u buffer_segment;
Bit16u load_segment;
Bit16u sector_count;
// Virtual device
Bit16u vsectors;
Bit16u vcylinders;
Bit16u vheads;
} cdemu_data_t;
#endif // BX_ELTORITO_BOOT
// for access to EBDA area
typedef struct {
unsigned char filler[0x5D]; // Can be splitted in data members if needed
atadrv_data_t atadrv_data; // ATA/ATAPI Driver data
#if BX_ELTORITO_BOOT
cdemu_data_t cdemu_data; // El Torito Emulation data
#endif // BX_ELTORITO_BOOT
Bit8u hdidmap[BX_MAX_ATA_DEVICES]; // map between bios hd id - 0x80 and ata channels
Bit8u cdidmap[BX_MAX_ATA_DEVICES]; // map between bios cd id - 0xE0 and ata channels
} ebda_data_t;
#define EbdaData ((ebda_data_t *) 0)
// for access to a int13ext structure
typedef struct {
Bit8u size;
Bit8u filler1;
Bit8u count;
Bit8u filler2;
Bit16u offset;
Bit16u segment;
Bit32u lba1;
Bit32u lba2;
} int13ext_t;
#define Int13Ext ((int13ext_t *) 0)
#endif // BX_USE_ATADRV
typedef struct {
union {
struct {
Bit16u di, si, bp, sp;
Bit16u bx, dx, cx, ax;
} r16;
struct {
Bit16u filler[4];
Bit8u bl, bh, dl, dh, cl, ch, al, ah;
} r8;
} u;
} pusha_regs_t;
typedef struct {
union {
struct {
Bit16u flags;
} r16;
struct {
Bit8u flagsl;
Bit8u flagsh;
} r8;
} u;
} flags_t;
#define SetCF(x) x.u.r8.flagsl |= 0x01
#define SetZF(x) x.u.r8.flagsl |= 0x40
#define ClearCF(x) x.u.r8.flagsl &= 0xfe
#define ClearZF(x) x.u.r8.flagsl &= 0xbf
#define GetCF(x) (x.u.r8.flagsl & 0x01)
typedef struct {
Bit16u ip;
Bit16u cs;
flags_t flags;
} iret_addr_t;
static Bit8u inb();
static Bit8u inb_cmos();
static void outb();
static void outb_cmos();
static Bit16u inw();
static void outw();
static void init_rtc();
static Boolean rtc_updating();
static Bit8u read_byte();
static Bit16u read_word();
static void write_byte();
static void write_word();
static void bios_printf();
static Bit16u UDIV();
static Bit8u inhibit_mouse_int_and_events();
static void enable_mouse_int_and_events();
static Bit8u send_to_mouse_ctrl();
static Bit8u get_mouse_data();
static void set_kbd_command_byte();
static void int09_function();
static void int13_harddisk();
static void int13_cdrom();
static void int13_cdemu();
static void int13_eltorito();
static void int13_diskette_function();
static void int14_function();
static void int15_function();
static void int16_function();
static void int17_function();
static Bit32u int19_function();
static void int1a_function();
static void int70_function();
static void int74_function();
//static Bit16u get_DS();
//static void set_DS();
static Bit16u get_SS();
static void enqueue_key();
static unsigned int dequeue_key();
static void set_disk_ret_status();
static void get_hd_geometry();
static void set_diskette_ret_status();
static void set_diskette_current_cyl();
static void determine_floppy_media();
static Boolean floppy_drive_exists();
static Boolean floppy_drive_recal();
static Boolean floppy_media_known();
static Boolean floppy_media_sense();
static void cli();
static Boolean set_enable_a20();
static void debugger_on();
static void debugger_off();
static void keyboard_panic();
static void boot_failure_msg();
static void nmi_handler_msg();
static void print_bios_banner();
#if BX_USE_ATADRV
void atadrv_init();
void atapio_init( );
void atapio_set_iobase_addr();
void atapio_set_memory_addr();
Bit8u atapio_inbyte();
void atapio_outbyte();
Bit16u atapio_inword();
void atapio_outword();
void atapio_rep_inbyte();
void atapio_rep_outbyte();
void atapio_rep_inword();
void atapio_rep_outword();
void atapio_rep_indword();
void atapio_rep_outdword();
void atareg_init();
Bit16u atareg_config();
Bit16u atareg_reset();
Bit16u atareg_non_data_lba();
Bit16u atareg_non_data();
Bit16u atareg_pio_data_in_lba();
Bit16u atareg_pio_data_in();
Bit16u atareg_pio_data_out_lba();
Bit16u atareg_pio_data_out();
Bit16u etareg_packet();
void atatmr_init();
Bit32u atatmr_read_bios_timer();
void atatmr_set_timeout();
Bit16u atatmr_chk_timeout();
void atasub_init();
void atasub_zero_return_data();
void atasub_trace_command();
Bit16u atasub_select();
void atasub_atapi_delay();
void atasub_xfer_delay();
void ata_clear_buffer();
Bit16u atapi_get_sense();
Bit16u atapi_is_ready();
Bit16u atapi_is_cdrom();
Bit16u atapi_read_sectors2048();
Bit16u atapi_read_sectors512();
Bit16u atapi_read_sectors();
void ata_read_device_types();
void ata_show_devices();
Bit16u ata_is_ata();
Bit16u ata_is_atapi();
#endif // BX_USE_ATADRV
#if BX_ELTORITO_BOOT
Bit8u cdemu_isactive();
Bit8u cdemu_emulated_drive();
void boot_from_msg();
void cdrom_bootfailed_msg();
Bit16u cdrom_boot();
#endif // BX_ELTORITO_BOOT
static char bios_cvs_version_string[] = "$Revision: 1.62 $";
static char bios_date_string[] = "$Date: 2002-09-20 19:35:20 $";
static char CVSID[] = "$Id: rombios.c,v 1.62 2002-09-20 19:35:20 vruppert Exp $";
/* Offset to skip the CVS $Id: prefix */
#define bios_version_string (CVSID + 4)
#define BIOS_PRINTF_HALT 1
#define BIOS_PRINTF_SCREEN 2
#define BIOS_PRINTF_INFO 4
#define BIOS_PRINTF_DEBUG 8
#define BIOS_PRINTF_ALL (BIOS_PRINTF_SCREEN | BIOS_PRINTF_INFO)
#define BIOS_PRINTF_DEBHALT (BIOS_PRINTF_SCREEN | BIOS_PRINTF_INFO | BIOS_PRINTF_HALT)
#define printf(format, p...) bios_printf(BIOS_PRINTF_SCREEN, format, ##p)
// Defines the output macros.
// BX_DEBUG goes to INFO port until we can easily choose debug info on a
// per-device basis. Debug info are sent only in debug mode
#if DEBUG_ROMBIOS
# define BX_DEBUG(format, p...) bios_printf(BIOS_PRINTF_INFO, format, ##p)
#else
# define BX_DEBUG(format, p...)
#endif
#define BX_INFO(format, p...) bios_printf(BIOS_PRINTF_INFO, format, ##p)
#define BX_PANIC(format, p...) bios_printf(BIOS_PRINTF_DEBHALT, format, ##p)
#define SET_AL(val8) AX = ((AX & 0xff00) | (val8))
#define SET_BL(val8) BX = ((BX & 0xff00) | (val8))
#define SET_CL(val8) CX = ((CX & 0xff00) | (val8))
#define SET_DL(val8) DX = ((DX & 0xff00) | (val8))
#define SET_AH(val8) AX = ((AX & 0x00ff) | ((val8) << 8))
#define SET_BH(val8) BX = ((BX & 0x00ff) | ((val8) << 8))
#define SET_CH(val8) CX = ((CX & 0x00ff) | ((val8) << 8))
#define SET_DH(val8) DX = ((DX & 0x00ff) | ((val8) << 8))
#define GET_AL() ( AX & 0x00ff )
#define GET_BL() ( BX & 0x00ff )
#define GET_CL() ( CX & 0x00ff )
#define GET_DL() ( DX & 0x00ff )
#define GET_AH() ( AX >> 8 )
#define GET_BH() ( BX >> 8 )
#define GET_CH() ( CX >> 8 )
#define GET_DH() ( DX >> 8 )
#define SET_CF() FLAGS |= 0x0001
#define CLEAR_CF() FLAGS &= 0xfffe
#define GET_CF() (FLAGS & 0x0001)
#define SET_ZF() FLAGS |= 0x0040
#define CLEAR_ZF() FLAGS &= 0xffbf
#define GET_ZF() (FLAGS & 0x0040)
#define UNSUPPORTED_FUNCTION 0x86
#define none 0
#define MAX_SCAN_CODE 0x53
static struct {
Bit16u normal;
Bit16u shift;
Bit16u control;
Bit16u alt;
} scan_to_scanascii[MAX_SCAN_CODE + 1] = {
{ none, none, none, none },
{ 0x011b, 0x011b, 0x011b, 0x0100 }, /* escape */
{ 0x0231, 0x0221, none, 0x7800 }, /* 1! */
{ 0x0332, 0x0340, 0x0300, 0x7900 }, /* 2@ */
{ 0x0433, 0x0423, none, 0x7a00 }, /* 3# */
{ 0x0534, 0x0524, none, 0x7b00 }, /* 4$ */
{ 0x0635, 0x0625, none, 0x7c00 }, /* 5% */
{ 0x0736, 0x075e, 0x071e, 0x7d00 }, /* 6^ */
{ 0x0837, 0x0826, none, 0x7e00 }, /* 7& */
{ 0x0938, 0x092a, none, 0x7f00 }, /* 8* */
{ 0x0a39, 0x0a28, none, 0x8000 }, /* 9( */
{ 0x0b30, 0x0b29, none, 0x8100 }, /* 0) */
{ 0x0c2d, 0x0c5f, 0x0c1f, 0x8200 }, /* -_ */
{ 0x0d3d, 0x0d2b, none, 0x8300 }, /* =+ */
{ 0x0e08, 0x0e08, 0x0e7f, none }, /* backspace */
{ 0x0f09, 0x0f00, none, none }, /* tab */
{ 0x1071, 0x1051, 0x1011, 0x1000 }, /* Q */
{ 0x1177, 0x1157, 0x1117, 0x1100 }, /* W */
{ 0x1265, 0x1245, 0x1205, 0x1200 }, /* E */
{ 0x1372, 0x1352, 0x1312, 0x1300 }, /* R */
{ 0x1474, 0x1454, 0x1414, 0x1400 }, /* T */
{ 0x1579, 0x1559, 0x1519, 0x1500 }, /* Y */
{ 0x1675, 0x1655, 0x1615, 0x1600 }, /* U */
{ 0x1769, 0x1749, 0x1709, 0x1700 }, /* I */
{ 0x186f, 0x184f, 0x180f, 0x1800 }, /* O */
{ 0x1970, 0x1950, 0x1910, 0x1900 }, /* P */
{ 0x1a5b, 0x1a7b, 0x1a1b, none }, /* [{ */
{ 0x1b5d, 0x1b7d, 0x1b1d, none }, /* ]} */
{ 0x1c0d, 0x1c0d, 0x1c0a, none }, /* Enter */
{ none, none, none, none }, /* L Ctrl */
{ 0x1e61, 0x1e41, 0x1e01, 0x1e00 }, /* A */
{ 0x1f73, 0x1f53, 0x1f13, 0x1f00 }, /* S */
{ 0x2064, 0x2044, 0x2004, 0x2000 }, /* D */
{ 0x2166, 0x2146, 0x2106, 0x2100 }, /* F */
{ 0x2267, 0x2247, 0x2207, 0x2200 }, /* G */
{ 0x2368, 0x2348, 0x2308, 0x2300 }, /* H */
{ 0x246a, 0x244a, 0x240a, 0x2400 }, /* J */
{ 0x256b, 0x254b, 0x250b, 0x2500 }, /* K */
{ 0x266c, 0x264c, 0x260c, 0x2600 }, /* L */
{ 0x273b, 0x273a, none, none }, /* ;: */
{ 0x2827, 0x2822, none, none }, /* '" */
{ 0x2960, 0x297e, none, none }, /* `~ */
{ none, none, none, none }, /* L shift */
{ 0x2b5c, 0x2b7c, 0x2b1c, none }, /* |\ */
{ 0x2c7a, 0x2c5a, 0x2c1a, 0x2c00 }, /* Z */
{ 0x2d78, 0x2d58, 0x2d18, 0x2d00 }, /* X */
{ 0x2e63, 0x2e43, 0x2e03, 0x2e00 }, /* C */
{ 0x2f76, 0x2f56, 0x2f16, 0x2f00 }, /* V */
{ 0x3062, 0x3042, 0x3002, 0x3000 }, /* B */
{ 0x316e, 0x314e, 0x310e, 0x3100 }, /* N */
{ 0x326d, 0x324d, 0x320d, 0x3200 }, /* M */
{ 0x332c, 0x333c, none, none }, /* ,< */
{ 0x342e, 0x343e, none, none }, /* .> */
{ 0x352f, 0x353f, none, none }, /* /? */
{ none, none, none, none }, /* R Shift */
{ 0x372a, 0x372a, none, none }, /* * */
{ none, none, none, none }, /* L Alt */
{ 0x3920, 0x3920, 0x3920, 0x3920 }, /* space */
{ none, none, none, none }, /* caps lock */
{ 0x3b00, 0x5400, 0x5e00, 0x6800 }, /* F1 */
{ 0x3c00, 0x5500, 0x5f00, 0x6900 }, /* F2 */
{ 0x3d00, 0x5600, 0x6000, 0x6a00 }, /* F3 */
{ 0x3e00, 0x5700, 0x6100, 0x6b00 }, /* F4 */
{ 0x3f00, 0x5800, 0x6200, 0x6c00 }, /* F5 */
{ 0x4000, 0x5900, 0x6300, 0x6d00 }, /* F6 */
{ 0x4100, 0x5a00, 0x6400, 0x6e00 }, /* F7 */
{ 0x4200, 0x5b00, 0x6500, 0x6f00 }, /* F8 */
{ 0x4300, 0x5c00, 0x6600, 0x7000 }, /* F9 */
{ 0x4400, 0x5d00, 0x6700, 0x7100 }, /* F10 */
{ none, none, none, none }, /* Num Lock */
{ none, none, none, none }, /* Scroll Lock */
{ 0x4700, 0x4737, 0x7700, none }, /* 7 Home */
{ 0x4800, 0x4838, none, none }, /* 8 UP */
{ 0x4900, 0x4939, 0x8400, none }, /* 9 PgUp */
{ 0x4a2d, 0x4a2d, none, none }, /* - */
{ 0x4b00, 0x4b34, 0x7300, none }, /* 4 Left */
{ 0x4c00, 0x4c35, none, none }, /* 5 */
{ 0x4d00, 0x4d36, 0x7400, none }, /* 6 Right */
{ 0x4e2b, 0x4e2b, none, none }, /* + */
{ 0x4f00, 0x4f31, 0x7500, none }, /* 1 End */
{ 0x5000, 0x5032, none, none }, /* 2 Down */
{ 0x5100, 0x5133, 0x7600, none }, /* 3 PgDn */
{ 0x5200, 0x5230, none, none }, /* 0 Ins */
{ 0x5300, 0x532e, none, none } /* Del */
};
Bit8u
inb(port)
Bit16u port;
{
ASM_START
push bp
mov bp, sp
push dx
mov dx, 4[bp]
in al, dx
pop dx
pop bp
ASM_END
}
#if BX_USE_ATADRV
Bit16u
inw(port)
Bit16u port;
{
ASM_START
push bp
mov bp, sp
push dx
mov dx, 4[bp]
in ax, dx
pop dx
pop bp
ASM_END
}
#endif
void
outb(port, val)
Bit16u port;
Bit8u val;
{
ASM_START
push bp
mov bp, sp
push ax
push dx
mov dx, 4[bp]
mov al, 6[bp]
out dx, al
pop dx
pop ax
pop bp
ASM_END
}
#if BX_USE_ATADRV
void
outw(port, val)
Bit16u port;
Bit16u val;
{
ASM_START
push bp
mov bp, sp
push ax
push dx
mov dx, 4[bp]
mov ax, 6[bp]
out dx, ax
pop dx
pop ax
pop bp
ASM_END
}
#endif
void
outb_cmos(cmos_reg, val)
Bit8u cmos_reg;
Bit8u val;
{
ASM_START
push bp
mov bp, sp
mov al, 4[bp] ;; cmos_reg
out 0x70, al
mov al, 6[bp] ;; val
out 0x71, al
pop bp
ASM_END
}
Bit8u
inb_cmos(cmos_reg)
Bit8u cmos_reg;
{
ASM_START
push bp
mov bp, sp
mov al, 4[bp] ;; cmos_reg
out 0x70, al
in al, 0x71
pop bp
ASM_END
}
void
init_rtc()
{
outb_cmos(0x0a, 0x26);
outb_cmos(0x0b, 0x02);
inb_cmos(0x0c);
inb_cmos(0x0d);
}
Boolean
rtc_updating()
{
// This function checks to see if the update-in-progress bit
// is set in CMOS Status Register A. If not, it returns 0.
// If it is set, it tries to wait until there is a transition
// to 0, and will return 0 if such a transition occurs. A 1
// is returned only after timing out. The maximum period
// that this bit should be set is constrained to 244useconds.
// The count I use below guarantees coverage or more than
// this time, with any reasonable IPS setting.
Bit16u count;
count = 25000;
while (--count != 0) {
if ( (inb_cmos(0x0a) & 0x80) == 0 )
return(0);
}
return(1); // update-in-progress never transitioned to 0
}
Bit8u
read_byte(seg, offset)
Bit16u seg;
Bit16u offset;
{
ASM_START
push bp
mov bp, sp
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov al, [bx]
;; al = return value (byte)
pop ds
pop bx
pop bp
ASM_END
}
Bit16u
read_word(seg, offset)
Bit16u seg;
Bit16u offset;
{
ASM_START
push bp
mov bp, sp
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov ax, [bx]
;; ax = return value (word)
pop ds
pop bx
pop bp
ASM_END
}
void
write_byte(seg, offset, data)
Bit16u seg;
Bit16u offset;
Bit8u data;
{
ASM_START
push bp
mov bp, sp
push ax
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov al, 8[bp] ; data byte
mov [bx], al ; write data byte
pop ds
pop bx
pop ax
pop bp
ASM_END
}
void
write_word(seg, offset, data)
Bit16u seg;
Bit16u offset;
Bit16u data;
{
ASM_START
push bp
mov bp, sp
push ax
push bx
push ds
mov ax, 4[bp] ; segment
mov ds, ax
mov bx, 6[bp] ; offset
mov ax, 8[bp] ; data word
mov [bx], ax ; write data word
pop ds
pop bx
pop ax
pop bp
ASM_END
}
Bit16u
UDIV(a, b)
Bit16u a, b;
{
// divide a by b
// return value in AX is: AL=quotient, AH=remainder
ASM_START
push bp
mov bp, sp
push bx
mov ax, 4[bp] ;; a
mov bx, 6[bp] ;; b: only low eight bits used
div bl ;; AX / BL --> quotient=AL, remainder=AH
pop bx
pop bp
ASM_END
}
Bit16u
UDIV16(a, b)
Bit16u a, b;
{
// divide a by b, discarding remainder
ASM_START
push bp
mov bp, sp
push dx
push bx
xor dx,dx
mov ax, 4[bp] ;; a
mov bx, 6[bp] ;; b
div bx ;; DX:AX / BX -> AX, DX = remainder
pop bx
pop dx
pop bp
ASM_END
}
// Bit16u
//get_DS()
//{
//ASM_START
// mov ax, ds
//ASM_END
//}
//
// void
//set_DS(ds_selector)
// Bit16u ds_selector;
//{
//ASM_START
// push bp
// mov bp, sp
//
// push ax
// mov ax, 4[bp] ; ds_selector
// mov ds, ax
// pop ax
//
// pop bp
//ASM_END
//}
Bit16u
get_SS()
{
ASM_START
mov ax, ss
ASM_END
}
void
wrch(c)
Bit8u c;
{
ASM_START
push bp
mov bp, sp
push bx
mov ah, #$0e
mov al, 4[bp]
xor bx,bx
int #$10
pop bx
pop bp
ASM_END
}
void
send(action, c)
Bit16u action;
Bit8u c;
{
if (action & BIOS_PRINTF_DEBUG) outb(DEBUG_PORT, c);
if (action & BIOS_PRINTF_INFO) outb(INFO_PORT, c);
if (action & BIOS_PRINTF_SCREEN) {
if (c == '\n') wrch('\r');
wrch(c);
}
}
void
put_int(action, val, width, neg)
Bit16u action;
short val, width;
Boolean neg;
{
short nval = UDIV16(val, 10);
if (nval)
put_int(action, nval, width - 1, neg);
else {
while (--width > 0) send(action, ' ');
if (neg) send(action, '-');
}
send(action, val - (nval * 10) + '0');
}
//--------------------------------------------------------------------------
// bios_printf()
// A compact variable argument printf function which prints its output via
// an I/O port so that it can be logged by Bochs/Plex.
// Currently, only %x is supported (or %02x, %04x, etc).
//
// Supports %[format_width][format]
// where format can be d,x,c,s
//--------------------------------------------------------------------------
void
bios_printf(action, s)
Bit16u action;
Bit8u *s;
{
Bit8u c, format_char;
Boolean in_format;
short i;
Bit16u *arg_ptr;
Bit16u arg_seg, arg, nibble, shift_count, format_width;
arg_ptr = &s;
arg_seg = get_SS();
in_format = 0;
format_width = 0;
if ((action & BIOS_PRINTF_DEBHALT) == BIOS_PRINTF_DEBHALT) {
bios_printf (BIOS_PRINTF_ALL, "FATAL: ");
}
while (c = read_byte(0xf000, s)) {
if ( c == '%' ) {
in_format = 1;
format_width = 0;
}
else if (in_format) {
if ( (c>='0') && (c<='9') ) {
format_width = (format_width * 10) + (c - '0');
}
else {
arg_ptr++; // increment to next arg
arg = read_word(arg_seg, arg_ptr);
if (c == 'x') {
if (format_width == 0)
format_width = 4;
for (i=format_width-1; i>=0; i--) {
nibble = (arg >> (4 * i)) & 0x000f;
send (action, (nibble<=9)? (nibble+'0') : (nibble-10+'A'));
}
}
else if (c == 'd') {
if (arg & 0x8000)
put_int(action, -arg, format_width - 1, 1);
else
put_int(action, arg, format_width, 0);
}
else if (c == 's') {
bios_printf(action & (~BIOS_PRINTF_HALT), arg);
}
else if (c == 'c') {
send(action, arg);
}
else
BX_PANIC("bios_printf: unknown format");
in_format = 0;
}
}
else {
send(action, c);
}
s ++;
}
if (action & BIOS_PRINTF_HALT) {
// freeze in a busy loop. If I do a HLT instruction, then in versions
// 1.3.pre1 and earlier, it will panic without ever updating the VGA
// display, so the panic message will not be visible. By waiting
// forever, you are certain to see the panic message on screen.
// After a few more versions have passed, we can turn this back into
// a halt or something.
do {} while (1);
ASM_START
HALT2(__LINE__)
ASM_END
}
}
void
cli()
{
ASM_START
cli
ASM_END
}
void
keyboard_panic()
{
BX_PANIC("Keyboard RESET error");
}
static char drivetypes[][10]={"Floppy","Hard Disk","CD-Rom"};
/*
cdboot: 1 if boot from cd, 0 otherwise
drive : drive number
reason: 0 signature check failed, 1 read error
*/
void
boot_failure_msg(cdboot, drive, reason)
Bit8u cdboot; Bit8u drive;
{
Bit16u drivenum = drive&0x7f;
if (cdboot)
bios_printf(BIOS_PRINTF_INFO | BIOS_PRINTF_SCREEN, "Boot from %s failed\n",drivetypes[2]);
else if (drive & 0x80)
bios_printf(BIOS_PRINTF_INFO | BIOS_PRINTF_SCREEN, "Boot from %s %d failed\n", drivetypes[1],drivenum);
else
bios_printf(BIOS_PRINTF_INFO | BIOS_PRINTF_SCREEN, "Boot from %s %d failed\n", drivetypes[0],drivenum);
if (reason==0)
BX_PANIC("Not a bootable disk\n");
else
BX_PANIC("Could not read the boot disk\n");
}
void
nmi_handler_msg()
{
BX_INFO("NMI Handler called\n");
}
void
log_bios_start()
{
BX_INFO("%s\n", bios_version_string);
}
void
print_bios_banner()
{
printf(BX_APPNAME" BIOS, %s %s\n\n", bios_cvs_version_string, bios_date_string);
/*
bios_printf(BIOS_PRINTF_SCREEN, "Test: x234=%3x, d-123=%d, c=%c, s=%s\n",
0x1234, -123, '!', "ok");
*/
}
Boolean
set_enable_a20(val)
Boolean val;
{
Bit8u oldval;
// Use PS2 System Control port A to set A20 enable
// get current setting first
oldval = inb(0x92);
// change A20 status
if (val)
outb(0x92, oldval | 0x02);
else
outb(0x92, oldval & 0xfd);
return((oldval & 0x02) != 0);
}
void
debugger_on()
{
outb(0xfedc, 0x01);
}
void
debugger_off()
{
outb(0xfedc, 0x00);
}
void
int14_function(regs, ds, iret_addr)
pusha_regs_t regs; // regs pushed from PUSHA instruction
Bit16u ds; // previous DS:, DS set to 0x0000 by asm wrapper
iret_addr_t iret_addr; // CS,IP,Flags pushed from original INT call
{
Bit16u addr,timer,val16;
Bit8u timeout;
ASM_START
sti
ASM_END
addr = read_word(0x0040, 2 * regs.u.r16.dx);
timeout = read_byte(0x0040, 0x007C + regs.u.r16.dx);
if ((regs.u.r16.dx < 4) && (addr > 0)) {
switch (regs.u.r8.ah) {
case 0:
outb(addr+3, inb(addr+3) | 0x80);
if (regs.u.r8.al & 0xE0 == 0) {
outb(addr, 0x17);
outb(addr+1, 0x04);
} else {
val16 = 0x600 >> ((regs.u.r8.al & 0xE0) >> 5);
outb(addr, val16 & 0xFF);
outb(addr+1, val16 >> 8);
}
outb(addr+3, regs.u.r8.al & 0x1F);
regs.u.r8.ah = inb(addr+5);
regs.u.r8.al = inb(addr+6);
ClearCF(iret_addr.flags);
break;
case 1:
timer = read_word(0x0040, 0x006C);
while (((inb(addr+5) & 0x60) != 0x60) && (timeout)) {
val16 = read_word(0x0040, 0x006C);
if (val16 != timer) {
timer = val16;
timeout--;
}
}
if (timeout) outb(addr, regs.u.r8.al);
regs.u.r8.ah = inb(addr+5);
if (!timeout) regs.u.r8.ah |= 0x80;
ClearCF(iret_addr.flags);
break;
case 2:
timer = read_word(0x0040, 0x006C);
while (((inb(addr+5) & 0x01) == 0) && (timeout)) {
val16 = read_word(0x0040, 0x006C);
if (val16 != timer) {
timer = val16;
timeout--;
}
}
if (timeout) {
regs.u.r8.ah = 0;
regs.u.r8.al = inb(addr);
} else {
regs.u.r8.ah = inb(addr+5);
}
ClearCF(iret_addr.flags);
break;
case 3:
regs.u.r8.ah = inb(addr+5);
regs.u.r8.al = inb(addr+6);
ClearCF(iret_addr.flags);
break;
default:
SetCF(iret_addr.flags); // Unsupported
}
} else {
SetCF(iret_addr.flags); // Unsupported
}
}
void
int15_function(DI, SI, BP, SP, BX, DX, CX, AX, ES, DS, FLAGS)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX, ES, DS, FLAGS;
{
Bit16u ebda_seg;
Bit8u mouse_flags_1, mouse_flags_2;
Bit16u mouse_driver_seg;
Bit16u mouse_driver_offset;
Bit8u in_byte;
Bit8u response, prev_command_byte;
Boolean prev_a20_enable;
Bit16u base15_00;
Bit8u base23_16;
Bit16u ss;
Bit8u ret, mouse_data1, mouse_data2, mouse_data3;
Bit8u comm_byte, mf2_state;
switch (GET_AH()) {
case 0x24: /* A20 Control */
BX_INFO("int15: Func 24h, subfunc %02xh, A20 gate control not supported\n", (unsigned) GET_AL());
SET_CF();
SET_AH(UNSUPPORTED_FUNCTION);
break;
case 0x41:
SET_CF();
SET_AH(UNSUPPORTED_FUNCTION);
break;
case 0x4f:
/* keyboard intercept */
#if BX_CPU < 2
SET_AH(UNSUPPORTED_FUNCTION);
#else
if (GET_AL() == 0xE0) {
mf2_state = read_byte(0x0040, 0x96);
write_byte(0x0040, 0x96, mf2_state | 0x01);
SET_AL(inb(0x60));
}
#endif
SET_CF();
break;
case 0x87:
#if BX_CPU < 3
# error "Int15 function 87h not supported on < 80386"
#endif
// +++ should probably have descriptor checks
// +++ should have exception handlers
cli();
prev_a20_enable = set_enable_a20(1); // enable A20 line
// 128K max of transfer on 386+ ???
// source == destination ???
// ES:SI points to descriptor table
// offset use initially comments
// ==============================================
// 00..07 Unused zeros Null descriptor
// 08..0f GDT zeros filled in by BIOS
// 10..17 source ssssssss source of data
// 18..1f dest dddddddd destination of data
// 20..27 CS zeros filled in by BIOS
// 28..2f SS zeros filled in by BIOS
//es:si
//eeee0
//0ssss
//-----
// check for access rights of source & dest here
// Initialize GDT descriptor
base15_00 = (ES << 4) + SI;
base23_16 = ES >> 12;
if (base15_00 < (ES<<4))
base23_16++;
write_word(ES, SI+0x08+0, 47); // limit 15:00 = 6 * 8bytes/descriptor
write_word(ES, SI+0x08+2, base15_00);// base 15:00
write_byte(ES, SI+0x08+4, base23_16);// base 23:16
write_byte(ES, SI+0x08+5, 0x93); // access
write_word(ES, SI+0x08+6, 0x0000); // base 31:24/reserved/limit 19:16
// Initialize CS descriptor
write_word(ES, SI+0x20+0, 0xffff);// limit 15:00 = normal 64K limit
write_word(ES, SI+0x20+2, 0x0000);// base 15:00
write_byte(ES, SI+0x20+4, 0x000f);// base 23:16
write_byte(ES, SI+0x20+5, 0x9b); // access
write_word(ES, SI+0x20+6, 0x0000);// base 31:24/reserved/limit 19:16
// Initialize SS descriptor
ss = get_SS();
base15_00 = ss << 4;
base23_16 = ss >> 12;
write_word(ES, SI+0x28+0, 0xffff); // limit 15:00 = normal 64K limit
write_word(ES, SI+0x28+2, base15_00);// base 15:00
write_byte(ES, SI+0x28+4, base23_16);// base 23:16
write_byte(ES, SI+0x28+5, 0x93); // access
write_word(ES, SI+0x28+6, 0x0000); // base 31:24/reserved/limit 19:16
ASM_START
// Compile generates locals offset info relative to SP.
// Get CX (word count) from stack.
mov bx, sp
SEG SS
mov cx, _int15_function.CX [bx]
// since we need to set SS:SP, save them to the BDA
// for future restore
mov ax, #0x00
mov ds, ax
mov 0x0469, ss
mov 0x0467, sp
SEG ES
lgdt [si + 0x08]
SEG CS
lidt [pmode_IDT_info]
;; perhaps do something with IDT here
;; set PE bit in CR0
xor eax, eax
mov al, #0x01
mov cr0, eax
;; far jump to flush CPU queue after transition to protected mode
JMP_AP(0x0020, protected_mode)
protected_mode:
;; GDT points to valid descriptor table, now load SS, DS, ES
mov ax, #0x28 ;; 101 000 = 5th descriptor in table, TI=GDT, RPL=00
mov ss, ax
mov ax, #0x10 ;; 010 000 = 2nd descriptor in table, TI=GDT, RPL=00
mov ds, ax
mov ax, #0x18 ;; 011 000 = 3rd descriptor in table, TI=GDT, RPL=00
mov es, ax
xor si, si
xor di, di
cld
rep
movsw ;; move CX words from DS:SI to ES:DI
;; make sure DS and ES limits are 64KB
mov ax, #0x28
mov ds, ax
mov es, ax
;; clear CR3 and reset PG bit in CR0 ???
xor eax, eax
mov cr0, eax
;; far jump to flush CPU queue after transition to real mode
JMP_AP(0xf000, real_mode)
real_mode:
;; restore IDT to normal real-mode defaults
SEG CS
lidt [rmode_IDT_info]
// restore SS:SP from the BDA
mov ax, #0x00
mov ds, ax
mov ss, 0x0469
mov sp, 0x0467
ASM_END
set_enable_a20(prev_a20_enable);
SET_AH(0);
CLEAR_CF();
break;
case 0x88: /* extended memory size */
#if BX_CPU < 2
SET_AH(UNSUPPORTED_FUNCTION);
SET_CF();
#else
/* ??? change this back later... */
/* number of 1K blocks of extended memory, subtract off 1st 1Meg */
// AX = bx_mem.get_memory_in_k() - 1024;
in_byte = inb_cmos(0x30);
SET_AL(in_byte);
in_byte = inb_cmos(0x31);
SET_AH(in_byte);
CLEAR_CF();
#endif
break;
case 0x90:
/* Device busy interrupt. Called by Int 16h when no key available */
break;
case 0x91:
/* Interrupt complete. Called by Int 16h when key becomes available */
break;
case 0xbf:
BX_INFO("*** int 15h function AH=bf not yet supported!\n");
SET_CF();
SET_AH(UNSUPPORTED_FUNCTION);
break;
case 0xC0:
#if 0
SET_CF();
SET_AH(UNSUPPORTED_FUNCTION);
break;
#endif
CLEAR_CF();
SET_AH(0);
BX = BIOS_CONFIG_TABLE;
ES = 0xF000;
break;
case 0xc1:
#if BX_USE_PS2_MOUSE
ES = read_word(0x0040, 0x000E);
CLEAR_CF();
#else
SET_CF();
SET_AH(UNSUPPORTED_FUNCTION);
#endif
break;
case 0xC2:
// Return Codes status in AH
// =========================
// 00: success
// 01: invalid subfunction (AL > 7)
// 02: invalid input value (out of allowable range)
// 03: interface error
// 04: resend command received from mouse controller,
// device driver should attempt command again
// 05: cannot enable mouse, since no far call has been installed
// 80/86: mouse service not implemented
#if BX_USE_PS2_MOUSE < 1
SET_CF();
SET_AH(UNSUPPORTED_FUNCTION);
#else
ebda_seg = read_word(0x0040, 0x000E);
switch (GET_AL()) {
case 0: // Disable/Enable Mouse
BX_DEBUG("case 0:\n");
switch (GET_BH()) {
case 0: // Disable Mouse
BX_DEBUG("case 0: disable mouse\n");
inhibit_mouse_int_and_events(); // disable IRQ12 and packets
ret = send_to_mouse_ctrl(0xF5); // disable mouse command
if (ret == 0) {
ret = get_mouse_data(&mouse_data1);
if ( (ret == 0) || (mouse_data1 == 0xFA) ) {
CLEAR_CF();
SET_AH(0);
return;
}
}
// error
SET_CF();
SET_AH(ret);
return;
break;
case 1: // Enable Mouse
BX_DEBUG("case 1: enable mouse\n");
mouse_flags_2 = read_byte(ebda_seg, 0x0027);
if ( (mouse_flags_2 & 0x80) == 0 ) {
//BX_DEBUG("INT 15h C2 Enable Mouse, no far call handler\n");
SET_CF(); // error
SET_AH(5); // no far call installed
return;
}
inhibit_mouse_int_and_events(); // disable IRQ12 and packets
ret = send_to_mouse_ctrl(0xF4); // enable mouse command
if (ret == 0) {
ret = get_mouse_data(&mouse_data1);
if ( (ret == 0) && (mouse_data1 == 0xFA) ) {
enable_mouse_int_and_events(); // turn IRQ12 and packet generation on
CLEAR_CF();
SET_AH(0);
return;
}
}
SET_CF();
SET_AH(ret);
return;
default: // invalid subfunction
//BX_DEBUG("INT 15h C2 AL=0, BH=%02x\n", (unsigned) GET_BH());
SET_CF(); // error
SET_AH(1); // invalid subfunction
return;
}
break;
case 1: // Reset Mouse
case 5: // Initialize Mouse
BX_DEBUG("case 1 or 5:\n");
if (GET_AL() == 5) {
if (GET_BH() != 3)
BX_PANIC("INT 15h C2 AL=5, BH=%02x", (unsigned) GET_BH());
mouse_flags_2 = read_byte(ebda_seg, 0x0027);
mouse_flags_2 = (mouse_flags_2 & 0x00) | GET_BH();
mouse_flags_1 = 0x00;
write_byte(ebda_seg, 0x0026, mouse_flags_1);
write_byte(ebda_seg, 0x0027, mouse_flags_2);
}
inhibit_mouse_int_and_events(); // disable IRQ12 and packets
ret = send_to_mouse_ctrl(0xFF); // disable mouse command
if (ret == 0) {
ret = get_mouse_data(&mouse_data3);
if (mouse_data3 != 0xfa)
BX_PANIC("Mouse reset returned %02x (should be ack)", (unsigned)mouse_data3);
if ( ret == 0 ) {
ret = get_mouse_data(&mouse_data1);
if ( ret == 0 ) {
ret = get_mouse_data(&mouse_data2);
if ( ret == 0 ) {
// turn IRQ12 and packet generation on
enable_mouse_int_and_events();
CLEAR_CF();
SET_AH(0);
SET_BL(mouse_data1);
SET_BH(mouse_data2);
return;
}
}
}
}
// error
SET_CF();
SET_AH(ret);
return;
case 2: // Set Sample Rate
BX_DEBUG("case 2:\n");
switch (GET_BH()) {
case 0: // 10 reports/sec
case 1: // 20 reports/sec
case 2: // 40 reports/sec
case 3: // 60 reports/sec
case 4: // 80 reports/sec
case 5: // 100 reports/sec (default)
case 6: // 200 reports/sec
CLEAR_CF();
SET_AH(0);
break;
default:
BX_PANIC("INT 15h C2 AL=2, BH=%02x", (unsigned) GET_BH());
}
break;
case 3: // Set Resolution
BX_DEBUG("case 3:\n");
// BX:
// 0 = 25 dpi, 1 count per millimeter
// 1 = 50 dpi, 2 counts per millimeter
// 2 = 100 dpi, 4 counts per millimeter
// 3 = 200 dpi, 8 counts per millimeter
CLEAR_CF();
SET_AH(0);
break;
case 4: // Get Device ID
BX_DEBUG("case 4:\n");
CLEAR_CF();
SET_AH(0);
SET_BH(0);
break;
case 6: // Return Status & Set Scaling Factor...
BX_DEBUG("case 6:\n");
switch (GET_BH()) {
case 0: // Return Status
comm_byte = inhibit_mouse_int_and_events(); // disable IRQ12 and packets
ret = send_to_mouse_ctrl(0xE9); // get mouse info command
if (ret == 0) {
ret = get_mouse_data(&mouse_data1);
if (mouse_data1 != 0xfa)
BX_PANIC("Mouse status returned %02x (should be ack)", (unsigned)mouse_data1);
if (ret == 0) {
ret = get_mouse_data(&mouse_data1);
if ( ret == 0 ) {
ret = get_mouse_data(&mouse_data2);
if ( ret == 0 ) {
ret = get_mouse_data(&mouse_data3);
if ( ret == 0 ) {
CLEAR_CF();
SET_AH(0);
SET_BL(mouse_data1);
SET_CL(mouse_data2);
SET_DL(mouse_data3);
set_kbd_command_byte(comm_byte); // restore IRQ12 and serial enable
return;
}
}
}
}
}
// error
SET_CF();
SET_AH(ret);
set_kbd_command_byte(comm_byte); // restore IRQ12 and serial enable
return;
case 1: // Set Scaling Factor to 1:1
CLEAR_CF();
SET_AH(0);
break;
default:
BX_PANIC("INT 15h C2 AL=6, BH=%02x", (unsigned) GET_BH());
}
break;
case 7: // Set Mouse Handler Address
BX_DEBUG("case 7:\n");
mouse_driver_seg = ES;
mouse_driver_offset = BX;
write_word(ebda_seg, 0x0022, mouse_driver_offset);
write_word(ebda_seg, 0x0024, mouse_driver_seg);
mouse_flags_2 = read_byte(ebda_seg, 0x0027);
mouse_flags_2 |= 0x80;
write_byte(ebda_seg, 0x0027, mouse_flags_2);
CLEAR_CF();
SET_AH(0);
break;
default:
BX_DEBUG("case default:\n");
SET_AH(1); // invalid function
SET_CF();
}
#endif
break;
case 0xC4:
case 0xD8:
case 0xe0:
default:
BX_INFO("*** int 15h function AX=%04x, BX=%04x not yet supported!\n",
(unsigned) AX, (unsigned) BX);
SET_CF();
SET_AH(UNSUPPORTED_FUNCTION);
break;
}
}
void
int16_function(DI, SI, BP, SP, BX, DX, CX, AX, FLAGS)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX, FLAGS;
{
Bit8u scan_code, ascii_code, shift_flags;
//BX_DEBUG("int16: AX=%04x BX=%04x CX=%04x DX=%04x \n", AX, BX, CX, DX);
switch (GET_AH()) {
case 0x00: /* read keyboard input */
if ( !dequeue_key(&scan_code, &ascii_code, 1) ) {
BX_PANIC("KBD: int16h: out of keyboard input");
}
if (ascii_code == 0xE0) ascii_code = 0;
AX = (scan_code << 8) | ascii_code;
break;
case 0x01: /* check keyboard status */
if ( !dequeue_key(&scan_code, &ascii_code, 0) ) {
SET_ZF();
return;
}
if (ascii_code == 0xE0) ascii_code = 0;
AX = (scan_code << 8) | ascii_code;
CLEAR_ZF();
break;
case 0x02: /* get shift flag status */
shift_flags = read_byte(0x0040, 0x17);
SET_AL(shift_flags);
break;
case 0x09: /* GET KEYBOARD FUNCTIONALITY */
// bit Bochs Description
// 7 0 reserved
// 6 0 INT 16/AH=20h-22h supported (122-key keyboard support)
// 5 1 INT 16/AH=10h-12h supported (enhanced keyboard support)
// 4 1 INT 16/AH=0Ah supported
// 3 0 INT 16/AX=0306h supported
// 2 0 INT 16/AX=0305h supported
// 1 0 INT 16/AX=0304h supported
// 0 0 INT 16/AX=0300h supported
//
SET_AL(0x30);
break;
case 0x0A: /* GET KEYBOARD ID */
// translated
BX=0x41AB;
// passthru (FIXME)
// BX=0x83AB;
break;
case 0x10: /* read MF-II keyboard input */
if ( !dequeue_key(&scan_code, &ascii_code, 1) ) {
BX_PANIC("KBD: int16h: out of keyboard input");
}
if (ascii_code == 0) ascii_code = 0xE0;
AX = (scan_code << 8) | ascii_code;
break;
case 0x11: /* check MF-II keyboard status */
if ( !dequeue_key(&scan_code, &ascii_code, 0) ) {
SET_ZF();
return;
}
if (ascii_code == 0) ascii_code = 0xE0;
AX = (scan_code << 8) | ascii_code;
CLEAR_ZF();
break;
case 0x12: /* get extended keyboard status */
shift_flags = read_byte(0x0040, 0x17);
SET_AL(shift_flags);
shift_flags = read_byte(0x0040, 0x18);
SET_AH(shift_flags);
BX_DEBUG("int16: func 12 sending %04x\n",AX);
break;
case 0x92: /* keyboard capability check called by DOS 5.0+ keyb */
SET_AH(0x80); // function int16 ah=0x10-0x12 supported
break;
case 0xA2: /* 122 keys capability check called by DOS 5.0+ keyb */
// don't change AH : function int16 ah=0x20-0x22 NOT supported
break;
default:
BX_INFO("KBD: unsupported int 16h function %02x\n", GET_AH());
}
}
unsigned int
dequeue_key(scan_code, ascii_code, incr)
Bit8u *scan_code;
Bit8u *ascii_code;
unsigned int incr;
{
Bit16u buffer_start, buffer_end, buffer_head, buffer_tail;
Bit16u ss;
Bit8u acode, scode;
#if BX_CPU < 2
buffer_start = 0x001E;
buffer_end = 0x003E;
#else
buffer_start = read_word(0x0040, 0x0080);
buffer_end = read_word(0x0040, 0x0082);
#endif
buffer_head = read_word(0x0040, 0x001a);
buffer_tail = read_word(0x0040, 0x001c);
if (buffer_head != buffer_tail) {
ss = get_SS();
acode = read_byte(0x0040, buffer_head);
scode = read_byte(0x0040, buffer_head+1);
write_byte(ss, ascii_code, acode);
write_byte(ss, scan_code, scode);
if (incr) {
buffer_head += 2;
if (buffer_head >= buffer_end)
buffer_head = buffer_start;
write_word(0x0040, 0x001a, buffer_head);
}
return(1);
}
else {
return(0);
}
}
static char panic_msg_keyb_buffer_full[] = "%s: keyboard input buffer full";
Bit8u
inhibit_mouse_int_and_events()
{
Bit8u command_byte, prev_command_byte;
// Turn off IRQ generation and aux data line
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"inhibmouse");
outb(0x64, 0x20); // get command byte
while ( (inb(0x64) & 0x01) != 0x01 );
prev_command_byte = inb(0x60);
command_byte = prev_command_byte;
//while ( (inb(0x64) & 0x02) );
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"inhibmouse");
command_byte &= 0xfd; // turn off IRQ 12 generation
command_byte |= 0x20; // disable mouse serial clock line
outb(0x64, 0x60); // write command byte
outb(0x60, command_byte);
return(prev_command_byte);
}
void
enable_mouse_int_and_events()
{
Bit8u command_byte;
// Turn on IRQ generation and aux data line
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"enabmouse");
outb(0x64, 0x20); // get command byte
while ( (inb(0x64) & 0x01) != 0x01 );
command_byte = inb(0x60);
//while ( (inb(0x64) & 0x02) );
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"enabmouse");
command_byte |= 0x02; // turn on IRQ 12 generation
command_byte &= 0xdf; // enable mouse serial clock line
outb(0x64, 0x60); // write command byte
outb(0x60, command_byte);
}
Bit8u
send_to_mouse_ctrl(sendbyte)
Bit8u sendbyte;
{
Bit8u response;
// wait for chance to write to ctrl
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"sendmouse");
outb(0x64, 0xD4);
outb(0x60, sendbyte);
return(0);
}
Bit8u
get_mouse_data(data)
Bit8u *data;
{
Bit8u response;
Bit16u ss;
while ( (inb(0x64) & 0x21) != 0x21 ) {
}
response = inb(0x60);
ss = get_SS();
write_byte(ss, data, response);
return(0);
}
void
set_kbd_command_byte(command_byte)
Bit8u command_byte;
{
if ( inb(0x64) & 0x02 )
BX_PANIC(panic_msg_keyb_buffer_full,"setkbdcomm");
outb(0x64, 0xD4);
outb(0x64, 0x60); // write command byte
outb(0x60, command_byte);
}
void
int09_function(DI, SI, BP, SP, BX, DX, CX, AX)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX;
{
Bit8u scancode, asciicode, shift_flags;
Bit8u mf2_flags, mf2_state, led_flags;
//
// DS has been set to F000 before call
//
scancode = GET_AL();
if (scancode == 0) {
BX_INFO("KBD: int09 handler: AL=0\n");
return;
}
shift_flags = read_byte(0x0040, 0x17);
mf2_flags = read_byte(0x0040, 0x18);
mf2_state = read_byte(0x0040, 0x96);
led_flags = read_byte(0x0040, 0x97);
asciicode = 0;
switch (scancode) {
case 0x3a: /* Caps Lock press */
shift_flags |= 0x40;
write_byte(0x0040, 0x17, shift_flags);
mf2_flags |= 0x40;
write_byte(0x0040, 0x18, mf2_flags);
led_flags |= 0x04;
write_byte(0x0040, 0x97, led_flags);
break;
case 0xba: /* Caps Lock release */
mf2_flags &= ~0x40;
write_byte(0x0040, 0x18, mf2_flags);
break;
case 0x2a: /* L Shift press */
shift_flags &= ~0x40;
shift_flags |= 0x02;
write_byte(0x0040, 0x17, shift_flags);
led_flags &= ~0x04;
write_byte(0x0040, 0x97, led_flags);
break;
case 0xaa: /* L Shift release */
shift_flags &= ~0x02;
write_byte(0x0040, 0x17, shift_flags);
break;
case 0x36: /* R Shift press */
shift_flags &= ~0x40;
shift_flags |= 0x01;
write_byte(0x0040, 0x17, shift_flags);
led_flags &= ~0x04;
write_byte(0x0040, 0x97, led_flags);
break;
case 0xb6: /* R Shift release */
shift_flags &= ~0x01;
write_byte(0x0040, 0x17, shift_flags);
break;
case 0x1d: /* Ctrl press */
shift_flags |= 0x04;
write_byte(0x0040, 0x17, shift_flags);
if (mf2_state & 0x01) {
mf2_flags |= 0x04;
} else {
mf2_flags |= 0x01;
}
write_byte(0x0040, 0x18, mf2_flags);
break;
case 0x9d: /* Ctrl release */
shift_flags &= ~0x04;
write_byte(0x0040, 0x17, shift_flags);
if (mf2_state & 0x01) {
mf2_flags &= ~0x04;
} else {
mf2_flags &= ~0x01;
}
write_byte(0x0040, 0x18, mf2_flags);
break;
case 0x38: /* Alt press */
shift_flags |= 0x08;
write_byte(0x0040, 0x17, shift_flags);
if (mf2_state & 0x01) {
mf2_flags |= 0x08;
} else {
mf2_flags |= 0x02;
}
write_byte(0x0040, 0x18, mf2_flags);
break;
case 0xb8: /* Alt release */
shift_flags &= ~0x08;
write_byte(0x0040, 0x17, shift_flags);
if (mf2_state & 0x01) {
mf2_flags &= ~0x08;
} else {
mf2_flags &= ~0x02;
}
write_byte(0x0040, 0x18, mf2_flags);
break;
case 0x45: /* Num Lock press */
if ((mf2_state & 0x01) == 0) {
mf2_flags |= 0x20;
write_byte(0x0040, 0x18, mf2_flags);
if (shift_flags & 0x20) {
shift_flags &= ~0x20;
led_flags &= ~0x02;
} else {
shift_flags |= 0x20;
led_flags |= 0x02;
}
write_byte(0x0040, 0x17, shift_flags);
write_byte(0x0040, 0x97, led_flags);
}
break;
case 0xc5: /* Num Lock release */
if ((mf2_state & 0x01) == 0) {
mf2_flags &= ~0x20;
write_byte(0x0040, 0x18, mf2_flags);
}
break;
case 0x46: /* Scroll Lock press */
mf2_flags |= 0x10;
write_byte(0x0040, 0x18, mf2_flags);
if (shift_flags & 0x10) {
shift_flags &= ~0x10;
led_flags &= ~0x01;
} else {
shift_flags |= 0x10;
led_flags |= 0x01;
}
write_byte(0x0040, 0x17, shift_flags);
write_byte(0x0040, 0x97, led_flags);
break;
case 0xc6: /* Scroll Lock release */
mf2_flags &= ~0x10;
write_byte(0x0040, 0x18, mf2_flags);
break;
default:
if (scancode & 0x80) return; /* toss key releases ... */
if (scancode > MAX_SCAN_CODE) {
BX_INFO("KBD: int09h_handler(): unknown scancode read!");
return;
}
if (shift_flags & 0x08) { /* ALT */
asciicode = scan_to_scanascii[scancode].alt;
scancode = scan_to_scanascii[scancode].alt >> 8;
}
else if (shift_flags & 0x04) { /* CONTROL */
asciicode = scan_to_scanascii[scancode].control;
scancode = scan_to_scanascii[scancode].control >> 8;
}
else if (shift_flags & 0x43) { /* CAPSLOCK + LSHIFT + RSHIFT */
/* check if both CAPSLOCK and a SHIFT key are pressed */
if ((shift_flags & 0x03) && (shift_flags & 0x40)) {
asciicode = scan_to_scanascii[scancode].normal;
scancode = scan_to_scanascii[scancode].normal >> 8;
}
else {
asciicode = scan_to_scanascii[scancode].shift;
scancode = scan_to_scanascii[scancode].shift >> 8;
}
}
else {
asciicode = scan_to_scanascii[scancode].normal;
scancode = scan_to_scanascii[scancode].normal >> 8;
}
if (scancode==0 && asciicode==0) {
BX_INFO("KBD: int09h_handler(): scancode & asciicode are zero?");
}
enqueue_key(scancode, asciicode);
break;
}
mf2_state &= ~0x01;
}
void
enqueue_key(scan_code, ascii_code)
Bit8u scan_code, ascii_code;
{
Bit16u buffer_start, buffer_end, buffer_head, buffer_tail, temp_tail;
//BX_INFO("KBD: enqueue_key() called scan:%02x, ascii:%02x\n",
// scan_code, ascii_code);
#if BX_CPU < 2
buffer_start = 0x001E;
buffer_end = 0x003E;
#else
buffer_start = read_word(0x0040, 0x0080);
buffer_end = read_word(0x0040, 0x0082);
#endif
buffer_head = read_word(0x0040, 0x001A);
buffer_tail = read_word(0x0040, 0x001C);
temp_tail = buffer_tail;
buffer_tail += 2;
if (buffer_tail >= buffer_end)
buffer_tail = buffer_start;
if (buffer_tail == buffer_head) {
BX_PANIC("KBD: dropped key scan=%02x, ascii=%02x",
(int) scan_code, (int) ascii_code);
return;
}
write_byte(0x0040, temp_tail, ascii_code);
write_byte(0x0040, temp_tail+1, scan_code);
write_word(0x0040, 0x001C, buffer_tail);
}
void
int74_function(make_farcall, Z, Y, X, status)
Bit16u make_farcall, Z, Y, X, status;
{
Bit8u in_byte, index, package_count;
Bit16u ebda_seg;
Bit8u mouse_flags_1, mouse_flags_2;
BX_DEBUG("entering int74_function\n");
make_farcall = 0;
in_byte = inb(0x64);
if ( (in_byte & 0x21) != 0x21 ) {
return;
}
in_byte = inb(0x60);
BX_DEBUG("int74: read byte %02x\n", in_byte);
ebda_seg = read_word(0x0040, 0x000E);
mouse_flags_1 = read_byte(ebda_seg, 0x0026);
mouse_flags_2 = read_byte(ebda_seg, 0x0027);
if ( (mouse_flags_2 & 0x80) != 0x80 ) {
BX_PANIC("int74_function:");
}
package_count = mouse_flags_2 & 0x07;
index = mouse_flags_1 & 0x07;
write_byte(ebda_seg, 0x28 + index, in_byte);
if ( (index+1) >= package_count ) {
BX_DEBUG("int74_function: make_farcall=1\n");
status = read_byte(ebda_seg, 0x0028 + 0);
X = read_byte(ebda_seg, 0x0028 + 1);
Y = read_byte(ebda_seg, 0x0028 + 2);
Z = 0;
mouse_flags_1 = 0;
// check if far call handler installed
if (mouse_flags_2 & 0x80)
make_farcall = 1;
}
else {
mouse_flags_1++;
}
write_byte(ebda_seg, 0x0026, mouse_flags_1);
}
void
outLBA(cylinder,hd_heads,head,hd_sectors,sector,dl)
Bit16u cylinder;
Bit16u hd_heads;
Bit16u head;
Bit16u hd_sectors;
Bit16u sector;
Bit16u dl;
{
ASM_START
push bp
mov bp, sp
push eax
push ebx
push edx
xor eax,eax
mov ax,4[bp]
xor ebx,ebx
mov bl,6[bp]
imul ebx
mov bl,8[bp]
add eax,ebx
mov bl,10[bp]
imul ebx
mov bl,12[bp]
add eax,ebx
dec eax
mov dx,#0x1f3
out dx,al
mov dx,#0x1f4
mov al,ah
out dx,al
shr eax,#16
mov dx,#0x1f5
out dx,al
and ah,#0xf
mov bl,14[bp]
and bl,#1
shl bl,#4
or ah,bl
or ah,#0xe0
mov al,ah
mov dx,#0x01f6
out dx,al
pop edx
pop ebx
pop eax
pop bp
ASM_END
}
void
int13_harddisk(DI, SI, BP, SP, BX, DX, CX, AX, DS, ES, FLAGS)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX, DS, ES, FLAGS;
{
Bit8u drive, num_sectors, sector, head, status, mod;
Bit8u drive_map;
Bit8u n_drives;
Bit16u cyl_mod, ax;
Bit16u max_cylinder, cylinder, total_sectors;
Bit16u hd_cylinders;
Bit8u hd_heads, hd_sectors;
Bit16u val16;
Bit8u sector_count;
unsigned int i;
Bit16u tempbx;
Bit16u dpsize;
Bit8u checksum;
BX_DEBUG("int13 harddisk: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
write_byte(0x0040, 0x008e, 0); // clear completion flag
/* at this point, DL is >= 0x80 to be passed from the floppy int13h
handler code */
/* check how many disks first (cmos reg 0x12), return an error if
drive not present */
drive_map = inb_cmos(0x12);
drive_map = (((drive_map & 0xf0)==0) ? 0 : 1) |
(((drive_map & 0x0f)==0) ? 0 : 2);
n_drives = (drive_map==0) ? 0 :
((drive_map==3) ? 2 : 1);
if (!(drive_map & (1<<(GET_DL()&0x7f)))) { /* allow 0, 1, or 2 disks */
SET_AH(0x01);
set_disk_ret_status(0x01);
SET_CF(); /* error occurred */
return;
}
switch (GET_AH()) {
case 0x00: /* disk controller reset */
BX_DEBUG("int13_f00\n");
SET_AH(0);
set_disk_ret_status(0);
set_diskette_ret_status(0);
set_diskette_current_cyl(0, 0); /* current cylinder, diskette 1 */
set_diskette_current_cyl(1, 0); /* current cylinder, diskette 2 */
CLEAR_CF(); /* successful */
return;
break;
case 0x01: /* read disk status */
BX_DEBUG("int13_f01\n");
status = read_byte(0x0040, 0x0074);
SET_AH(status);
set_disk_ret_status(0);
/* set CF if error status read */
if (status) SET_CF();
else CLEAR_CF();
return;
break;
case 0x04: // verify disk sectors
case 0x02: // read disk sectors
drive = GET_DL();
get_hd_geometry(drive, &hd_cylinders, &hd_heads, &hd_sectors);
num_sectors = GET_AL();
cylinder = GET_CH();
cylinder |= ( ((Bit16u) GET_CL()) << 2) & 0x300;
sector = (GET_CL() & 0x3f);
head = GET_DH();
if (hd_cylinders > 1024) {
if (hd_cylinders <= 2048) {
cylinder <<= 1;
}
else if (hd_cylinders <= 4096) {
cylinder <<= 2;
}
else if (hd_cylinders <= 8192) {
cylinder <<= 3;
}
else { // hd_cylinders <= 16384
cylinder <<= 4;
}
ax = UDIV(head, hd_heads);
cyl_mod = ax & 0xff;
head = ax >> 8;
cylinder |= cyl_mod;
}
if ( (cylinder >= hd_cylinders) ||
(sector > hd_sectors) ||
(head >= hd_heads) ) {
SET_AH(1);
set_disk_ret_status(1);
SET_CF(); /* error occurred */
return;
}
if ( (num_sectors > 128) || (num_sectors == 0) )
BX_PANIC("int13_harddisk(): num_sectors out of range!");
if (head > 15)
BX_PANIC("hard drive BIOS:(read/verify) head > 15\n");
if ( GET_AH() == 0x04 ) {
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF();
return;
}
status = inb(0x1f7);
if (status & 0x80) {
BX_PANIC("hard drive BIOS:(read/verify) BUSY bit set");
}
outb(0x01f2, num_sectors);
/* activate LBA? (tomv) */
if (hd_heads > 16) {
BX_DEBUG("CHS: %x %x %x\n", cylinder, head, sector);
outLBA(cylinder,hd_heads,head,hd_sectors,sector,drive);
}
else {
outb(0x01f3, sector);
outb(0x01f4, cylinder & 0x00ff);
outb(0x01f5, cylinder >> 8);
outb(0x01f6, 0xa0 | ((drive & 0x01)<<4) | (head & 0x0f));
}
outb(0x01f7, 0x20);
while (1) {
status = inb(0x1f7);
if ( !(status & 0x80) ) break;
}
if (status & 0x01) {
BX_PANIC("hard drive BIOS:(read/verify) read error");
} else if ( !(status & 0x08) ) {
BX_DEBUG("status was %02x\n", (unsigned) status);
BX_PANIC("hard drive BIOS:(read/verify) expected DRQ=1");
}
sector_count = 0;
tempbx = BX;
ASM_START
sti ;; enable higher priority interrupts
ASM_END
while (1) {
ASM_START
;; store temp bx in real DI register
push bp
mov bp, sp
mov di, _int13_harddisk.tempbx + 2 [bp]
pop bp
;; adjust if there will be an overrun
cmp di, #0xfe00
jbe i13_f02_no_adjust
i13_f02_adjust:
sub di, #0x0200 ; sub 512 bytes from offset
mov ax, es
add ax, #0x0020 ; add 512 to segment
mov es, ax
i13_f02_no_adjust:
mov cx, #0x0100 ;; counter (256 words = 512b)
mov dx, #0x01f0 ;; AT data read port
rep
insw ;; CX words transfered from port(DX) to ES:[DI]
i13_f02_done:
;; store real DI register back to temp bx
push bp
mov bp, sp
mov _int13_harddisk.tempbx + 2 [bp], di
pop bp
ASM_END
sector_count++;
num_sectors--;
if (num_sectors == 0) {
status = inb(0x1f7);
if ( (status & 0xc9) != 0x40 )
BX_PANIC("no sectors left to read/verify, status is %02x", (unsigned) status);
break;
}
else {
status = inb(0x1f7);
if ( (status & 0xc9) != 0x48 )
BX_PANIC("more sectors left to read/verify, status is %02x", (unsigned) status);
continue;
}
}
SET_AH(0);
set_disk_ret_status(0);
SET_AL(sector_count);
CLEAR_CF(); /* successful */
return;
break;
case 0x03: /* write disk sectors */
BX_DEBUG("int13_f03\n");
drive = GET_DL ();
get_hd_geometry(drive, &hd_cylinders, &hd_heads, &hd_sectors);
num_sectors = GET_AL();
cylinder = GET_CH();
cylinder |= ( ((Bit16u) GET_CL()) << 2) & 0x300;
sector = (GET_CL() & 0x3f);
head = GET_DH();
if (hd_cylinders > 1024) {
if (hd_cylinders <= 2048) {
cylinder <<= 1;
}
else if (hd_cylinders <= 4096) {
cylinder <<= 2;
}
else if (hd_cylinders <= 8192) {
cylinder <<= 3;
}
else { // hd_cylinders <= 16384
cylinder <<= 4;
}
ax = UDIV(head, hd_heads);
cyl_mod = ax & 0xff;
head = ax >> 8;
cylinder |= cyl_mod;
}
if ( (cylinder >= hd_cylinders) ||
(sector > hd_sectors) ||
(head >= hd_heads) ) {
SET_AH( 1);
set_disk_ret_status(1);
SET_CF(); /* error occurred */
return;
}
if ( (num_sectors > 128) || (num_sectors == 0) )
BX_PANIC("int13_harddisk(): num_sectors out of range!");
if (head > 15)
BX_PANIC("hard drive BIOS:(read) head > 15\n");
status = inb(0x1f7);
if (status & 0x80) {
BX_PANIC("hard drive BIOS:(read) BUSY bit set");
}
// should check for Drive Ready Bit also in status reg
outb(0x01f2, num_sectors);
/* activate LBA? (tomv) */
if (hd_heads > 16) {
BX_DEBUG("CHS (write): %x %x %x\n", cylinder, head, sector);
outLBA(cylinder,hd_heads,head,hd_sectors,sector,GET_DL());
}
else {
outb(0x01f3, sector);
outb(0x01f4, cylinder & 0x00ff);
outb(0x01f5, cylinder >> 8);
outb(0x01f6, 0xa0 | ((GET_DL() & 0x01)<<4) | (head & 0x0f));
}
outb(0x01f7, 0x30);
// wait for busy bit to turn off after seeking
while (1) {
status = inb(0x1f7);
if ( !(status & 0x80) ) break;
}
if ( !(status & 0x08) ) {
BX_DEBUG("status was %02x\n", (unsigned) status);
BX_PANIC("hard drive BIOS:(write) data-request bit not set");
}
sector_count = 0;
tempbx = BX;
ASM_START
sti ;; enable higher priority interrupts
ASM_END
while (1) {
ASM_START
;; store temp bx in real SI register
push bp
mov bp, sp
mov si, _int13_harddisk.tempbx + 2 [bp]
pop bp
;; adjust if there will be an overrun
cmp si, #0xfe00
jbe i13_f03_no_adjust
i13_f03_adjust:
sub si, #0x0200 ; sub 512 bytes from offset
mov ax, es
add ax, #0x0020 ; add 512 to segment
mov es, ax
i13_f03_no_adjust:
mov cx, #0x0100 ;; counter (256 words = 512b)
mov dx, #0x01f0 ;; AT data read port
seg ES
rep
outsw ;; CX words tranfered from ES:[SI] to port(DX)
;; store real SI register back to temp bx
push bp
mov bp, sp
mov _int13_harddisk.tempbx + 2 [bp], si
pop bp
ASM_END
sector_count++;
num_sectors--;
if (num_sectors == 0) {
status = inb(0x1f7);
if ( (status & 0xe9) != 0x40 )
BX_PANIC("no sectors left to write, status is %02x", (unsigned) status);
break;
}
else {
status = inb(0x1f7);
if ( (status & 0xc9) != 0x48 )
BX_PANIC("more sectors left to write, status is %02x", (unsigned) status);
continue;
}
}
SET_AH(0);
set_disk_ret_status(0);
SET_AL(sector_count);
CLEAR_CF(); /* successful */
return;
break;
case 0x05: /* format disk track */
BX_DEBUG("int13_f05\n");
BX_PANIC("format disk track called");
/* nop */
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x08: /* read disk drive parameters */
BX_DEBUG("int13_f08\n");
drive = GET_DL ();
get_hd_geometry(drive, &hd_cylinders, &hd_heads, &hd_sectors);
// translate CHS
//
if (hd_cylinders <= 1024) {
// hd_cylinders >>= 0;
// hd_heads <<= 0;
}
else if (hd_cylinders <= 2048) {
hd_cylinders >>= 1;
hd_heads <<= 1;
}
else if (hd_cylinders <= 4096) {
hd_cylinders >>= 2;
hd_heads <<= 2;
}
else if (hd_cylinders <= 8192) {
hd_cylinders >>= 3;
hd_heads <<= 3;
}
else { // hd_cylinders <= 16384
hd_cylinders >>= 4;
hd_heads <<= 4;
}
max_cylinder = hd_cylinders - 2; /* 0 based */
SET_AL(0);
SET_CH(max_cylinder & 0xff);
SET_CL(((max_cylinder >> 2) & 0xc0) | (hd_sectors & 0x3f));
SET_DH(hd_heads - 1);
SET_DL(n_drives); /* returns 0, 1, or 2 hard drives */
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x09: /* initialize drive parameters */
BX_DEBUG("int13_f09\n");
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x0a: /* read disk sectors with ECC */
BX_DEBUG("int13_f0a\n");
case 0x0b: /* write disk sectors with ECC */
BX_DEBUG("int13_f0b\n");
BX_PANIC("int13h Functions 0Ah & 0Bh not implemented!");
return;
break;
case 0x0c: /* seek to specified cylinder */
BX_DEBUG("int13_f0c\n");
BX_INFO("int13h function 0ch (seek) not implemented!\n");
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x0d: /* alternate disk reset */
BX_DEBUG("int13_f0d\n");
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x10: /* check drive ready */
BX_DEBUG("int13_f10\n");
//SET_AH(0);
//set_disk_ret_status(0);
//CLEAR_CF(); /* successful */
//return;
//break;
// should look at 40:8E also???
status = inb(0x01f7);
if ( (status & 0xc0) == 0x40 ) {
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF(); // drive ready
return;
}
else {
SET_AH(0xAA);
set_disk_ret_status(0xAA);
SET_CF(); // not ready
return;
}
break;
case 0x11: /* recalibrate */
BX_DEBUG("int13_f11\n");
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x14: /* controller internal diagnostic */
BX_DEBUG("int13_f14\n");
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF(); /* successful */
SET_AL(0);
return;
break;
case 0x15: /* read disk drive size */
drive = GET_DL();
get_hd_geometry(drive, &hd_cylinders, &hd_heads, &hd_sectors);
ASM_START
push bp
mov bp, sp
mov al, _int13_harddisk.hd_heads + 2 [bp]
mov ah, _int13_harddisk.hd_sectors + 2 [bp]
mul al, ah ;; ax = heads * sectors
mov bx, _int13_harddisk.hd_cylinders + 2 [bp]
dec bx ;; use (cylinders - 1) ???
mul ax, bx ;; dx:ax = (cylinders -1) * (heads * sectors)
;; now we need to move the 32bit result dx:ax to what the
;; BIOS wants which is cx:dx.
;; and then into CX:DX on the stack
mov _int13_harddisk.CX + 2 [bp], dx
mov _int13_harddisk.DX + 2 [bp], ax
pop bp
ASM_END
SET_AH(3); // hard disk accessible
set_disk_ret_status(0); // ??? should this be 0
CLEAR_CF(); // successful
return;
break;
case 0x41: // IBM/MS installation check
/*
BX=0xaa55; // install check
SET_AH(0x30); // EDD 3.0
SET_DH(0x00); // Revision 0
CX=0x0006; // ext disk access and edd, NOT removable
CLEAR_CF();
return;
break;
*/
case 0x42: // IBM/MS extended read
case 0x43: // IBM/MS extended write
case 0x44: // IBM/MS verify sectors
case 0x48: // IBM/MS get drive parameters
case 0x4e: // ? - set hardware configuration
case 0x18: // set media type for format
case 0x45: // IBM/MS lock/unlock drive
case 0x46: // IBM/MS eject media
case 0x47: // IBM/MS extended seek
case 0x49: // IBM/MS extended media change
case 0x50: // ? - send packet command
case 0x66: //
default:
BX_INFO("int13_harddisk: unsupported AH=%02x\n", GET_AH());
SET_AH(1); // code=invalid function in AH or invalid parameter
set_disk_ret_status(1);
SET_CF(); /* unsuccessful */
return;
break;
}
}
#if BX_ELTORITO_BOOT
// ---------------------------------------------------------------------------
// Start of int13 for cdrom
// ---------------------------------------------------------------------------
void
int13_cdrom(DI, SI, BP, SP, BX, DX, CX, AX, DS, ES, FLAGS)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX, DS, ES, FLAGS;
{
Bit8u device, status;
Bit16u error;
Bit32u lba;
Bit16u count,segment,offset, i;
Bit16u ebda_seg=read_word(0x40,0x0E);
BX_DEBUG("int13 cdrom: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
// BX_DEBUG("int13 cdrom: SS=%04x DS=%04x ES=%04x DI=%04x SI=%04x\n",get_SS(), DS, ES, DI, SI);
set_disk_ret_status(0x00);
/* basic check : device should be 0xE0+ */
if((GET_DL()<0xE0) || (GET_DL()>=0xE0+BX_MAX_ATA_DEVICES)) {
SET_AH(0x01);
set_disk_ret_status(0x01);
SET_CF(); /* error occurred */
return;
}
// Get the ata channel
device=read_byte(ebda_seg,&EbdaData->cdidmap[GET_DL()-0xE0]);
/* basic check : device has to be valid */
if(device>=BX_MAX_ATA_DEVICES) {
SET_AH(0x01);
set_disk_ret_status(0x01);
SET_CF(); /* error occurred */
return;
}
switch (GET_AH()) {
// all those functions return SUCCESS
case 0x00: /* disk controller reset */
case 0x09: /* initialize drive parameters */
case 0x0c: /* seek to specified cylinder */
case 0x0d: /* alternate disk reset */
case 0x10: /* check drive ready */
case 0x11: /* recalibrate */
case 0x14: /* controller internal diagnostic */
case 0x16: /* detect disk change */
case 0x45: // IBM/MS lock/unlock drive
case 0x46: // IBM/MS eject media
case 0x47: // IBM/MS extended seek
case 0x49: // IBM/MS extended media change
case 0x4e: // ? - set hardware configuration
SET_AH(0x00);
set_disk_ret_status(0x00);
CLEAR_CF(); /* successful */
return;
break;
// all those functions return disk write-protected
case 0x03: /* write disk sectors */
case 0x05: /* format disk track */
case 0x43: // IBM/MS extended write
SET_AH(0x03);
set_disk_ret_status(0x03);
SET_CF(); /* error occurred */
return;
break;
case 0x01: /* read disk status */
status=read_byte(0x0040, 0x0074);
SET_AH(status);
if(status==0x00)
CLEAR_CF();
else
SET_CF();
return;
break;
case 0x15: /* read disk drive size */
SET_AH(0x02);
set_disk_ret_status(0x00);
CLEAR_CF();
return;
break;
case 0x41: // IBM/MS installation check
BX=0xaa55; // install check
SET_AH(0x30); // EDD 3.0
CX=0x0007; // ext disk access, removable and edd
CLEAR_CF();
return;
break;
case 0x42: // IBM/MS extended read
case 0x44: // IBM/MS verify sectors
count=read_word(DS,SI+(Bit16u)&Int13Ext->count);
// FIXME we should use the 4 words for the lba (currently the lowest 2)
lba=read_dword(DS,SI+(Bit16u)&Int13Ext->lba1);
segment=read_word(DS,SI+(Bit16u)&Int13Ext->segment);
offset=read_word(DS,SI+(Bit16u)&Int13Ext->offset);
if((error=atapi_read_sectors2048(device,count,lba,segment,offset))!=0) {
SET_AH(0x0c);
set_disk_ret_status(0x0c);
SET_CF(); /* error */
return;
}
// count stays the same in Int13Ext struct
SET_AH(0x00);
set_disk_ret_status(0x00);
CLEAR_CF();
return;
break;
case 0x48: // IBM/MS get drive parameters
// FIXME
return;
break;
// all those functions return unimplemented
case 0x02: /* read sectors */
case 0x04: /* verify sectors */
case 0x08: /* read disk drive parameters */
case 0x0a: /* read disk sectors with ECC */
case 0x0b: /* write disk sectors with ECC */
case 0x18: /* set media type for format */
case 0x50: // ? - send packet command
default:
BX_INFO("int13_cdrom: unsupported AH=%02x\n", GET_AH());
SET_AH(0x01); // code=invalid function in AH or invalid parameter
set_disk_ret_status(0x01);
SET_CF(); /* unsuccessful */
return;
break;
}
}
// ---------------------------------------------------------------------------
// End of int13 for cdrom
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// Start of int13 for eltorito functions
// ---------------------------------------------------------------------------
void
int13_eltorito(DI, SI, BP, SP, BX, DX, CX, AX, DS, ES, FLAGS)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX, DS, ES, FLAGS;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
BX_DEBUG("int13 eltorito: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
// BX_DEBUG("int13 eltorito: SS=%04x DS=%04x ES=%04x DI=%04x SI=%04x\n",get_SS(), DS, ES, DI, SI);
switch (GET_AH()) {
// FIXME ElTorito Various. Should be implemented
case 0x4a: // ElTorito - Initiate disk emu
case 0x4c: // ElTorito - Initiate disk emu and boot
case 0x4d: // ElTorito - Return Boot catalog
BX_PANIC("Int13 eltorito call with AX=%04x. Please report\n",AX);
SET_AH(0x01); // code=invalid function in AH or invalid parameter
set_disk_ret_status(0x01);
SET_CF(); /* unsuccessful */
return;
break;
case 0x4b: // ElTorito - Terminate disk emu
// FIXME ElTorito Hardcoded
write_byte(DS,SI+0x00,0x13);
write_byte(DS,SI+0x01,read_byte(ebda_seg,&EbdaData->cdemu_data.media));
write_byte(DS,SI+0x02,read_byte(ebda_seg,&EbdaData->cdemu_data.emulated_drive));
write_byte(DS,SI+0x03,read_byte(ebda_seg,&EbdaData->cdemu_data.media));
write_dword(DS,SI+0x04,read_dword(ebda_seg,&EbdaData->cdemu_data.ilba));
write_word(DS,SI+0x08,read_word(ebda_seg,&EbdaData->cdemu_data.device_spec));
write_word(DS,SI+0x0a,read_word(ebda_seg,&EbdaData->cdemu_data.buffer_segment));
write_word(DS,SI+0x0c,read_word(ebda_seg,&EbdaData->cdemu_data.load_segment));
write_word(DS,SI+0x0e,read_word(ebda_seg,&EbdaData->cdemu_data.sector_count));
write_byte(DS,SI+0x10,read_byte(ebda_seg,&EbdaData->cdemu_data.vcylinders));
write_byte(DS,SI+0x11,read_byte(ebda_seg,&EbdaData->cdemu_data.vsectors));
write_byte(DS,SI+0x12,read_byte(ebda_seg,&EbdaData->cdemu_data.vheads));
SET_AH(0x00);
CLEAR_CF();
// If we have to terminate emulation
if(GET_AL()== 0x00) {
// FIXME ElTorito Various. Should be handled accordingly to spec
write_byte(ebda_seg,&EbdaData->cdemu_data.active, 0x00); // bye bye
}
return;
break;
default:
BX_INFO("int13_eltorito: unsupported AH=%02x\n", GET_AH());
SET_AH(0x01); // code=invalid function in AH or invalid parameter
set_disk_ret_status(0x01);
SET_CF(); /* unsuccessful */
return;
break;
}
}
// ---------------------------------------------------------------------------
// End of int13 for eltorito functions
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// Start of int13 when emulating a device from the cd
// ---------------------------------------------------------------------------
void
int13_cdemu(DI, SI, BP, SP, BX, DX, CX, AX, ES, FLAGS)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX, ES, FLAGS;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit8u device, status;
Bit16u vheads, vsectors, vcylinders;
Bit16u head, sector, cylinder, nbsectors;
Bit32u vlba, ilba, slba, elba;
Bit16u before,after;
Bit16u segment,offset;
Bit16u error;
BX_DEBUG("int13 cdemu: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
//BX_DEBUG("int13 cdemu: SS=%04x ES=%04x DI=%04x SI=%04x\n", get_SS(), ES, DI, SI);
/* at this point, we are emulating a floppy/harddisk */
// FIXME ElTorito Harddisk. Harddisk emulation is not implemented
// FIXME ElTorito Various. Should handle the controller
device=read_byte(ebda_seg,&EbdaData->cdemu_data.device_spec);
set_disk_ret_status(0x00);
/* basic checks : emulation should be active, dl should equal the emulated drive */
if( ( read_byte(ebda_seg,&EbdaData->cdemu_data.active )==0)
|| ( read_byte(ebda_seg,&EbdaData->cdemu_data.emulated_drive )!=GET_DL())) {
SET_AH(0x01);
set_disk_ret_status(0x01);
SET_CF(); /* error occurred */
return;
}
switch (GET_AH()) {
// all those functions return SUCCESS
case 0x00: /* disk controller reset */
case 0x09: /* initialize drive parameters */
case 0x0c: /* seek to specified cylinder */
case 0x0d: /* alternate disk reset */ // FIXME ElTorito Various. should really reset ?
case 0x10: /* check drive ready */ // FIXME ElTorito Various. should check if ready ?
case 0x11: /* recalibrate */
case 0x14: /* controller internal diagnostic */
case 0x16: /* detect disk change */
SET_AH(0x00);
set_disk_ret_status(0x00);
CLEAR_CF(); /* successful */
return;
break;
// all those functions return disk write-protected
case 0x03: /* write disk sectors */
case 0x05: /* format disk track */
SET_AH(0x03);
set_disk_ret_status(0x03);
SET_CF(); /* error occurred */
return;
break;
case 0x01: /* read disk status */
status=read_byte(0x0040, 0x0074);
SET_AH(status);
if(status==0x00)
CLEAR_CF();
else
SET_CF();
return;
break;
case 0x02: // read disk sectors
case 0x04: // verify disk sectors
vsectors=read_word(ebda_seg,&EbdaData->cdemu_data.vsectors);
vcylinders=read_word(ebda_seg,&EbdaData->cdemu_data.vcylinders);
vheads=read_word(ebda_seg,&EbdaData->cdemu_data.vheads);
ilba=read_dword(ebda_seg,&EbdaData->cdemu_data.ilba);
sector = GET_CL() & 0x003f;
cylinder = (GET_CL() & 0x00c0) << 2 | GET_CH();
head = GET_DH();
nbsectors = GET_AL();
segment = ES;
offset = BX;
// no sector to read ?
if(nbsectors==0) {
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF(); /* successful */
return;
}
// sanity checks sco openserver needs this!
if ((sector-1 >= vsectors)
|| (cylinder >= vcylinders)
|| (head >= vheads)) {
SET_AH(0x01);
set_disk_ret_status(0x01);
SET_CF(); /* successful */
return;
}
segment=ES+(BX/16);
offset=BX%16;
// calculate the virtual lba inside the image
vlba=((((Bit32u)cylinder*(Bit32u)vheads)+(Bit32u)head)*(Bit32u)vsectors)+((Bit32u)(sector-1));
// In advance so we don't loose the count
SET_AL(nbsectors);
// start lba on cd
slba=(Bit16u)vlba/4; // FIXME ElTorito Harddisk. should allow Bit32u image size - needs compiler helper function
before=(Bit16u)vlba%4;
// end lba on cd
elba=(Bit16u)(vlba+nbsectors-1)/4; // FIXME ElTorito Harddisk. should allow Bit32u image size - needs compiler helper function
after=3-((Bit16u)(vlba+nbsectors-1)%4);
if((error=atapi_read_sectors512(device,(Bit16u)(elba-slba+1),ilba+slba,before,after,segment,offset))!=0) {
SET_AH(0x02);
set_disk_ret_status(0x02);
SET_AL(0);
SET_CF(); /* error */
return;
}
SET_AH(0);
set_disk_ret_status(0);
CLEAR_CF(); /* successful */
return;
break;
case 0x08: /* read disk drive parameters */
vsectors=read_word(ebda_seg,&EbdaData->cdemu_data.vsectors);
vcylinders=read_word(ebda_seg,&EbdaData->cdemu_data.vcylinders) - 1;
vheads=read_word(ebda_seg,&EbdaData->cdemu_data.vheads) - 1;
SET_AL( 0x00 );
SET_BL( 0x00 );
SET_CH( vcylinders & 0xff );
SET_CL((( vcylinders >> 2) & 0xc0) | ( vsectors & 0x3f ));
SET_DH( vheads );
SET_DL( 0x02 ); // FIXME ElTorito Various. should send the real count of drives 1 or 2
switch(read_byte(ebda_seg,&EbdaData->cdemu_data.media)) {
case 0x01: SET_BL( 0x02 ); break;
case 0x02: SET_BL( 0x04 ); break;
case 0x03: SET_BL( 0x06 ); break;
}
SET_AH(0);
set_disk_ret_status(0);
DI = 0xefc7;
ES = 0xf000;
CLEAR_CF(); /* successful */
return;
break;
case 0x15: /* read disk drive size */
// FIXME ElTorito Harddisk. if we want to emulate a harddisk
SET_AH(0x01);
set_disk_ret_status(0x00);
CLEAR_CF();
return;
break;
// all those functions return unimplemented
case 0x0a: /* read disk sectors with ECC */
case 0x0b: /* write disk sectors with ECC */
case 0x18: /* set media type for format */
case 0x41: // IBM/MS installation check
case 0x42: // IBM/MS extended read
case 0x43: // IBM/MS extended write
case 0x44: // IBM/MS verify sectors
case 0x45: // IBM/MS lock/unlock drive
case 0x46: // IBM/MS eject media
case 0x47: // IBM/MS extended seek
case 0x48: // IBM/MS get drive parameters
case 0x49: // IBM/MS extended media change
case 0x4e: // ? - set hardware configuration
case 0x50: // ? - send packet command
default:
BX_INFO("int13_cdemu: unsupported AH=%02x\n", GET_AH());
SET_AH(0x01); // code=invalid function in AH or invalid parameter
set_disk_ret_status(0x01);
SET_CF(); /* unsuccessful */
return;
break;
}
}
// ---------------------------------------------------------------------------
// End of int13 when emulating a device from the cd
// ---------------------------------------------------------------------------
#endif // BX_ELTORITO_BOOT
//////////////////////
// FLOPPY functions //
//////////////////////
Boolean
floppy_media_known(drive)
Bit16u drive;
{
Bit8u val8;
Bit16u media_state_offset;
val8 = read_byte(0x0040, 0x003e); // diskette recal status
if (drive)
val8 >>= 1;
val8 &= 0x01;
if (val8 == 0)
return(0);
media_state_offset = 0x0090;
if (drive)
media_state_offset += 1;
val8 = read_byte(0x0040, media_state_offset);
val8 = (val8 >> 4) & 0x01;
if (val8 == 0)
return(0);
// check pass, return KNOWN
return(1);
}
Boolean
floppy_media_sense(drive)
Bit16u drive;
{
Boolean retval;
Bit16u media_state_offset;
Bit8u drive_type, config_data, media_state;
if (floppy_drive_recal(drive) == 0) {
return(0);
}
// for now cheat and get drive type from CMOS,
// assume media is same as drive type
drive_type = inb_cmos(0x10);
if (drive == 0)
drive_type >>= 4;
else
drive_type &= 0x0f;
if ( drive_type == 1 ) {
// 360K 5.25" drive
config_data = 0x00; // 0000 0000
media_state = 0x25; // 0010 0101
retval = 1;
}
else if ( drive_type == 2 ) {
// 1.2 MB 5.25" drive
config_data = 0x00; // 0000 0000
media_state = 0x25; // 0010 0101
retval = 1;
}
else if ( drive_type == 3 ) {
// 720K 3.5" drive
config_data = 0x00; // 0000 0000 ???
media_state = 0x17; // 0001 0111
retval = 1;
}
else if ( drive_type == 4 ) {
// 1.44 MB 3.5" drive
config_data = 0x00; // 0000 0000
media_state = 0x17; // 0001 0111
retval = 1;
}
else if ( drive_type == 5 ) {
// 2.88 MB 3.5" drive
config_data = 0xCC; // 1100 1100
media_state = 0xD7; // 1101 0111
retval = 1;
}
else {
// not recognized
config_data = 0x00; // 0000 0000
media_state = 0x00; // 0000 0000
retval = 0;
}
if (drive == 0)
media_state_offset = 0x90;
else
media_state_offset = 0x91;
write_byte(0x0040, 0x008B, config_data);
write_byte(0x0040, media_state_offset, media_state);
return(retval);
}
Boolean
floppy_drive_recal(drive)
Bit16u drive;
{
Bit8u val8, dor;
Bit16u curr_cyl_offset;
// set 40:3e bit 7 to 0
val8 = read_byte(0x0000, 0x043e);
val8 &= 0x7f;
write_byte(0x0000, 0x043e, val8);
// turn on motor of selected drive, DMA & int enabled, normal operation
if (drive)
dor = 0x20;
else
dor = 0x10;
dor |= 0x0c;
dor |= drive;
outb(0x03f2, dor);
// check port 3f4 for drive readiness
val8 = inb(0x3f4);
if ( (val8 & 0xf0) != 0x80 )
BX_PANIC("floppy recal:f07: ctrl not ready");
// send Recalibrate command (2 bytes) to controller
outb(0x03f5, 0x07); // 07: Recalibrate
outb(0x03f5, drive); // 0=drive0, 1=drive1
// turn on interrupts
ASM_START
sti
ASM_END
// wait on 40:3e bit 7 to become 1
val8 = (read_byte(0x0000, 0x043e) & 0x80);
while ( val8 == 0 ) {
val8 = (read_byte(0x0000, 0x043e) & 0x80);
}
val8 = 0; // separate asm from while() loop
// turn off interrupts
ASM_START
cli
ASM_END
// set 40:3e bit 7 to 0, and calibrated bit
val8 = read_byte(0x0000, 0x043e);
val8 &= 0x7f;
if (drive) {
val8 |= 0x02; // Drive 1 calibrated
curr_cyl_offset = 0x0095;
}
else {
val8 |= 0x01; // Drive 0 calibrated
curr_cyl_offset = 0x0094;
}
write_byte(0x0040, 0x003e, val8);
write_byte(0x0040, curr_cyl_offset, 0); // current cylinder is 0
return(1);
}
Boolean
floppy_drive_exists(drive)
Bit16u drive;
{
Bit8u drive_type;
// check CMOS to see if drive exists
drive_type = inb_cmos(0x10);
if (drive == 0)
drive_type >>= 4;
else
drive_type &= 0x0f;
if ( drive_type == 0 )
return(0);
else
return(1);
}
#if BX_SUPPORT_FLOPPY
void
int13_diskette_function(DI, SI, BP, SP, BX, DX, CX, AX, ES, FLAGS)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX, ES, FLAGS;
{
Bit8u drive, num_sectors, track, sector, head, status;
Bit16u base_address, base_count, base_es;
Bit8u page, mode_register, val8, dor;
Bit8u return_status[7];
Bit8u drive_type, num_floppies, ah;
Bit16u es, last_addr;
BX_DEBUG("int13 diskette: AX=%04x BX=%04x CX=%04x DX=%04x ES=%04x\n", AX, BX, CX, DX, ES);
// BX_DEBUG("int13 diskette: SS=%04x DS=%04x ES=%04x DI=%04x SI=%04x\n",get_SS(), get_DS(), ES, DI, SI);
ah = GET_AH();
switch ( ah ) {
case 0x00: // diskette controller reset
BX_DEBUG("floppy f00\n");
drive = GET_DL();
if (drive > 1) {
SET_AH(1); // invalid param
set_diskette_ret_status(1);
SET_CF();
return;
}
drive_type = inb_cmos(0x10);
if (drive == 0)
drive_type >>= 4;
else
drive_type &= 0x0f;
if (drive_type == 0) {
SET_AH(0x80); // drive not responding
set_diskette_ret_status(0x80);
SET_CF();
return;
}
SET_AH(0);
set_diskette_ret_status(0);
CLEAR_CF(); // successful
set_diskette_current_cyl(drive, 0); // current cylinder
return;
case 0x01: // Read Diskette Status
CLEAR_CF();
val8 = read_byte(0x0000, 0x0441);
SET_AH(val8);
if (val8) {
SET_CF();
}
return;
case 0x02: // Read Diskette Sectors
case 0x03: // Write Diskette Sectors
case 0x04: // Verify Diskette Sectors
num_sectors = GET_AL();
track = GET_CH();
sector = GET_CL();
head = GET_DH();
drive = GET_DL();
if ( (drive > 1) || (head > 1) ||
(num_sectors == 0) || (num_sectors > 72) ) {
BX_INFO("floppy: drive>1 || head>1 ...\n");
SET_AH(1);
set_diskette_ret_status(1);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
// see if drive exists
if (floppy_drive_exists(drive) == 0) {
SET_AH(0x80); // not responding
set_diskette_ret_status(0x80);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
// see if media in drive, and type is known
if (floppy_media_known(drive) == 0) {
if (floppy_media_sense(drive) == 0) {
SET_AH(0x0C); // Media type not found
set_diskette_ret_status(0x0C);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
}
if (ah == 0x02) {
// Read Diskette Sectors
//-----------------------------------
// set up DMA controller for transfer
//-----------------------------------
// es:bx = pointer to where to place information from diskette
// port 04: DMA-1 base and current address, channel 2
// port 05: DMA-1 base and current count, channel 2
page = (ES >> 12); // upper 4 bits
base_es = (ES << 4); // lower 16bits contributed by ES
base_address = base_es + BX; // lower 16 bits of address
// contributed by ES:BX
if ( base_address < base_es ) {
// in case of carry, adjust page by 1
page++;
}
base_count = (num_sectors * 512) - 1;
// check for 64K boundary overrun
last_addr = base_address + base_count;
if (last_addr < base_address) {
SET_AH(0x09);
set_diskette_ret_status(0x09);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
BX_DEBUG("masking DMA-1 c2\n");
outb(0x000a, 0x06);
BX_DEBUG("clear flip-flop\n");
outb(0x000c, 0x00); // clear flip-flop
outb(0x0004, base_address);
outb(0x0004, base_address>>8);
BX_DEBUG("clear flip-flop\n");
outb(0x000c, 0x00); // clear flip-flop
outb(0x0005, base_count);
outb(0x0005, base_count>>8);
// port 0b: DMA-1 Mode Register
mode_register = 0x46; // single mode, increment, autoinit disable,
// transfer type=write, channel 2
BX_DEBUG("setting mode register\n");
outb(0x000b, mode_register);
BX_DEBUG("setting page register\n");
// port 81: DMA-1 Page Register, channel 2
outb(0x0081, page);
BX_DEBUG("unmask chan 2\n");
outb(0x000a, 0x02); // unmask channel 2
BX_DEBUG("unmasking DMA-1 c2\n");
outb(0x000a, 0x02);
//--------------------------------------
// set up floppy controller for transfer
//--------------------------------------
// set 40:3e bit 7 to 0
val8 = read_byte(0x0000, 0x043e);
val8 &= 0x7f;
write_byte(0x0000, 0x043e, val8);
// turn on motor of selected drive, DMA & int enabled, normal operation
if (drive)
dor = 0x20;
else
dor = 0x10;
dor |= 0x0c;
dor |= drive;
outb(0x03f2, dor);
// check port 3f4 for drive readiness
val8 = inb(0x3f4);
if ( (val8 & 0xf0) != 0x80 )
BX_PANIC("int13_diskette:f02: ctrl not ready");
// send read-normal-data command (9 bytes) to controller
outb(0x03f5, 0xe6); // e6: read normal data
outb(0x03f5, (head << 2) | drive); // HD DR1 DR2
outb(0x03f5, track);
outb(0x03f5, head);
outb(0x03f5, sector);
outb(0x03f5, 2); // 512 byte sector size
outb(0x03f5, 0); // last sector number possible on track
outb(0x03f5, 0); // Gap length
outb(0x03f5, 0xff); // Gap length
// turn on interrupts
ASM_START
sti
ASM_END
// wait on 40:3e bit 7 to become 1
val8 = (read_byte(0x0000, 0x043e) & 0x80);
while ( val8 == 0 ) {
val8 = (read_byte(0x0000, 0x043e) & 0x80);
}
val8 = 0; // separate asm from while() loop
// turn off interrupts
ASM_START
cli
ASM_END
// set 40:3e bit 7 to 0
val8 = read_byte(0x0000, 0x043e);
val8 &= 0x7f;
write_byte(0x0000, 0x043e, val8);
// check port 3f4 for accessibility to status bytes
val8 = inb(0x3f4);
if ( (val8 & 0xc0) != 0xc0 )
BX_PANIC("int13_diskette: ctrl not ready");
// read 7 return status bytes from controller
// using loop index broken, have to unroll...
return_status[0] = inb(0x3f5);
return_status[1] = inb(0x3f5);
return_status[2] = inb(0x3f5);
return_status[3] = inb(0x3f5);
return_status[4] = inb(0x3f5);
return_status[5] = inb(0x3f5);
return_status[6] = inb(0x3f5);
// record in BIOS Data Area
write_byte(0x0040, 0x0042, return_status[0]);
write_byte(0x0040, 0x0043, return_status[1]);
write_byte(0x0040, 0x0044, return_status[2]);
write_byte(0x0040, 0x0045, return_status[3]);
write_byte(0x0040, 0x0046, return_status[4]);
write_byte(0x0040, 0x0047, return_status[5]);
write_byte(0x0040, 0x0048, return_status[6]);
if ( (return_status[0] & 0xc0) != 0 ) {
SET_AH(0x20);
set_diskette_ret_status(0x20);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
// ??? should track be new val from return_status[3] ?
set_diskette_current_cyl(drive, track);
// AL = number of sectors read (same value as passed)
SET_AH(0x00); // success
CLEAR_CF(); // success
return;
}
else if (ah == 0x03) {
// Write Diskette Sectors
//-----------------------------------
// set up DMA controller for transfer
//-----------------------------------
// es:bx = pointer to where to place information from diskette
// port 04: DMA-1 base and current address, channel 2
// port 05: DMA-1 base and current count, channel 2
page = (ES >> 12); // upper 4 bits
base_es = (ES << 4); // lower 16bits contributed by ES
base_address = base_es + BX; // lower 16 bits of address
// contributed by ES:BX
if ( base_address < base_es ) {
// in case of carry, adjust page by 1
page++;
}
base_count = (num_sectors * 512) - 1;
// check for 64K boundary overrun
last_addr = base_address + base_count;
if (last_addr < base_address) {
SET_AH(0x09);
set_diskette_ret_status(0x09);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
BX_DEBUG("masking DMA-1 c2\n");
outb(0x000a, 0x06);
outb(0x000c, 0x00); // clear flip-flop
outb(0x0004, base_address);
outb(0x0004, base_address>>8);
outb(0x000c, 0x00); // clear flip-flop
outb(0x0005, base_count);
outb(0x0005, base_count>>8);
// port 0b: DMA-1 Mode Register
mode_register = 0x4a; // single mode, increment, autoinit disable,
// transfer type=read, channel 2
outb(0x000b, mode_register);
// port 81: DMA-1 Page Register, channel 2
outb(0x0081, page);
BX_DEBUG("unmasking DMA-1 c2\n");
outb(0x000a, 0x02);
//--------------------------------------
// set up floppy controller for transfer
//--------------------------------------
// set 40:3e bit 7 to 0
val8 = read_byte(0x0000, 0x043e);
val8 &= 0x7f;
write_byte(0x0000, 0x043e, val8);
// turn on motor of selected drive, DMA & int enabled, normal operation
if (drive)
dor = 0x20;
else
dor = 0x10;
dor |= 0x0c;
dor |= drive;
outb(0x03f2, dor);
// check port 3f4 for drive readiness
val8 = inb(0x3f4);
if ( (val8 & 0xf0) != 0x80 )
BX_PANIC("int13_diskette:f03: ctrl not ready");
// send read-normal-data command (9 bytes) to controller
outb(0x03f5, 0xc5); // c5: write normal data
outb(0x03f5, (head << 2) | drive); // HD DR1 DR2
outb(0x03f5, track);
outb(0x03f5, head);
outb(0x03f5, sector);
outb(0x03f5, 2); // 512 byte sector size
outb(0x03f5, 0); // last sector number possible on track
outb(0x03f5, 0); // Gap length
outb(0x03f5, 0xff); // Gap length
// turn on interrupts
ASM_START
sti
ASM_END
// wait on 40:3e bit 7 to become 1
val8 = (read_byte(0x0000, 0x043e) & 0x80);
while ( val8 == 0 ) {
val8 = (read_byte(0x0000, 0x043e) & 0x80);
}
val8 = 0; // separate asm from while() loop
// turn off interrupts
ASM_START
cli
ASM_END
// set 40:3e bit 7 to 0
val8 = read_byte(0x0000, 0x043e);
val8 &= 0x7f;
write_byte(0x0000, 0x043e, val8);
// check port 3f4 for accessibility to status bytes
val8 = inb(0x3f4);
if ( (val8 & 0xc0) != 0xc0 )
BX_PANIC("int13_diskette: ctrl not ready");
// read 7 return status bytes from controller
// using loop index broken, have to unroll...
return_status[0] = inb(0x3f5);
return_status[1] = inb(0x3f5);
return_status[2] = inb(0x3f5);
return_status[3] = inb(0x3f5);
return_status[4] = inb(0x3f5);
return_status[5] = inb(0x3f5);
return_status[6] = inb(0x3f5);
// record in BIOS Data Area
write_byte(0x0040, 0x0042, return_status[0]);
write_byte(0x0040, 0x0043, return_status[1]);
write_byte(0x0040, 0x0044, return_status[2]);
write_byte(0x0040, 0x0045, return_status[3]);
write_byte(0x0040, 0x0046, return_status[4]);
write_byte(0x0040, 0x0047, return_status[5]);
write_byte(0x0040, 0x0048, return_status[6]);
if ( (return_status[0] & 0xc0) != 0 ) {
if ( (return_status[1] & 0x02) != 0 ) {
// diskette not writable.
// AH=status code=0x03 (tried to write on write-protected disk)
// AL=number of sectors written=0
AX = 0x0300;
SET_CF();
return;
} else {
BX_PANIC("int13_diskette_function: read error");
}
}
// ??? should track be new val from return_status[3] ?
set_diskette_current_cyl(drive, track);
// AL = number of sectors read (same value as passed)
SET_AH(0x00); // success
CLEAR_CF(); // success
return;
}
else { // if (ah == 0x04)
// Verify Diskette Sectors
// ??? should track be new val from return_status[3] ?
set_diskette_current_cyl(drive, track);
// AL = number of sectors verified (same value as passed)
CLEAR_CF(); // success
SET_AH(0x00); // success
return;
}
case 0x05: // format diskette track
BX_DEBUG("floppy f05\n");
num_sectors = GET_AL();
track = GET_CH();
head = GET_DH();
drive = GET_DL();
if ((drive > 1) || (head > 1) || (track > 79) ||
(num_sectors == 0) || (num_sectors > 18)) {
SET_AH(1);
set_diskette_ret_status(1);
SET_CF(); // error occurred
}
// see if drive exists
if (floppy_drive_exists(drive) == 0) {
SET_AH(0x80); // drive not responding
set_diskette_ret_status(0x80);
SET_CF(); // error occurred
return;
}
// see if media in drive, and type is known
if (floppy_media_known(drive) == 0) {
if (floppy_media_sense(drive) == 0) {
SET_AH(0x0C); // Media type not found
set_diskette_ret_status(0x0C);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
}
// set up DMA controller for transfer
page = (ES >> 12); // upper 4 bits
base_es = (ES << 4); // lower 16bits contributed by ES
base_address = base_es + BX; // lower 16 bits of address
// contributed by ES:BX
if ( base_address < base_es ) {
// in case of carry, adjust page by 1
page++;
}
base_count = (num_sectors * 4) - 1;
// check for 64K boundary overrun
last_addr = base_address + base_count;
if (last_addr < base_address) {
SET_AH(0x09);
set_diskette_ret_status(0x09);
SET_AL(0); // no sectors read
SET_CF(); // error occurred
return;
}
outb(0x000a, 0x06);
outb(0x000c, 0x00); // clear flip-flop
outb(0x0004, base_address);
outb(0x0004, base_address>>8);
outb(0x000c, 0x00); // clear flip-flop
outb(0x0005, base_count);
outb(0x0005, base_count>>8);
mode_register = 0x4a; // single mode, increment, autoinit disable,
// transfer type=read, channel 2
outb(0x000b, mode_register);
// port 81: DMA-1 Page Register, channel 2
outb(0x0081, page);
outb(0x000a, 0x02);
// set up floppy controller for transfer
val8 = read_byte(0x0000, 0x043e);
val8 &= 0x7f;
write_byte(0x0000, 0x043e, val8);
// turn on motor of selected drive, DMA & int enabled, normal operation
if (drive)
dor = 0x20;
else
dor = 0x10;
dor |= 0x0c;
dor |= drive;
outb(0x03f2, dor);
// check port 3f4 for drive readiness
val8 = inb(0x3f4);
if ( (val8 & 0xf0) != 0x80 )
BX_PANIC("int13_diskette:f05: ctrl not ready");
// send read-normal-data command (6 bytes) to controller
outb(0x03f5, 0x4d); // 4d: format track
outb(0x03f5, (head << 2) | drive); // HD DR1 DR2
outb(0x03f5, 2); // 512 byte sector size
outb(0x03f5, num_sectors); // number of sectors per track
outb(0x03f5, 0); // Gap length
outb(0x03f5, 0xf6); // Fill byte
// turn on interrupts
ASM_START
sti
ASM_END
// wait on 40:3e bit 7 to become 1
val8 = (read_byte(0x0000, 0x043e) & 0x80);
while ( val8 == 0 ) {
val8 = (read_byte(0x0000, 0x043e) & 0x80);
}
val8 = 0; // separate asm from while() loop
// turn off interrupts
ASM_START
cli
ASM_END
// set 40:3e bit 7 to 0
val8 = read_byte(0x0000, 0x043e);
val8 &= 0x7f;
write_byte(0x0000, 0x043e, val8);
// check port 3f4 for accessibility to status bytes
val8 = inb(0x3f4);
if ( (val8 & 0xc0) != 0xc0 )
BX_PANIC("int13_diskette: ctrl not ready");
// read 7 return status bytes from controller
// using loop index broken, have to unroll...
return_status[0] = inb(0x3f5);
return_status[1] = inb(0x3f5);
return_status[2] = inb(0x3f5);
return_status[3] = inb(0x3f5);
return_status[4] = inb(0x3f5);
return_status[5] = inb(0x3f5);
return_status[6] = inb(0x3f5);
// record in BIOS Data Area
write_byte(0x0040, 0x0042, return_status[0]);
write_byte(0x0040, 0x0043, return_status[1]);
write_byte(0x0040, 0x0044, return_status[2]);
write_byte(0x0040, 0x0045, return_status[3]);
write_byte(0x0040, 0x0046, return_status[4]);
write_byte(0x0040, 0x0047, return_status[5]);
write_byte(0x0040, 0x0048, return_status[6]);
if ( (return_status[0] & 0xc0) != 0 ) {
if ( (return_status[1] & 0x02) != 0 ) {
// diskette not writable.
// AH=status code=0x03 (tried to write on write-protected disk)
// AL=number of sectors written=0
AX = 0x0300;
SET_CF();
return;
} else {
BX_PANIC("int13_diskette_function: write error");
}
}
SET_AH(0);
set_diskette_ret_status(0);
set_diskette_current_cyl(drive, 0);
CLEAR_CF(); // successful
return;
case 0x08: // read diskette drive parameters
BX_DEBUG("floppy f08\n");
drive = GET_DL();
if (drive>1) {
AX = 0;
BX = 0;
CX = 0;
DX = 0;
ES = 0;
DI = 0;
SET_DL(num_floppies);
SET_CF();
return;
}
drive_type = inb_cmos(0x10);
num_floppies = 0;
if (drive_type & 0xf0)
num_floppies++;
if (drive_type & 0x0f)
num_floppies++;
if (drive == 0)
drive_type >>= 4;
else
drive_type &= 0x0f;
SET_BH(0);
SET_BL(drive_type);
SET_AH(0);
SET_AL(0);
SET_DL(num_floppies);
switch (drive_type) {
case 0: // none
CX = 0;
SET_DH(0); // max head #
break;
case 1: // 360KB, 5.25"
CX = 0x2709; // 40 tracks, 9 sectors
SET_DH(1); // max head #
break;
case 2: // 1.2MB, 5.25"
CX = 0x4f0f; // 80 tracks, 15 sectors
SET_DH(1); // max head #
break;
case 3: // 720KB, 3.5"
CX = 0x4f09; // 80 tracks, 9 sectors
SET_DH(1); // max head #
break;
case 4: // 1.44MB, 3.5"
CX = 0x4f12; // 80 tracks, 18 sectors
SET_DH(1); // max head #
break;
case 5: // 2.88MB, 3.5"
CX = 0x4f24; // 80 tracks, 36 sectors
SET_DH(1); // max head #
break;
default: // ?
BX_PANIC("floppy: int13: bad floppy type");
}
/* set es & di to point to 11 byte diskette param table in ROM */
DI = 0xefc7;
ES = 0xf000;
CLEAR_CF(); // success
/* disk status not changed upon success */
return;
case 0x15: // read diskette drive type
BX_DEBUG("floppy f15\n");
drive = GET_DL();
if (drive > 1) {
SET_AH(0); // only 2 drives supported
// set_diskette_ret_status here ???
SET_CF();
return;
}
drive_type = inb_cmos(0x10);
if (drive == 0)
drive_type >>= 4;
else
drive_type &= 0x0f;
CLEAR_CF(); // successful, not present
if (drive_type==0) {
SET_AH(0); // drive not present
}
else {
SET_AH(1); // drive present, does not support change line
}
#if BX_ELTORITO_BOOT
// This is mandatory. Otherwise Win98 does not boot
if((cdemu_isactive()!=00)&&(cdemu_emulated_drive()==drive))
DX+=0x0001;
#endif
return;
case 0x16: // get diskette change line status
BX_DEBUG("floppy f16\n");
drive = GET_DL();
if (drive > 1) {
SET_AH(0x01); // invalid drive
set_diskette_ret_status(0x01);
SET_CF();
return;
}
SET_AH(0x06); // change line not supported
set_diskette_ret_status(0x06);
SET_CF();
return;
case 0x17: // set diskette type for format(old)
BX_DEBUG("floppy f17\n");
/* not used for 1.44M floppies */
SET_AH(0x01); // not supported
set_diskette_ret_status(1); /* not supported */
SET_CF();
return;
case 0x18: // set diskette type for format(new)
BX_DEBUG("floppy f18\n");
SET_AH(0x01); // do later
set_diskette_ret_status(1);
SET_CF();
return;
default:
BX_INFO("int13_diskette: unsupported AH=%02x\n", GET_AH());
// if ( (ah==0x20) || ((ah>=0x41) && (ah<=0x49)) || (ah==0x4e) ) {
SET_AH(0x01); // ???
set_diskette_ret_status(1);
SET_CF();
return;
// }
}
}
#else // #if BX_SUPPORT_FLOPPY
void
int13_diskette_function(DI, SI, BP, SP, BX, DX, CX, AX, ES, FLAGS)
Bit16u DI, SI, BP, SP, BX, DX, CX, AX, ES, FLAGS;
{
Bit8u val8;
switch ( GET_AH() ) {
case 0x01: // Read Diskette Status
CLEAR_CF();
val8 = read_byte(0x0000, 0x0441);
SET_AH(val8);
if (val8) {
SET_CF();
}
return;
default:
SET_CF();
write_byte(0x0000, 0x0441, 0x01);
SET_AH(0x01);
}
}
#endif // #if BX_SUPPORT_FLOPPY
void
set_disk_ret_status(val)
Bit8u val;
{
write_byte(0x0040, 0x0074, val);
}
void
set_diskette_ret_status(value)
Bit8u value;
{
write_byte(0x0040, 0x0041, value);
}
void
set_diskette_current_cyl(drive, cyl)
Bit8u drive;
Bit8u cyl;
{
if (drive > 1)
BX_PANIC("set_diskette_current_cyl(): drive > 1");
write_byte(0x0040, 0x0094+drive, cyl);
}
void
determine_floppy_media(drive)
Bit16u drive;
{
#if 0
Bit8u val8, DOR, ctrl_info;
ctrl_info = read_byte(0x0040, 0x008F);
if (drive==1)
ctrl_info >>= 4;
else
ctrl_info &= 0x0f;
#if 0
if (drive == 0) {
DOR = 0x1c; // DOR: drive0 motor on, DMA&int enabled, normal op, drive select 0
}
else {
DOR = 0x2d; // DOR: drive1 motor on, DMA&int enabled, normal op, drive select 1
}
#endif
if ( (ctrl_info & 0x04) != 0x04 ) {
// Drive not determined means no drive exists, done.
return;
}
#if 0
// check Main Status Register for readiness
val8 = inb(0x03f4) & 0x80; // Main Status Register
if (val8 != 0x80)
BX_PANIC("d_f_m: MRQ bit not set");
// change line
// existing BDA values
// turn on drive motor
outb(0x03f2, DOR); // Digital Output Register
//
#endif
BX_PANIC("d_f_m: OK so far");
#endif
}
static char panic_msg_reg12h[] = "HD%d cmos reg 12h not type F";
static char panic_msg_reg19h[] = "HD%d cmos reg %02xh not user definable type 47";
void
get_hd_geometry(drive, hd_cylinders, hd_heads, hd_sectors)
Bit8u drive;
Bit16u *hd_cylinders;
Bit8u *hd_heads;
Bit8u *hd_sectors;
{
Bit8u hd_type;
Bit16u ss;
Bit16u cylinders;
Bit8u iobase;
ss = get_SS();
if (drive == 0x80) {
hd_type = inb_cmos(0x12) & 0xf0;
if (hd_type != 0xf0)
BX_INFO(panic_msg_reg12h,0);
hd_type = inb_cmos(0x19); // HD0: extended type
if (hd_type != 47)
BX_INFO(panic_msg_reg19h,0,0x19);
iobase = 0x1b;
} else {
hd_type = inb_cmos(0x12) & 0x0f;
if (hd_type != 0x0f)
BX_INFO(panic_msg_reg12h,1);
hd_type = inb_cmos(0x1a); // HD0: extended type
if (hd_type != 47)
BX_INFO(panic_msg_reg19h,0,0x1a);
iobase = 0x24;
}
// cylinders
cylinders = inb_cmos(iobase) | (inb_cmos(iobase+1) << 8);
write_word(ss, hd_cylinders, cylinders);
// heads
write_byte(ss, hd_heads, inb_cmos(iobase+2));
// sectors per track
write_byte(ss, hd_sectors, inb_cmos(iobase+8));
}
void
int17_function(regs, ds, iret_addr)
pusha_regs_t regs; // regs pushed from PUSHA instruction
Bit16u ds; // previous DS:, DS set to 0x0000 by asm wrapper
iret_addr_t iret_addr; // CS,IP,Flags pushed from original INT call
{
Bit16u addr,timeout;
Bit8u val8;
ASM_START
sti
ASM_END
if ((regs.u.r8.ah < 3) && (regs.u.r16.dx == 0)) {
addr = read_word(0x0040, 0x0008);
timeout = read_byte(0x0040, 0x0078) << 8;
if (regs.u.r8.ah == 0) {
outb(addr, regs.u.r8.al);
val8 = inb(addr+2);
outb(addr+2, val8 | 0x01); // send strobe
ASM_START
nop
ASM_END
outb(addr+2, val8 & ~0x01);
while (((inb(addr+1) & 0x40) == 0x40) && (timeout)) {
timeout--;
}
}
if (regs.u.r8.ah == 1) {
val8 = inb(addr+2);
outb(addr+2, val8 & ~0x04); // send init
ASM_START
nop
ASM_END
outb(addr+2, val8 | 0x04);
}
regs.u.r8.ah = inb(addr+1);
val8 = (~regs.u.r8.ah & 0x48);
regs.u.r8.ah &= 0xB7;
regs.u.r8.ah |= val8;
if (!timeout) regs.u.r8.ah |= 0x01;
ClearCF(iret_addr.flags);
} else {
SetCF(iret_addr.flags); // Unsupported
}
}
// returns bootsegment in ax, drive in bl
Bit32u
int19_function()
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit8u bootseq;
Bit8u bootdrv;
Bit8u bootcd;
Bit8u bootchk;
Bit16u bootseg;
Bit16u status;
// if BX_ELTORITO_BOOT is not defined, old behavior
// check bit 5 in CMOS reg 0x2d. load either 0x00 or 0x80 into DL
// in preparation for the intial INT 13h (0=floppy A:, 0x80=C:)
// 0: system boot sequence, first drive C: then A:
// 1: system boot sequence, first drive A: then C:
// else BX_ELTORITO_BOOT is defined
// CMOS reg 0x3D contains the boot device :
// 0x01 : floppy
// 0x02 : harddrive
// 0x03 : cdrom
// else : floppy for now.
// Get the boot sequence
#if BX_ELTORITO_BOOT
bootseq=inb_cmos(0x3d);
bootdrv=0x00; bootcd=0;
switch(bootseq) {
case 0x01: bootdrv=0x00; bootcd=0; break;
case 0x02: bootdrv=0x80; bootcd=0; break;
case 0x03: bootdrv=0x00; bootcd=1; break;
}
#else
bootseq=inb_cmos(0x2d);
bootdrv=0x00; bootcd=0;
if((bootseq&0x20)==0) bootdrv=0x80;
#endif // BX_ELTORITO_BOOT
#if BX_ELTORITO_BOOT
// We have to boot from cd
if (bootcd!=0) {
status=cdrom_boot();
// If failure
if ((status&0x00ff)!=0) {
cdrom_bootfailed_msg(status);
boot_failure_msg(bootcd, bootdrv, 1);
return 0x00000000;
}
bootseg=read_word(ebda_seg,&EbdaData->cdemu_data.load_segment);
bootdrv=(Bit8u)(status>>8);
}
#endif // BX_ELTORITO_BOOT
// We have to boot from harddisk or floppy
if (bootcd==0) {
bootseg=0x07c0;
ASM_START
push bp
mov bp, sp
mov ax, #0x0000
mov _int19_function.status + 2[bp], ax
mov dl, _int19_function.bootdrv + 2[bp]
mov ax, _int19_function.bootseg + 2[bp]
mov es, ax ;; segment
mov bx, #0x0000 ;; offset
mov ah, #0x02 ;; function 2, read diskette sector
mov al, #0x01 ;; read 1 sector
mov ch, #0x00 ;; track 0
mov cl, #0x01 ;; sector 1
mov dh, #0x00 ;; head 0
int #0x13 ;; read sector
jnc int19_load_done
mov ax, #0x0001
mov _int19_function.status + 2[bp], ax
int19_load_done:
pop bp
ASM_END
if (status!=0) {
boot_failure_msg(bootcd, bootdrv, 1);
return 0x00000000;
}
}
// check signature if instructed by cmos reg 0x38, only for floppy
// bootchk = 1 : signature check disabled
// bootchk = 0 : signature check enabled
if (bootdrv!=0) bootchk=0;
else bootchk=inb_cmos(0x38);
#if BX_ELTORITO_BOOT
// if boot from cd, no signature check
if (bootcd != 0)
bootchk=1;
#endif // BX_ELTORITO_BOOT
if (bootchk==0) {
if (read_word(bootseg,0x1fe) != 0xaa55) {
boot_failure_msg(bootcd, bootdrv, 0);
return 0x00000000;
}
}
#if BX_ELTORITO_BOOT
// Print out the boot string
boot_from_msg(bootcd, bootdrv);
#endif // BX_ELTORITO_BOOT
// return the boot segment
return (((Bit32u)bootdrv)<<16)+bootseg;
}
void
int1a_function(regs, ds, iret_addr)
pusha_regs_t regs; // regs pushed from PUSHA instruction
Bit16u ds; // previous DS:, DS set to 0x0000 by asm wrapper
iret_addr_t iret_addr; // CS,IP,Flags pushed from original INT call
{
Bit8u val8;
ASM_START
sti
ASM_END
switch (regs.u.r8.ah) {
case 0: // get current clock count
ASM_START
cli
ASM_END
regs.u.r16.cx = BiosData->ticks_high;
regs.u.r16.dx = BiosData->ticks_low;
regs.u.r8.al = BiosData->midnight_flag;
BiosData->midnight_flag = 0; // reset flag
ASM_START
sti
ASM_END
// AH already 0
ClearCF(iret_addr.flags); // OK
break;
case 1: // Set Current Clock Count
ASM_START
cli
ASM_END
BiosData->ticks_high = regs.u.r16.cx;
BiosData->ticks_low = regs.u.r16.dx;
BiosData->midnight_flag = 0; // reset flag
ASM_START
sti
ASM_END
regs.u.r8.ah = 0;
ClearCF(iret_addr.flags); // OK
break;
case 2: // Read CMOS Time
if (rtc_updating()) {
SetCF(iret_addr.flags);
break;
}
regs.u.r8.dh = inb_cmos(0x00); // Seconds
regs.u.r8.cl = inb_cmos(0x02); // Minutes
regs.u.r8.ch = inb_cmos(0x04); // Hours
regs.u.r8.dl = inb_cmos(0x0b) & 0x01; // Stat Reg B
regs.u.r8.ah = 0;
regs.u.r8.al = regs.u.r8.ch;
ClearCF(iret_addr.flags); // OK
break;
case 3: // Set CMOS Time
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1111 1101 0111 1101 0000 0000
// after 0110 0010 0110 0010 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01100000b) | 00000010b)
if (rtc_updating()) {
init_rtc();
// fall through as if an update were not in progress
}
outb_cmos(0x00, regs.u.r8.dh); // Seconds
outb_cmos(0x02, regs.u.r8.cl); // Minutes
outb_cmos(0x04, regs.u.r8.ch); // Hours
// Set Daylight Savings time enabled bit to requested value
val8 = (inb_cmos(0x0b) & 0x60) | 0x02 | (regs.u.r8.dl & 0x01);
// (reg B already selected)
outb_cmos(0x0b, val8);
regs.u.r8.ah = 0;
regs.u.r8.al = val8; // val last written to Reg B
ClearCF(iret_addr.flags); // OK
break;
case 4: // Read CMOS Date
regs.u.r8.ah = 0;
if (rtc_updating()) {
SetCF(iret_addr.flags);
break;
}
regs.u.r8.cl = inb_cmos(0x09); // Year
regs.u.r8.dh = inb_cmos(0x08); // Month
regs.u.r8.dl = inb_cmos(0x07); // Day of Month
regs.u.r8.ch = inb_cmos(0x32); // Century
regs.u.r8.al = regs.u.r8.ch;
ClearCF(iret_addr.flags); // OK
break;
case 5: // Set CMOS Date
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0000 0010 0000 0000
// after 0110 1101 0111 1101 0000 0010 0000 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01111111b)
if (rtc_updating()) {
init_rtc();
SetCF(iret_addr.flags);
break;
}
outb_cmos(0x09, regs.u.r8.cl); // Year
outb_cmos(0x08, regs.u.r8.dh); // Month
outb_cmos(0x07, regs.u.r8.dl); // Day of Month
outb_cmos(0x32, regs.u.r8.ch); // Century
val8 = inb_cmos(0x0b) & 0x7f; // clear halt-clock bit
outb_cmos(0x0b, val8);
regs.u.r8.ah = 0;
regs.u.r8.al = val8; // AL = val last written to Reg B
ClearCF(iret_addr.flags); // OK
break;
case 6: // Set Alarm Time in CMOS
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1101 1111 0101 1111 0000 0000
// after 0110 1111 0111 1111 0010 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01111111b) | 00100000b)
val8 = inb_cmos(0x0b); // Get Status Reg B
regs.u.r16.ax = 0;
if (val8 & 0x20) {
// Alarm interrupt enabled already
SetCF(iret_addr.flags); // Error: alarm in use
break;
}
if (rtc_updating()) {
init_rtc();
// fall through as if an update were not in progress
}
outb_cmos(0x01, regs.u.r8.dh); // Seconds alarm
outb_cmos(0x03, regs.u.r8.cl); // Minutes alarm
outb_cmos(0x05, regs.u.r8.ch); // Hours alarm
outb(0xa1, inb(0xa1) & 0xfe); // enable IRQ 8
// enable Status Reg B alarm bit, clear halt clock bit
outb_cmos(0x0b, (val8 & 0x7f) | 0x20);
ClearCF(iret_addr.flags); // OK
break;
case 7: // Turn off Alarm
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0010 0000 0010 0010
// after 0100 0101 0101 0101 0000 0000 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01010111b)
val8 = inb_cmos(0x0b); // Get Status Reg B
// clear clock-halt bit, disable alarm bit
outb_cmos(0x0b, val8 & 0x57); // disable alarm bit
regs.u.r8.ah = 0;
regs.u.r8.al = val8; // val last written to Reg B
ClearCF(iret_addr.flags); // OK
break;
#if BX_PCIBIOS
case 0xb1:
// real mode PCI BIOS functions now handled in assembler code
// this C code handles the error code for information only
if (regs.u.r8.al == 0xff) {
BX_INFO("PCI BIOS not present\n");
} else if (regs.u.r8.al == 0x81) {
BX_INFO("unsupported PCI BIOS function 0x%02x\n", regs.u.r8.al);
} else if (regs.u.r8.al == 0x83) {
BX_INFO("bad PCI vendor ID %04x\n", regs.u.r16.dx);
} else if (regs.u.r8.al == 0x86) {
BX_INFO("PCI device %04x:%04x not found\n", regs.u.r16.dx, regs.u.r16.cx);
}
regs.u.r8.ah = regs.u.r8.al;
SetCF(iret_addr.flags);
break;
#endif
default:
SetCF(iret_addr.flags); // Unsupported
}
}
void
int70_function(regs, ds, iret_addr)
pusha_regs_t regs; // regs pushed from PUSHA instruction
Bit16u ds; // previous DS:, DS set to 0x0000 by asm wrapper
iret_addr_t iret_addr; // CS,IP,Flags pushed from original INT call
{
// INT 70h: IRQ 8 - CMOS RTC interrupt from periodic or alarm modes
Bit8u val8;
val8 = inb_cmos(0x0c); // Status Reg C
if (val8 == 0) BX_PANIC("int70: regC 0");
if (val8 & 0x40) BX_PANIC("int70: periodic request");
if (val8 & 0x20) {
// Alarm Flag indicates alarm time matches current time
// call user INT 4Ah alarm handler
ASM_START
sti
//pushf
//;; call_ep [ds:loc]
//CALL_EP( 0x4a << 2 )
int #0x4a
cli
ASM_END
}
ASM_START
;; send EOI to slave & master PICs
mov al, #0x20
out #0xA0, al ;; slave PIC EOI
out #0x20, al ;; master PIC EOI
ASM_END
}
#if BX_USE_ATADRV
// ---------------------------------------------------------------------------
// ATA/ATAPI driver init
// ---------------------------------------------------------------------------
void atadrv_init( )
{
atatmr_init();
atasub_init();
atareg_init();
atapio_init();
}
// ---------------------------------------------------------------------------
// Start of ATA/ATAPI Driver
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// Timer functions
// ---------------------------------------------------------------------------
void atatmr_init( )
{
Bit16u ebda_seg=read_word(0x40,0x0E);
write_byte(ebda_seg,&EbdaData->atadrv_data.tmr_timeout_delay,20);
}
//*************************************************************
//
// atatmr_read_bios_timer() - function to read the BIOS timer
//
//*************************************************************
Bit32u atatmr_read_bios_timer( /* void */ )
{
Bit32u curTime;
// Pointer to the low order word
// of the BIOS time of day counter at
// location 40:6C in the BIOS data area.
// loop so we get a valid value without
// turning interrupts off and on again
do
{
// Note from cbothamy@free.fr
// This is strange.... if i call a int10 it works
// otherwise it's locked up forever. The timer 0x40:0x6C
// seems not to be updated. There must be something
// with the interrupts. Can somebody explain ?
ASM_START
mov ax,#0x0f00
int #0x10
ASM_END
curTime = read_dword( 0x40, 0x6c );
} while ( curTime != read_dword( 0x40, 0x6c ));
return curTime;
}
//*************************************************************
//
// atatmr_set_timeout() - function used to set command timeout time
//
// The command time out time is computed as follows:
//
// timer + ( tmr_time_out * 18 )
//
//**************************************************************
void atatmr_set_timeout( /* void */ )
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit32u timeOut;
// get value of BIOS timer
timeOut = atatmr_read_bios_timer();
timeOut = timeOut + ( (Bit32u)read_byte(ebda_seg,&EbdaData->atadrv_data.tmr_timeout_delay) * 18L );
// adjust timeout value if we are about to pass midnight
if ( timeOut >= 1573040L )
timeOut = timeOut - 1573040L;
// ignore the lower 4 bits
timeOut = timeOut & 0xfffffff0;
write_dword(ebda_seg,&EbdaData->atadrv_data.tmr_time_out,timeOut);
}
//*************************************************************
//
// atatmr_chk_timeout() - function used to check for command timeout.
//
// Gives non-zero return if command has timed out.
//
//**************************************************************
Bit16u atatmr_chk_timeout( /* void */ )
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit32u curTime;
Bit32u timeOut;
timeOut=read_dword(ebda_seg,&EbdaData->atadrv_data.tmr_time_out);
// get current time
curTime = atatmr_read_bios_timer();
// ignore lower 4 bits
curTime = curTime & 0xfffffff0;
// timed out yet ?
// FIXME ElTorito Various. we get the midnight bug here
// and i don't want to use == as Hale Landis does
if ( curTime < timeOut )
return 0;
return 1;
}
// ---------------------------------------------------------------------------
// subsystem functions
// ---------------------------------------------------------------------------
void atasub_init( )
{
Bit16u ebda_seg=read_word(0x40,0x0E);
atasub_zero_return_data();
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_delay_flag,0x00);
}
//*************************************************************
//
// atasub_zero_return_data() -- zero the return data areas.
//
//*************************************************************
void atasub_zero_return_data( /* void */ )
{
Bit16u ebda_seg=read_word(0x40,0x0E);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec , 0);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.to , 0);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.st2, 0);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.as2, 0);
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.totalBytesXfer, 0L);
write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits, 0);
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.drqPackets, 0L);
}
//*************************************************************
//
// atasub_trace_command() -- trace the end of a command.
//
//*************************************************************
void atasub_trace_command( /* void */ )
{
Bit16u ebda_seg=read_word(0x40,0x0E);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.st2, atapio_inbyte( CB_STAT ));
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.as2, atapio_inbyte( CB_ASTAT ));
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.er2, atapio_inbyte( CB_ERR ));
}
//*************************************************************
//
// atasub_select() - function used to select a drive.
//
// Function to select a drive. This subroutine waits for not BUSY,
// selects a drive and waits for READY and SEEK COMPLETE status.
//
//**************************************************************
Bit16u atasub_select( /* int */ dev )
int dev;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
unsigned char status;
// PAY ATTENTION HERE
// The caller may want to issue a command to a device that doesn't
// exist (for example, Exec Dev Diag), so if we see this,
// just select that device, skip all status checking and return.
// We assume the caller knows what they are doing!
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[ dev ]) < REG_CONFIG_TYPE_ATA )
{
// select the device and return
atapio_outbyte( CB_DH, dev ? CB_DH_DEV1 : CB_DH_DEV0 );
DELAY400NS;
return 0;
}
// The rest of this is the normal ATA stuff for device selection
// and we don't expect the caller to be selecting a device that
// does not exist.
// We don't know which drive is currently selected but we should
// wait for it to be not BUSY. Normally it will be not BUSY
// unless something is very wrong!
while ( 1 )
{
status = atapio_inbyte( CB_STAT );
if ( ( status & CB_STAT_BSY ) == 0 )
break;
if ( atatmr_chk_timeout() )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.to, 1);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 11);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.st2, status);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.as2, atapio_inbyte( CB_ASTAT ));
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.er2, atapio_inbyte( CB_ERR ));
return 1;
}
}
// Here we select the drive we really want to work with by
// putting 0xA0 or 0xB0 in the Drive/Head register (1f6).
atapio_outbyte( CB_DH, dev ? CB_DH_DEV1 : CB_DH_DEV0 );
DELAY400NS;
// If the selected device is an ATA device,
// wait for it to have READY and SEEK COMPLETE
// status. Normally the drive should be in this state unless
// something is very wrong (or initial power up is still in
// progress). For any other type of device, just wait for
// BSY=0 and assume the caller knows what they are doing.
while ( 1 )
{
status = atapio_inbyte( CB_STAT );
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[ dev ]) == REG_CONFIG_TYPE_ATA )
{
if ( ( status & ( CB_STAT_BSY | CB_STAT_RDY | CB_STAT_SKC ) )
== ( CB_STAT_RDY | CB_STAT_SKC ) )
break;
}
else
{
if ( ( status & CB_STAT_BSY ) == 0 )
break;
}
if ( atatmr_chk_timeout() )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.to, 1);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 12);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.st2, status);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.as2, atapio_inbyte( CB_ASTAT ));
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.er2, atapio_inbyte( CB_ERR ));
return 1;
}
}
// All done. The return values of this function are described in
// ATAIO.H.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec ))
return 1;
return 0;
}
//*************************************************************
//
// atasub_atapi_delay() - delay for at least two ticks of the bios
// timer (or at least 110ms).
//
//*************************************************************
void atasub_atapi_delay( /* int */ dev )
int dev;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
int ndx;
long lw;
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[dev]) != REG_CONFIG_TYPE_ATAPI )
return;
if ( ! read_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_delay_flag) )
return;
for ( ndx = 0; ndx < 3; ndx ++ )
{
lw = atatmr_read_bios_timer();
while ( lw == atatmr_read_bios_timer() )
/* do nothing */ ;
}
}
//*************************************************************
//
// atasub_xfer_delay() - delay until the bios timer ticks
// (from 0 to 55ms).
//
//*************************************************************
void atasub_xfer_delay( /* void */ )
{
long lw;
lw = atatmr_read_bios_timer();
while ( lw == atatmr_read_bios_timer() )
/* do nothing */ ;
}
// ---------------------------------------------------------------------------
// low-level port I/O functions
// ---------------------------------------------------------------------------
void atapio_init( )
{
Bit16u ebda_seg=read_word(0x40,0x0E);
atapio_set_iobase_addr(0x1f0,0x3f0);
write_word(ebda_seg,&EbdaData->atadrv_data.pio_xfer_width, 16);
}
//*************************************************************
//
// Set the host adapter i/o base addresses.
//
//*************************************************************
void atapio_set_iobase_addr( /* unsigned int */ base1, /* unsigned int */ base2 )
Bit16u base1,base2;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
write_word(ebda_seg,&EbdaData->atadrv_data.pio_base_addr1, base1);
write_word(ebda_seg,&EbdaData->atadrv_data.pio_base_addr2, base2);
write_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg, 0);
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_DATA ], base1 + 0); // 0
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_FR ], base1 + 1); // 1
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_SC ], base1 + 2); // 2
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_SN ], base1 + 3); // 3
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_CL ], base1 + 4); // 4
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_CH ], base1 + 5); // 5
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_DH ], base1 + 6); // 6
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_CMD ], base1 + 7); // 7
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_DC ], base2 + 6); // 8
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_DA ], base2 + 7); // 9
}
//*************************************************************
//
// Set the host adapter memory base addresses.
//
//*************************************************************
void atapio_set_memory_addr( /* unsigned int */ seg )
Bit16u seg;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u base1=0;
Bit16u base2=8;
write_word(ebda_seg,&EbdaData->atadrv_data.pio_base_addr1, base1);
write_word(ebda_seg,&EbdaData->atadrv_data.pio_base_addr2, base2);
write_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg, seg);
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_DATA ], base1 + 0); // 0
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_FR ], base1 + 1); // 1
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_SC ], base1 + 2); // 2
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_SN ], base1 + 3); // 3
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_CL ], base1 + 4); // 4
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_CH ], base1 + 5); // 5
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_DH ], base1 + 6); // 6
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_CMD ], base1 + 7); // 7
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_DC ], base2 + 6); // 8
write_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ CB_DA ], base2 + 7); // 9
}
//*************************************************************
//
// These functions do basic IN/OUT of byte and word values.
//
//*************************************************************
Bit8u atapio_inbyte( /* unsigned int */ addr )
Bit16u addr;
{
Bit8u uc;
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u pio_memory_seg=read_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg);
Bit16u regAddr=read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addr ]);
if ( pio_memory_seg )
{
uc = read_byte(pio_memory_seg,regAddr);
}
else
{
uc = (Bit8u) inb( regAddr );
}
write_byte(ebda_seg,&EbdaData->atadrv_data.pio_last_read[ addr ], uc);
return uc;
}
//*********************************************************
void atapio_outbyte( /* unsigned int */ addr, /* unsigned char */ data )
Bit16u addr;
Bit8u data;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u pio_memory_seg=read_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg);
Bit16u regAddr=read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addr ]);
if ( pio_memory_seg )
{
write_byte(pio_memory_seg, regAddr,data);
}
else
{
outb( regAddr, data );
}
write_byte(ebda_seg,&EbdaData->atadrv_data.pio_last_write[ addr ], data);
}
//*********************************************************
void atapio_dummyinb( /* unsigned int */ addr , /* Bit16u */ count )
Bit16u addr,count;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u pio_memory_seg=read_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg);
Bit16u regAddr=read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addr ]);
Bit16u lcount=count;
if(count==0) return;
if ( pio_memory_seg )
{
while(count-->0)
{
read_byte(pio_memory_seg,regAddr);
}
}
else
{
/*
while(count-->0)
{
inb(regAddr);
}
*/
ASM_START
push bp
mov bp, sp
push cx
push dx
mov cx, _atapio_dummyinb.lcount + 2[bp]
mov dx, _atapio_dummyinb.regAddr + 2[bp]
dummyinb_again:
in al, dx
loop dummyinb_again
pop cx
pop dx
pop bp
ASM_END
}
}
//*********************************************************
Bit16u atapio_inword( /* unsigned int */ addr )
Bit16u addr;
{
Bit16u ui;
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u pio_memory_seg=read_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg);
Bit16u regAddr=read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addr ]);
if ( pio_memory_seg )
{
ui = read_word(pio_memory_seg,regAddr);
}
else
{
ui = inw( regAddr );
}
return ui;
}
//*********************************************************
void atapio_outword( /* unsigned int */ addr, /* unsigned int */ data )
Bit16u addr,data;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u pio_memory_seg=read_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg);
Bit16u regAddr=read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addr ]);
if ( pio_memory_seg )
{
write_word(pio_memory_seg, regAddr,data);
}
else
{
outw( regAddr, data );
}
}
//*************************************************************
void atapio_repinsb(addr, count, seg, off)
Bit16u addr, count, seg, off;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push dx
push di
push es
mov ax,8[bp] ;; seg
mov es,ax
mov di,10[bp] ;; off
mov cx,6[bp] ;; count
mov dx,4[bp] ;; addr
cld
rep
insb
pop es
pop di
pop dx
pop cx
pop ax
pop bp
ASM_END
}
void atapio_repoutsb(addr, count, seg, off)
Bit16u addr, count, seg, off;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push dx
push si
push ds
mov ax,8[bp] ;; seg
mov ds,ax
mov si,10[bp] ;; off
mov cx,6[bp] ;; count
mov dx,4[bp] ;; addr
cld
rep
outsb
pop ds
pop si
pop dx
pop cx
pop ax
pop bp
ASM_END
}
void atapio_repinsw(addr, count, seg, off)
Bit16u addr, count, seg, off;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push dx
push di
push es
mov ax,8[bp] ;; seg
mov es,ax
mov di,10[bp] ;; off
mov cx,6[bp] ;; count
mov dx,4[bp] ;; addr
cld
rep
insw
pop es
pop di
pop dx
pop cx
pop ax
pop bp
ASM_END
}
void atapio_repoutsw(addr, count, seg, off)
Bit16u addr, count, seg, off;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push dx
push si
push ds
mov ax,8[bp] ;; seg
mov ds,ax
mov si,10[bp] ;; off
mov cx,6[bp] ;; count
mov dx,4[bp] ;; addr
cld
rep
outsw
pop ds
pop si
pop dx
pop cx
pop ax
pop bp
ASM_END
}
void atapio_repinsd(addr, count, seg, off)
Bit16u addr, count, seg, off;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push dx
push di
push es
mov ax,8[bp] ;; seg
mov es,ax
mov di,10[bp] ;; off
mov cx,6[bp] ;; count
mov dx,4[bp] ;; addr
cld
rep
insd
pop es
pop di
pop dx
pop cx
pop ax
pop bp
ASM_END
}
void atapio_repoutsd(addr, count, seg, off)
Bit16u addr, count, seg, off;
{
ASM_START
push bp
mov bp, sp
push ax
push cx
push dx
push si
push ds
mov ax,8[bp] ;; seg
mov ds,ax
mov si,10[bp] ;; off
mov cx,6[bp] ;; count
mov dx,4[bp] ;; addr
cld
rep
outsd
pop ds
pop si
pop dx
pop cx
pop ax
pop bp
ASM_END
}
//*************************************************************
//
// These functions do REP INS/OUTS (PIO data transfers).
//
//*************************************************************
// Note: atapio_rep_inbyte() can be called directly but usually it
// is called by atapio_rep_inword() based on the value of the
// pio_xfer_width variables.
void atapio_rep_inbyte( /* unsigned int */ addrDataReg,
/* unsigned int */ bufSeg, /* unsigned int */ bufOff,
/* long */ byteCnt )
Bit16u addrDataReg,bufSeg,bufOff;
Bit32u byteCnt;
{
Bit16u bCnt;
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u dataRegAddr = read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addrDataReg ]);
while ( byteCnt > 0L )
{
if ( byteCnt > 16384L )
bCnt = 16384;
else
bCnt = (Bit16u) byteCnt;
atapio_repinsb(dataRegAddr,bCnt,bufSeg,bufOff);
byteCnt = byteCnt - (long) bCnt;
atapio_inbyte( CB_ASTAT ); // just for debugging
}
}
//*********************************************************
// Note: atapio_rep_outbyte() can be called directly but usually it
// is called by atapio_rep_outword() based on the value of the
// pio_xfer_width variables.
void atapio_rep_outbyte( /* unsigned int */ addrDataReg,
/* unsigned int */ bufSeg, /* unsigned int */ bufOff,
/* long */ byteCnt )
Bit16u addrDataReg,bufSeg,bufOff;
Bit32u byteCnt;
{
Bit16u bCnt;
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u dataRegAddr = read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addrDataReg ]);
while ( byteCnt > 0L )
{
if ( byteCnt > 16384L )
bCnt = 16384;
else
bCnt = (Bit16u) byteCnt;
atapio_repoutsb(dataRegAddr,bCnt,bufSeg,bufOff);
byteCnt = byteCnt - (long) bCnt;
atapio_inbyte( CB_ASTAT ); // just for debugging
}
}
//*********************************************************
// Note: atapio_rep_indword() can be called directly but usually it
// is called by atapio_rep_inword() based on the value of the
// pio_xfer_width variable.
void atapio_rep_indword( /* unsigned int */ addrDataReg,
/* unsigned int */ bufSeg, /* unsigned int */ bufOff,
/* unsigned int */ dwordCnt )
Bit16u addrDataReg,bufSeg,bufOff,dwordCnt;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u dataRegAddr = read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addrDataReg ]);
atapio_repinsd(dataRegAddr,dwordCnt,bufSeg,bufOff);
}
//*********************************************************
// Note: atapio_rep_outdword() can be called directly but usually it
// is called by atapio_rep_outword() based on the value of the
// pio_xfer_width variable.
void atapio_rep_outdword(/* unsigned int */ addrDataReg,
/* unsigned int */ bufSeg, /* unsigned int */ bufOff,
/* unsigned int */ dwordCnt )
Bit16u addrDataReg,bufSeg,bufOff,dwordCnt;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u dataRegAddr = read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addrDataReg ]);
atapio_repoutsd(dataRegAddr,dwordCnt,bufSeg,bufOff);
}
//*********************************************************
// Note: atapio_rep_inword() is the primary way perform PIO
// Data In transfers. It will handle 8-bit, 16-bit and 32-bit
// I/O based data transfers and 8-bit and 16-bit PCMCIA Memory
// mode transfers.
void atapio_rep_inword(/* unsigned int */ addrDataReg,
/* unsigned int */ bufSeg, /* unsigned int */ bufOff,
/* unsigned int */ wordCnt )
Bit16u addrDataReg,bufSeg,bufOff,wordCnt;
{
Bit32u bCnt;
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u pio_xfer_width=read_word(ebda_seg,&EbdaData->atadrv_data.pio_xfer_width);
Bit16u dataRegAddr = read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addrDataReg ]);
Bit16u pio_memory_seg = read_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg);
if ( read_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg ))
{
// PCMCIA Memory mode data transfer.
if ( pio_xfer_width == 8 )
{
// PCMCIA Memory mode 8-bit
bCnt = ( (Bit32u) wordCnt ) * 2L;
for ( ; bCnt > 0; bCnt -- )
{
write_byte(bufSeg, bufOff, read_byte(pio_memory_seg, dataRegAddr));
}
}
else
{
// PCMCIA Memory mode 16-bit
for ( ; wordCnt > 0; wordCnt -- )
{
write_word(bufSeg, bufOff, read_word(pio_memory_seg, dataRegAddr));
}
}
}
else
{
// Data transfer using INS instruction.
if ( pio_xfer_width == 8 )
{
// do REP INS
atapio_rep_inbyte( addrDataReg, bufSeg, bufOff, ( (long) wordCnt ) * 2L );
return;
}
if ( ( pio_xfer_width == 32 ) && ( ! ( wordCnt & 0x0001 ) ) )
{
// do REP INSD
atapio_rep_indword( addrDataReg, bufSeg, bufOff, wordCnt / 2 );
return;
}
// do REP INSW
atapio_repinsw(dataRegAddr,wordCnt,bufSeg,bufOff);
}
}
//*********************************************************
// Note: atapio_rep_outword() is the primary way perform PIO
// Data Out transfers. It will handle 8-bit, 16-bit and 32-bit
// I/O based data transfers and 8-bit and 16-bit PCMCIA Memory
// mode transfers.
void atapio_rep_outword(/* unsigned int */ addrDataReg,
/* unsigned int */ bufSeg, /* unsigned int */ bufOff,
/* unsigned int */ wordCnt )
Bit16u addrDataReg,bufSeg,bufOff,wordCnt;
{
Bit32u bCnt;
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u pio_xfer_width=read_word(ebda_seg,&EbdaData->atadrv_data.pio_xfer_width);
Bit16u dataRegAddr = read_word(ebda_seg,&EbdaData->atadrv_data.pio_reg_addrs[ addrDataReg ]);
Bit16u pio_memory_seg = read_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg);
if ( read_word(ebda_seg,&EbdaData->atadrv_data.pio_memory_seg ))
{
// PCMCIA Memory mode data transfer.
if ( pio_xfer_width == 8 )
{
// PCMCIA Memory mode 8-bit
bCnt = ( (long) wordCnt ) * 2L;
for ( ; bCnt > 0; bCnt -- )
{
write_byte(pio_memory_seg, dataRegAddr, read_byte(bufSeg, bufOff));
}
}
else
{
// PCMCIA Memory mode 16-bit
for ( ; wordCnt > 0; wordCnt -- )
{
write_word(pio_memory_seg, dataRegAddr, read_word(bufSeg, bufOff));
}
}
}
else
{
// Data transfer using OUTS instruction.
if ( pio_xfer_width == 8 )
{
// do REP OUTS
atapio_rep_outbyte( addrDataReg, bufSeg, bufOff, ( (long) wordCnt ) * 2L );
return;
}
if ( ( pio_xfer_width == 32 ) && ( ! ( wordCnt & 0x0001 ) ) )
{
// do REP OUTSD
atapio_rep_outdword( addrDataReg, bufSeg, bufOff, wordCnt / 2 );
return;
}
// do REP OUTSW
atapio_repoutsw(dataRegAddr,wordCnt,bufSeg,bufOff);
}
}
// ---------------------------------------------------------------------------
// ATA (reset, non-data, data in, data out) ATAPI packet command functions
// ---------------------------------------------------------------------------
void atareg_init()
{
Bit16u ebda_seg=read_word(0x40,0x0E);
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_atapi_max_bytes, 65536L);
write_word(ebda_seg,&EbdaData->atadrv_data.reg_slow_xfer_flag, 0);
}
//*************************************************************
//
// atareg_wait_poll() - wait for INT 7x or poll for BSY=0
//
//*************************************************************
void atareg_wait_poll( /* int */ we, /* int */ pe );
void atareg_wait_poll( /* int */ we, /* int */ pe )
Bit16u we, pe;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
unsigned char status;
// Wait for INT 7x -or- wait for not BUSY -or- wait for time out.
// if ( we && read_word(ebda_seg,&EbdaData->atadrv_data.int_use_intr_flag ))
// {
// while ( 1 )
// {
// if ( read_word(ebda_seg,&EbdaData->atadrv_data.int_intr_flag )) // wait for INT 7x
// break;
// if ( atatmr_chk_timeout() ) // time out yet ?
// {
// write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.to, 1);
// write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, we);
// break;
// }
// }
// }
// else
// {
while ( 1 )
{
status = atapio_inbyte( CB_ASTAT ); // poll for not busy
if ( ( status & CB_STAT_BSY ) == 0 )
break;
if ( atatmr_chk_timeout() ) // time out yet ?
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.to, 1);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, pe);
break;
}
}
// }
// Reset the interrupt flag.
// if (read_word(ebda_seg,&EbdaData->atadrv_data.int_intr_flag) > 1 )
// {
// long failbits=read_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits);
// failbits |= FAILBIT15;
// write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits, failbits);
// }
// write_word(ebda_seg,&EbdaData->atadrv_data.int_intr_flag, 0);
}
//*************************************************************
//
// atareg_config() - Check the host adapter and determine the
// number and type of drives attached.
//
// This process is not documented by any of the ATA standards.
//
// Infomation is returned by this function is in
// reg_config_info[] -- see ATAIO.H.
//
//*************************************************************
Bit16u atareg_config( /* void */ )
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit16u numDev = 0;
Bit8u sc;
Bit8u sn;
Bit8u cl;
Bit8u ch;
Bit8u st;
Bit8u devCtrl;
// setup register values
// devCtrl = CB_DC_HD15 | ( read_word(ebda_seg,&EbdaData->atadrv_data.int_use_intr_flag) ? 0 : CB_DC_NIEN );
devCtrl = CB_DC_HD15 | CB_DC_NIEN;
// assume there are no devices
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[0], REG_CONFIG_TYPE_NONE);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[1], REG_CONFIG_TYPE_NONE);
// set up Device Control register
atapio_outbyte( CB_DC, devCtrl );
// lets see if there is a device 0
atapio_outbyte( CB_DH, CB_DH_DEV0 );
DELAY400NS;
atapio_outbyte( CB_SC, 0x55 );
atapio_outbyte( CB_SN, 0xaa );
atapio_outbyte( CB_SC, 0xaa );
atapio_outbyte( CB_SN, 0x55 );
atapio_outbyte( CB_SC, 0x55 );
atapio_outbyte( CB_SN, 0xaa );
sc = atapio_inbyte( CB_SC );
sn = atapio_inbyte( CB_SN );
if ( ( sc == 0x55 ) && ( sn == 0xaa ) )
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[0], REG_CONFIG_TYPE_UNKN);
// lets see if there is a device 1
atapio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
atapio_outbyte( CB_SC, 0x55 );
atapio_outbyte( CB_SN, 0xaa );
atapio_outbyte( CB_SC, 0xaa );
atapio_outbyte( CB_SN, 0x55 );
atapio_outbyte( CB_SC, 0x55 );
atapio_outbyte( CB_SN, 0xaa );
sc = atapio_inbyte( CB_SC );
sn = atapio_inbyte( CB_SN );
if ( ( sc == 0x55 ) && ( sn == 0xaa ) )
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[1], REG_CONFIG_TYPE_UNKN);
// now we think we know which devices, if any are there,
// so lets try a soft reset (ignoring any errors).
atapio_outbyte( CB_DH, CB_DH_DEV0 );
DELAY400NS;
atareg_reset( 0, 0 );
// lets check device 0 again, is device 0 really there?
// is it ATA or ATAPI?
atapio_outbyte( CB_DH, CB_DH_DEV0 );
DELAY400NS;
sc = atapio_inbyte( CB_SC );
sn = atapio_inbyte( CB_SN );
if ( ( sc == 0x01 ) && ( sn == 0x01 ) )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[0], REG_CONFIG_TYPE_UNKN);
cl = atapio_inbyte( CB_CL );
ch = atapio_inbyte( CB_CH );
st = atapio_inbyte( CB_STAT );
if ( ( cl == 0x14 ) && ( ch == 0xeb ) )
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[0], REG_CONFIG_TYPE_ATAPI);
else
if ( ( cl == 0x00 ) && ( ch == 0x00 ) && ( st != 0x00 ) )
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[0], REG_CONFIG_TYPE_ATA);
}
// lets check device 1 again, is device 1 really there?
// is it ATA or ATAPI?
atapio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
sc = atapio_inbyte( CB_SC );
sn = atapio_inbyte( CB_SN );
if ( ( sc == 0x01 ) && ( sn == 0x01 ) )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[1], REG_CONFIG_TYPE_UNKN);
cl = atapio_inbyte( CB_CL );
ch = atapio_inbyte( CB_CH );
st = atapio_inbyte( CB_STAT );
if ( ( cl == 0x14 ) && ( ch == 0xeb ) )
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[1], REG_CONFIG_TYPE_ATAPI);
else
if ( ( cl == 0x00 ) && ( ch == 0x00 ) && ( st != 0x00 ) )
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[1], REG_CONFIG_TYPE_ATA);
}
// If possible, select a device that exists, try device 0 first.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[1]) != REG_CONFIG_TYPE_NONE )
{
atapio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
numDev ++ ;
}
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[0]) != REG_CONFIG_TYPE_NONE )
{
atapio_outbyte( CB_DH, CB_DH_DEV0 );
DELAY400NS;
numDev ++ ;
}
// mark end of config in low level trace
// return the number of devices found
return numDev;
}
//*************************************************************
//
// atareg_reset() - Execute a Software Reset.
//
// See ATA-2 Section 9.2, ATA-3 Section 9.2, ATA-4 Section 8.3.
//
//*************************************************************
Bit16u atareg_reset( /* int */ skipFlag, /* int */ devRtrn )
Bit16u skipFlag, devRtrn;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit8u sc;
Bit8u sn;
Bit8u status;
Bit8u devCtrl;
// setup register values
// devCtrl = CB_DC_HD15 | ( read_word(ebda_seg,&EbdaData->atadrv_data.int_use_intr_flag) ? 0 : CB_DC_NIEN );
devCtrl = CB_DC_HD15 | CB_DC_NIEN;
// Reset error return data.
atasub_zero_return_data();
// initialize the command timeout counter
atatmr_set_timeout();
// Set and then reset the soft reset bit in the Device Control
// register. This causes device 0 be selected.
if ( ! skipFlag )
{
atapio_outbyte( CB_DC, devCtrl | CB_DC_SRST );
DELAY400NS;
atapio_outbyte( CB_DC, devCtrl );
DELAY400NS;
}
// If there is a device 0, wait for device 0 to set BSY=0.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[0]) != REG_CONFIG_TYPE_NONE )
{
atasub_atapi_delay( 0 );
while ( 1 )
{
status = atapio_inbyte( CB_STAT );
if ( ( status & CB_STAT_BSY ) == 0 )
break;
if ( atatmr_chk_timeout() )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.to, 1);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 1);
break;
}
}
}
// If there is a device 1, wait until device 1 allows
// register access.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[1]) != REG_CONFIG_TYPE_NONE )
{
atasub_atapi_delay( 1 );
while ( 1 )
{
atapio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
sc = atapio_inbyte( CB_SC );
sn = atapio_inbyte( CB_SN );
if ( ( sc == 0x01 ) && ( sn == 0x01 ) )
break;
if ( atatmr_chk_timeout() )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.to, 1);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 1);
break;
}
}
// Now check if drive 1 set BSY=0.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) == 0 )
{
if ( atapio_inbyte( CB_STAT ) & CB_STAT_BSY )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 3);
}
}
}
// RESET_DONE:
// We are done but now we must select the device the caller
// requested before we trace the command. This will cause
// the correct data to be returned in reg_cmd_info.
atapio_outbyte( CB_DH, devRtrn ? CB_DH_DEV1 : CB_DH_DEV0 );
DELAY400NS;
atasub_trace_command();
// If possible, select a device that exists,
// try device 0 first.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[1]) != REG_CONFIG_TYPE_NONE )
{
atapio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
}
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[0]) != REG_CONFIG_TYPE_NONE )
{
atapio_outbyte( CB_DH, CB_DH_DEV0 );
DELAY400NS;
}
// mark end of reset in low level trace
// All done. The return values of this function are described in
// ATAIO.H.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec ))
return 1;
return 0;
}
//*************************************************************
//
// atareg_non_data_lba() - Easy way to execute a non-data command
// using an LBA sector address.
//
//*************************************************************
Bit16u atareg_non_data_lba( /* int */ dev, /* int */ cmd,
/* int */ fr, /* int */ sc,
/* long */ lba )
Bit16u dev, cmd, fr, sc;
Bit32u lba;
{
Bit16u cyl;
Bit16u head, sect;
sect = (Bit16u) ( lba & 0x000000ffL );
lba = lba >> 8;
cyl = (Bit16u) ( lba & 0x0000ffff );
lba = lba >> 16;
head = ( (Bit16u) ( lba & 0x0fL ) ) | 0x40;
return atareg_non_data( dev, cmd,
fr, sc,
cyl, head, sect );
}
//*************************************************************
//
// atareg_non_data() - Execute a non-data command.
//
// Note special handling for Execute Device Diagnostics
// command when there is no device 0.
//
// See ATA-2 Section 9.5, ATA-3 Section 9.5,
// ATA-4 Section 8.8 Figure 12. Also see Section 8.5.
//
//*************************************************************
Bit16u atareg_non_data( /* int */ dev, /* int */ cmd,
/* int */ fr, /* int */ sc,
/* unsigned int */ cyl, /* int */ head, /* int */ sect )
Bit16u dev, cmd, fr, sc, cyl, head, sect;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit8u secCnt;
Bit8u secNum;
Bit8u devHead;
Bit8u devCtrl;
Bit8u cylLow;
Bit8u cylHigh;
Bit8u status;
// mark start of ND cmd in low level trace
// setup register values
// devCtrl = CB_DC_HD15 | ( read_word(ebda_seg,&EbdaData->atadrv_data.int_use_intr_flag) ? 0 : CB_DC_NIEN );
devCtrl = CB_DC_HD15 | CB_DC_NIEN;
devHead = dev ? CB_DH_DEV1 : CB_DH_DEV0;
devHead = devHead | ( head & 0x4f );
cylLow = cyl & 0x00ff;
cylHigh = ( cyl & 0xff00 ) >> 8;
// Reset error return data.
atasub_zero_return_data();
// Set command time out.
atatmr_set_timeout();
// PAY ATTENTION HERE
// If the caller is attempting a Device Reset command, then
// don't do most of the normal stuff. Device Reset has no
// parameters, should not generate an interrupt and it is the
// only command that can be written to the Command register
// when a device has BSY=1 (a very strange command!). Not
// all devices support this command (even some ATAPI devices
// don't support the command.
if ( cmd != CMD_DEVICE_RESET )
{
// Select the drive - call the atasub_select function.
// Quit now if this fails.
if ( atasub_select( dev ) )
{
atasub_trace_command();
return 1;
}
// Set up all the registers except the command register.
atapio_outbyte( CB_DC, devCtrl );
atapio_outbyte( CB_FR, fr );
atapio_outbyte( CB_SC, sc );
atapio_outbyte( CB_SN, sect );
atapio_outbyte( CB_CL, cylLow );
atapio_outbyte( CB_CH, cylHigh );
atapio_outbyte( CB_DH, devHead );
// For interrupt mode,
// Take over INT 7x and initialize interrupt controller
// and reset interrupt flag.
// int_save_int_vect();
}
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
atapio_outbyte( CB_CMD, cmd );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not even started the
// command yet.
DELAY400NS;
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[0]) == REG_CONFIG_TYPE_ATAPI )
atasub_atapi_delay( 0 );
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[1]) == REG_CONFIG_TYPE_ATAPI )
atasub_atapi_delay( 1 );
// IF
// This is an Exec Dev Diag command (cmd=0x90)
// and there is no device 0 then
// there will be no interrupt. So we must
// poll device 1 until it allows register
// access and then do normal polling of the Status
// register for BSY=0.
// ELSE
// IF
// This is a Dev Reset command (cmd=0x08) then
// there should be no interrupt. So we must
// poll for BSY=0.
// ELSE
// Do the normal wait for interrupt or polling for
// completion.
if ( ( cmd == CMD_EXECUTE_DEVICE_DIAGNOSTIC )
&&
( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[0]) == REG_CONFIG_TYPE_NONE )
)
{
while ( 1 )
{
atapio_outbyte( CB_DH, CB_DH_DEV1 );
DELAY400NS;
secCnt = atapio_inbyte( CB_SC );
secNum = atapio_inbyte( CB_SN );
if ( ( secCnt == 0x01 ) && ( secNum == 0x01 ) )
break;
if ( atatmr_chk_timeout() )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.to, 1);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 24);
break;
}
}
}
else
{
if ( cmd == CMD_DEVICE_RESET )
{
// Wait for not BUSY -or- wait for time out.
atareg_wait_poll( 0, 23 );
}
else
{
// Wait for INT 7x -or- wait for not BUSY -or- wait for time out.
atareg_wait_poll( 22, 23 );
}
}
// Read the primary status register. In keeping with the rules
// stated above the primary status register is read only
// ONCE.
status = atapio_inbyte( CB_STAT );
// Error if BUSY, DEVICE FAULT, DRQ or ERROR status now.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) == 0 )
{
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_DRQ | CB_STAT_ERR ) )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 21);
}
}
// read the output registers and trace the command.
atasub_trace_command();
// NON_DATA_DONE:
// For interrupt mode, restore the INT 7x vector.
// int_restore_int_vect();
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) )
return 1;
return 0;
}
//*************************************************************
//
// atareg_pio_data_in_lba() - Easy way to execute a PIO Data In command
// using an LBA sector address.
//
//*************************************************************
Bit16u atareg_pio_data_in_lba( /* int */ dev, /* int */ cmd,
/* int */ fr, /* int */ sc,
/* long */ lba,
/* unsigned */ seg, /* unsigned */ off,
/* int */ numSect, /* int */ multiCnt )
Bit16u dev, cmd, fr, sc, seg, off, numSect, multiCnt;
Bit32u lba;
{
Bit16u cyl;
Bit16u head, sect;
sect = (Bit16u) ( lba & 0x000000ffL );
lba = lba >> 8;
cyl = (Bit16u) ( lba & 0x0000ffff );
lba = lba >> 16;
head = ( (Bit16u) ( lba & 0x0fL ) ) | 0x40;
return atareg_pio_data_in( dev, cmd,
fr, sc,
cyl, head, sect,
seg, off,
numSect, multiCnt );
}
//*************************************************************
//
// atareg_pio_data_in() - Execute a PIO Data In command.
//
// See ATA-2 Section 9.3, ATA-3 Section 9.3,
// ATA-4 Section 8.6 Figure 10.
//
//*************************************************************
Bit16u atareg_pio_data_in( /* int */ dev, /* int */ cmd,
/* int */ fr, /* int */ sc,
/* unsigned int */ cyl, /* int */ head, /* int */ sect,
/* unsigned */ seg, /* unsigned */ off,
/* int */ numSect, /* int */ multiCnt )
Bit16u dev, cmd, fr, sc, cyl, head, sect, seg, off, numSect, multiCnt;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit8u devHead;
Bit8u devCtrl;
Bit8u cylLow;
Bit8u cylHigh;
Bit8u status;
Bit16u wordCnt;
Bit32u drqPackets,totalBytesXfer;
// mark start of PDI cmd in low level trace
// setup register values and adjust parameters
// devCtrl = CB_DC_HD15 | ( read_word(ebda_seg,&EbdaData->atadrv_data.int_use_intr_flag) ? 0 : CB_DC_NIEN );
devCtrl = CB_DC_HD15 | CB_DC_NIEN;
devHead = dev ? CB_DH_DEV1 : CB_DH_DEV0;
devHead = devHead | ( head & 0x4f );
cylLow = cyl & 0x00ff;
cylHigh = ( cyl & 0xff00 ) >> 8;
// these commands transfer only 1 sector
if ( ( cmd == CMD_IDENTIFY_DEVICE )
|| ( cmd == CMD_IDENTIFY_DEVICE_PACKET )
|| ( cmd == CMD_READ_BUFFER )
)
numSect = 1;
// only Read Multiple uses multiCnt
if ( cmd != CMD_READ_MULTIPLE )
multiCnt = 1;
// Reset error return data.
atasub_zero_return_data();
// Set command time out.
atatmr_set_timeout();
// Select the drive - call the atasub_select function.
// Quit now if this fails.
if ( atasub_select( dev ) )
{
atasub_trace_command();
return 1;
}
// Set up all the registers except the command register.
atapio_outbyte( CB_DC, devCtrl );
atapio_outbyte( CB_FR, fr );
atapio_outbyte( CB_SC, sc );
atapio_outbyte( CB_SN, sect );
atapio_outbyte( CB_CL, cylLow );
atapio_outbyte( CB_CH, cylHigh );
atapio_outbyte( CB_DH, devHead );
// For interrupt mode,
// Take over INT 7x and initialize interrupt controller
// and reset interrupt flag.
// int_save_int_vect();
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
atapio_outbyte( CB_CMD, cmd );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not even started the
// command yet.
DELAY400NS;
// Loop to read each sector.
while ( 1 )
{
// READ_LOOP:
//
// NOTE NOTE NOTE ... The primary status register (1f7) MUST NOT be
// read more than ONCE for each sector transferred! When the
// primary status register is read, the drive resets IRQ 14. The
// alternate status register (3f6) can be read any number of times.
// After INT 7x read the the primary status register ONCE
// and transfer the 256 words (REP INSW). AS SOON as BOTH the
// primary status register has been read AND the last of the 256
// words has been read, the drive is allowed to generate the next
// IRQ 14 (newer and faster drives could generate the next IRQ 14 in
// 50 microseconds or less). If the primary status register is read
// more than once, there is the possibility of a race between the
// drive and the software and the next IRQ 14 could be reset before
// the system interrupt controller sees it.
// Wait for INT 7x -or- wait for not BUSY -or- wait for time out.
atasub_atapi_delay( dev );
atareg_wait_poll( 34, 35 );
// Read the primary status register. In keeping with the rules
// stated above the primary status register is read only
// ONCE.
status = atapio_inbyte( CB_STAT );
// If there was a time out error, go to READ_DONE.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) )
break; // go to READ_DONE
// If BSY=0 and DRQ=1, transfer the data,
// even if we find out there is an error later.
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) == CB_STAT_DRQ )
{
// do the slow data transfer thing
if ( read_word(ebda_seg,&EbdaData->atadrv_data.reg_slow_xfer_flag) )
{
if ( numSect <= read_word(ebda_seg,&EbdaData->atadrv_data.reg_slow_xfer_flag) )
{
atasub_xfer_delay();
write_word(ebda_seg,&EbdaData->atadrv_data.reg_slow_xfer_flag, 0);
}
}
// increment number of DRQ packets
drqPackets=read_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.drqPackets);
drqPackets ++ ;
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.drqPackets, drqPackets);
// determine the number of sectors to transfer
wordCnt = multiCnt ? multiCnt : 1;
if ( wordCnt > numSect )
wordCnt = numSect;
wordCnt = wordCnt * 256;
// Do the REP INSW to read the data for one block.
totalBytesXfer=read_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.totalBytesXfer);
totalBytesXfer += ( wordCnt << 1 );
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.totalBytesXfer, totalBytesXfer);
atapio_rep_inword( CB_DATA, seg, off, wordCnt );
DELAY400NS; // delay so device can get the status updated
// Note: The drive should have dropped DATA REQUEST by now. If there
// are more sectors to transfer, BUSY should be active now (unless
// there is an error).
// Decrement the count of sectors to be transferred
// and increment buffer address.
numSect = numSect - ( multiCnt ? multiCnt : 1 );
seg = seg + ( 32 * ( multiCnt ? multiCnt : 1 ) );
}
// So was there any error condition?
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_ERR ) )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 31);
break; // go to READ_DONE
}
// DRQ should have been set -- was it?
if ( ( status & CB_STAT_DRQ ) == 0 )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 32);
break; // go to READ_DONE
}
// If all of the requested sectors have been transferred, make a
// few more checks before we exit.
if ( numSect < 1 )
{
// Since the drive has transferred all of the requested sectors
// without error, the drive should not have BUSY, DEVICE FAULT,
// DATA REQUEST or ERROR active now.
atasub_atapi_delay( dev );
status = atapio_inbyte( CB_STAT );
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_DRQ | CB_STAT_ERR ) )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 33);
break; // go to READ_DONE
}
// All sectors have been read without error, go to READ_DONE.
break; // go to READ_DONE
}
// This is the end of the read loop. If we get here, the loop is
// repeated to read the next sector. Go back to READ_LOOP.
}
// read the output registers and trace the command.
atasub_trace_command();
// READ_DONE:
// For interrupt mode, restore the INT 7x vector.
// int_restore_int_vect();
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) )
return 1;
return 0;
}
//*************************************************************
//
// atareg_pio_data_out_lba() - Easy way to execute a PIO Data In command
// using an LBA sector address.
//
//*************************************************************
Bit16u atareg_pio_data_out_lba( /* int */ dev, /* int */ cmd,
/* int */ fr, /* int */ sc,
/* long */ lba,
/* unsigned */ seg, /* unsigned */ off,
/* int */ numSect, /* int */ multiCnt )
Bit16u dev, cmd, fr, sc, seg, off, numSect, multiCnt;
Bit32u lba;
{
Bit16u cyl;
Bit16u head, sect;
sect = (Bit16u) ( lba & 0x000000ffL );
lba = lba >> 8;
cyl = (Bit16u) ( lba & 0x0000ffff );
lba = lba >> 16;
head = ( (Bit16u) ( lba & 0x0fL ) ) | 0x40;
return atareg_pio_data_out( dev, cmd,
fr, sc,
cyl, head, sect,
seg, off,
numSect, multiCnt );
}
//*************************************************************
//
// atareg_pio_data_out() - Execute a PIO Data Out command.
//
// See ATA-2 Section 9.4, ATA-3 Section 9.4,
// ATA-4 Section 8.7 Figure 11.
//
//*************************************************************
Bit16u atareg_pio_data_out(/* int */ dev, /* int */ cmd,
/* int */ fr, /* int */ sc,
/* unsigned int */ cyl, /* int */ head, /* int */ sect,
/* unsigned */ seg, /* unsigned */ off,
/* int */ numSect, /* int */ multiCnt )
Bit16u dev, cmd, fr, sc, cyl, head, sect, seg, off, numSect, multiCnt;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit8u devHead;
Bit8u devCtrl;
Bit8u cylLow;
Bit8u cylHigh;
Bit8u status;
Bit32u loopFlag = 1;
Bit16u wordCnt;
Bit32u drqPackets,totalBytesXfer;
// mark start of PDO cmd in low level trace
// setup register values and adjust parameters
// devCtrl = CB_DC_HD15 | ( read_word(ebda_seg,&EbdaData->atadrv_data.int_use_intr_flag) ? 0 : CB_DC_NIEN );
devCtrl = CB_DC_HD15 | CB_DC_NIEN;
devHead = dev ? CB_DH_DEV1 : CB_DH_DEV0;
devHead = devHead | ( head & 0x4f );
cylLow = cyl & 0x00ff;
cylHigh = ( cyl & 0xff00 ) >> 8;
// these commands transfer only 1 sector
if ( cmd == CMD_WRITE_BUFFER )
numSect = 1;
// only Write Multiple and CFA Write Multiple W/O Erase uses multCnt
if ( ( cmd != CMD_WRITE_MULTIPLE )
&& ( cmd != CMD_CFA_WRITE_MULTIPLE_WO_ERASE )
)
multiCnt = 1;
// Reset error return data.
atasub_zero_return_data();
// Set command time out.
atatmr_set_timeout();
// Select the drive - call the atasub_select function.
// Quit now if this fails.
if ( atasub_select( dev ) )
{
atasub_trace_command();
return 1;
}
// Set up all the registers except the command register.
atapio_outbyte( CB_DC, devCtrl );
atapio_outbyte( CB_FR, fr );
atapio_outbyte( CB_SC, sc );
atapio_outbyte( CB_SN, sect );
atapio_outbyte( CB_CL, cylLow );
atapio_outbyte( CB_CH, cylHigh );
atapio_outbyte( CB_DH, devHead );
// For interrupt mode,
// Take over INT 7x and initialize interrupt controller
// and reset interrupt flag.
// int_save_int_vect();
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
atapio_outbyte( CB_CMD, cmd );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not even started the
// command yet.
DELAY400NS;
// Wait for not BUSY or time out.
// Note: No interrupt is generated for the
// first sector of a write command. Well...
// that's not really true we are working with
// a PCMCIA PC Card ATA device.
atasub_atapi_delay( dev );
while ( 1 )
{
status = atapio_inbyte( CB_ASTAT );
if ( ( status & CB_STAT_BSY ) == 0 )
break;
if ( atatmr_chk_timeout() )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.to, 1);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 47);
loopFlag = 0;
break;
}
}
// If we are using interrupts and we just got an interrupt, this is
// wrong. The drive must not generate an interrupt at this time.
// if ( loopFlag &&
// read_word(ebda_seg,&EbdaData->atadrv_data.int_use_intr_flag) &&
// read_word(ebda_seg,&EbdaData->atadrv_data.int_intr_flag) )
// {
// write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 46);
// loopFlag = 0;
// }
// This loop writes each sector.
while ( loopFlag )
{
// WRITE_LOOP:
//
// NOTE NOTE NOTE ... The primary status register (1f7) MUST NOT be
// read more than ONCE for each sector transferred! When the
// primary status register is read, the drive resets IRQ 14. The
// alternate status register (3f6) can be read any number of times.
// For correct results, transfer the 256 words (REP OUTSW), wait for
// INT 7x and then read the primary status register. AS
// SOON as BOTH the primary status register has been read AND the
// last of the 256 words has been written, the drive is allowed to
// generate the next IRQ 14 (newer and faster drives could generate
// the next IRQ 14 in 50 microseconds or less). If the primary
// status register is read more than once, there is the possibility
// of a race between the drive and the software and the next IRQ 14
// could be reset before the system interrupt controller sees it.
// If BSY=0 and DRQ=1, transfer the data,
// even if we find out there is an error later.
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) == CB_STAT_DRQ )
{
// do the slow data transfer thing
if ( read_word(ebda_seg,&EbdaData->atadrv_data.reg_slow_xfer_flag) )
{
if ( numSect <= read_word(ebda_seg,&EbdaData->atadrv_data.reg_slow_xfer_flag) )
{
atasub_xfer_delay();
write_word(ebda_seg,&EbdaData->atadrv_data.reg_slow_xfer_flag, 0);
}
}
// increment number of DRQ packets
drqPackets=read_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.drqPackets);
drqPackets ++ ;
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.drqPackets, drqPackets);
// determine the number of sectors to transfer
wordCnt = multiCnt ? multiCnt : 1;
if ( wordCnt > numSect )
wordCnt = numSect;
wordCnt = wordCnt * 256;
// Do the REP OUTSW to write the data for one block.
totalBytesXfer=read_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.totalBytesXfer);
totalBytesXfer += ( wordCnt << 1 );
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.totalBytesXfer, totalBytesXfer);
atapio_rep_outword( CB_DATA, seg, off, wordCnt );
DELAY400NS; // delay so device can get the status updated
// Note: The drive should have dropped DATA REQUEST and
// raised BUSY by now.
// Decrement the count of sectors to be transferred
// and increment buffer address.
numSect = numSect - ( multiCnt ? multiCnt : 1 );
seg = seg + ( 32 * ( multiCnt ? multiCnt : 1 ) );
}
// So was there any error condition?
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_ERR ) )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 41);
break; // go to WRITE_DONE
}
// DRQ should have been set -- was it?
if ( ( status & CB_STAT_DRQ ) == 0 )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 42);
break; // go to WRITE_DONE
}
// Wait for INT 7x -or- wait for not BUSY -or- wait for time out.
atasub_atapi_delay( dev );
atareg_wait_poll( 44, 45 );
// Read the primary status register. In keeping with the rules
// stated above the primary status register is read only ONCE.
status = atapio_inbyte( CB_STAT );
// If there was a time out error, go to WRITE_DONE.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) )
break; // go to WRITE_DONE
// If all of the requested sectors have been transferred, make a
// few more checks before we exit.
if ( numSect < 1 )
{
// Since the drive has transferred all of the sectors without
// error, the drive MUST not have BUSY, DEVICE FAULT, DATA REQUEST
// or ERROR status at this time.
if ( status & ( CB_STAT_BSY | CB_STAT_DF | CB_STAT_DRQ | CB_STAT_ERR ) )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 43);
break; // go to WRITE_DONE
}
// All sectors have been written without error, go to WRITE_DONE.
break; // go to WRITE_DONE
}
//
// This is the end of the write loop. If we get here, the loop
// is repeated to write the next sector. Go back to WRITE_LOOP.
}
// read the output registers and trace the command.
atasub_trace_command();
// WRITE_DONE:
// For interrupt mode, restore the INT 7x vector.
// int_restore_int_vect();
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) )
return 1;
return 0;
}
//*************************************************************
//
// atareg_packet() - Execute an ATAPI Packet (A0H) command.
//
// See ATA-4 Section 9.10, Figure 14.
//
//*************************************************************
// Notes from cbbochs@free.fr
// head and tail are a hack to be able to read less than 2048bytes
// for example when emulated a msdos 512 bytes/sector device
// Normal use should be head=0 and tail=0
Bit16u atareg_packet( /* int */ dev,
/* unsigned int */ cpbc,
/* unsigned int */ cpseg, /* unsigned int */ cpoff,
/* int */ dir,
/* long */ dpbc,
/* unsigned int */ head, /* unsigned int */ tail,
/* unsigned int */ dpseg, /* unsigned int */ dpoff )
Bit16u dev, cpbc, cpseg, cpoff, dpseg, dpoff, head, tail;
int dir; // signed ! */
Bit32u dpbc;
{
Bit16u ebda_seg=read_word(0x40,0x0E);
Bit8u devCtrl;
Bit8u devHead;
Bit8u cylLow;
Bit8u cylHigh;
Bit8u frReg;
Bit8u scReg;
Bit8u snReg;
Bit8u status;
Bit8u reason;
Bit8u lowCyl;
Bit8u highCyl;
Bit16u byteCnt;
Bit16u wordCnt;
Bit16u realCnt;
Bit16u headCnt;
Bit16u tailCnt;
Bit16u ndx;
Bit32u dpaddr;
Bit16u slowXferCntr = 0;
Bit16u prevFailBit7 = 0;
Bit32u drqPackets,totalBytesXfer;
Bit8u reg_atapi_reg_dh;
Bit16u offset;
Bit16u failbits;
// mark start of PI cmd in low level trace
// setup register values
// devCtrl = CB_DC_HD15 | ( read_word(ebda_seg,&EbdaData->atadrv_data.int_use_intr_flag) ? 0 : CB_DC_NIEN );
devCtrl = CB_DC_HD15 | CB_DC_NIEN;
reg_atapi_reg_dh=read_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_reg_dh);
reg_atapi_reg_dh = reg_atapi_reg_dh & 0x0f;
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_reg_dh,reg_atapi_reg_dh);
devHead = ( dev ? CB_DH_DEV1 : CB_DH_DEV0 ) | reg_atapi_reg_dh;
cylLow = dpbc & 0x00ff;
cylHigh = ( dpbc & 0xff00 ) >> 8;
frReg=read_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_reg_fr);
scReg=read_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_reg_sc);
snReg=read_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_reg_sn);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_reg_fr,0);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_reg_sc,0);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_reg_sn,0);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_reg_dh,0);
// Reset error return data.
atasub_zero_return_data();
// Make sure the command packet size is either 12 or 16
// and save the command packet size and data.
cpbc = cpbc < 12 ? 12 : cpbc;
cpbc = cpbc > 12 ? 16 : cpbc;
write_word(ebda_seg,&EbdaData->atadrv_data.reg_atapi_cp_size, cpbc);
offset=cpoff;
for ( ndx = 0; ndx < cpbc; ndx ++ )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_cp_data[ndx],read_byte(cpseg,offset));
offset++;
}
// Set command time out.
atatmr_set_timeout();
// Select the drive - call the atasub_select function.
// Quit now if this fails.
if ( atasub_select( dev ) )
{
atasub_trace_command();
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_atapi_max_bytes, 65536L); // reset max bytes
return 1;
}
// Set up all the registers except the command register.
atapio_outbyte( CB_DC, devCtrl );
atapio_outbyte( CB_FR, frReg );
atapio_outbyte( CB_SC, scReg );
atapio_outbyte( CB_SN, snReg );
atapio_outbyte( CB_CL, cylLow );
atapio_outbyte( CB_CH, cylHigh );
atapio_outbyte( CB_DH, devHead );
// For interrupt mode,
// Take over INT 7x and initialize interrupt controller
// and reset interrupt flag.
// int_save_int_vect();
// Start the command by setting the Command register. The drive
// should immediately set BUSY status.
atapio_outbyte( CB_CMD, CMD_PACKET );
// Waste some time by reading the alternate status a few times.
// This gives the drive time to set BUSY in the status register on
// really fast systems. If we don't do this, a slow drive on a fast
// system may not set BUSY fast enough and we would think it had
// completed the command when it really had not even started the
// command yet.
DELAY400NS;
// Command packet transfer...
// Check for protocol failures,
// the device should have BSY=1 or
// if BSY=0 then either DRQ=1 or CHK=1.
atasub_atapi_delay( dev );
status = atapio_inbyte( CB_ASTAT );
if ( status & CB_STAT_BSY )
{
// BSY=1 is OK
}
else
{
if ( status & ( CB_STAT_DRQ | CB_STAT_ERR ) )
{
// BSY=0 and DRQ=1 is OK
// BSY=0 and ERR=1 is OK
}
else
{
failbits=read_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits);
failbits |= FAILBIT0; // not OK
write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits,failbits);
}
}
// Command packet transfer...
// Poll Alternate Status for BSY=0.
while ( 1 )
{
status = atapio_inbyte( CB_ASTAT ); // poll for not busy
if ( ( status & CB_STAT_BSY ) == 0 )
break;
if ( atatmr_chk_timeout() ) // time out yet ?
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.to, 1);
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 51);
dir = -1; // command done
break;
}
}
// Command packet transfer...
// Check for protocol failures... no interrupt here please!
// Clear any interrupt the command packet transfer may have caused.
// if ( read_word(ebda_seg,&EbdaData->atadrv_data.int_intr_flag) )
// {
// failbits=read_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits);
// failbits |= FAILBIT1;
// write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits,failbits);
// }
// write_word(ebda_seg,&EbdaData->atadrv_data.int_intr_flag, 0);
// Command packet transfer...
// If no error, transfer the command packet.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) == 0 )
{
// Command packet transfer...
// Read the primary status register and the other ATAPI registers.
status = atapio_inbyte( CB_STAT );
reason = atapio_inbyte( CB_SC );
lowCyl = atapio_inbyte( CB_CL );
highCyl = atapio_inbyte( CB_CH );
// Command packet transfer...
// check status: must have BSY=0, DRQ=1 now
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ | CB_STAT_ERR ) )
!= CB_STAT_DRQ
)
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 52);
dir = -1; // command done
}
else
{
// Command packet transfer...
// Check for protocol failures...
// check: C/nD=1, IO=0.
if ( ( reason & ( CB_SC_P_TAG | CB_SC_P_REL | CB_SC_P_IO ) )
|| ( ! ( reason & CB_SC_P_CD ) )
)
{
failbits=read_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits);
failbits |= FAILBIT2;
write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits,failbits);
}
if ( ( lowCyl != cylLow ) || ( highCyl != cylHigh ) )
{
failbits=read_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits);
failbits |= FAILBIT3;
write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits,failbits);
}
// Command packet transfer...
// trace cdb byte 0,
// xfer the command packet (the cdb)
atapio_rep_outword( CB_DATA, cpseg, cpoff, cpbc >> 1 );
DELAY400NS; // delay so device can get the status updated
}
}
// Data transfer loop...
// If there is no error, enter the data transfer loop.
// First adjust the I/O buffer address so we are able to
// transfer large amounts of data (more than 64K).
dpaddr = dpseg;
dpaddr = dpaddr << 4;
dpaddr = dpaddr + dpoff;
while ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) == 0 )
{
// Data transfer loop...
// Wait for INT 7x -or- wait for not BUSY -or- wait for time out.
atasub_atapi_delay( dev );
atareg_wait_poll( 53, 54 );
// Data transfer loop...
// If there was a time out error, exit the data transfer loop.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) )
{
dir = -1; // command done
break;
}
// Data transfer loop...
// Read the primary status register.
status = atapio_inbyte( CB_STAT );
reason = atapio_inbyte( CB_SC );
lowCyl = atapio_inbyte( CB_CL );
highCyl = atapio_inbyte( CB_CH );
// Data transfer loop...
// Exit the read data loop if the device indicates this
// is the end of the command.
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) == 0 )
{
dir = -1; // command done
break;
}
// Data transfer loop...
// The device must want to transfer data...
// check status: must have BSY=0, DRQ=1 now.
if ( ( status & ( CB_STAT_BSY | CB_STAT_DRQ ) ) != CB_STAT_DRQ )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 55);
dir = -1; // command done
break;
}
else
{
// Data transfer loop...
// Check for protocol failures...
// check: C/nD=0, IO=1 (read) or IO=0 (write).
if ( ( reason & ( CB_SC_P_TAG | CB_SC_P_REL ) )
|| ( reason & CB_SC_P_CD )
)
{
failbits=read_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits);
failbits |= FAILBIT4;
write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits,failbits);
}
if ( ( reason & CB_SC_P_IO ) && dir )
{
failbits=read_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits);
failbits |= FAILBIT5;
write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits,failbits);
}
}
// do the slow data transfer thing
if ( read_word(ebda_seg,&EbdaData->atadrv_data.reg_slow_xfer_flag) )
{
slowXferCntr ++ ;
if ( slowXferCntr <= read_word(ebda_seg,&EbdaData->atadrv_data.reg_slow_xfer_flag) )
{
atasub_xfer_delay();
write_word(ebda_seg,&EbdaData->atadrv_data.reg_slow_xfer_flag, 0);
}
}
// Data transfer loop...
// get the byte count, check for zero...
byteCnt = ( highCyl << 8 ) | lowCyl;
if ( byteCnt < 1 )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 60);
dir = -1; // command done
break;
}
// Data transfer loop...
// and check protocol failures...
if ( byteCnt > dpbc )
{
failbits=read_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits);
failbits |= FAILBIT6;
write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits,failbits);
}
failbits=read_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits);
failbits |= prevFailBit7;
write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits,failbits);
prevFailBit7 = 0;
if ( byteCnt & 0x0001 )
prevFailBit7 = FAILBIT7;
// Data transfer loop...
// make sure we don't overrun the caller's buffer
if ( ( read_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.totalBytesXfer) + byteCnt )
> read_dword(ebda_seg,&EbdaData->atadrv_data.reg_atapi_max_bytes ))
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 59);
dir = -1; // command done
break;
}
// increment number of DRQ packets
drqPackets=read_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.drqPackets);
drqPackets ++ ;
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.drqPackets, drqPackets);
// Data transfer loop...
// transfer the data and update the i/o buffer address
// and the number of bytes transfered.
totalBytesXfer=read_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.totalBytesXfer);
// take out head and tail
realCnt = byteCnt;
headCnt = 0;
tailCnt = 0;
// if we have to take out head bytes
if(head>0)
{
if(head>=byteCnt)
{
headCnt=byteCnt;
head-=byteCnt;
realCnt=0;
}
else
{
headCnt=head;
realCnt-=head;
head=0;
}
}
// if we have to take out tail bytes
if(tail>0)
{
if(totalBytesXfer+byteCnt>(dpbc-tail))
{
if(tail>=byteCnt)
{
tailCnt=byteCnt;
tail-=byteCnt;
realCnt=0;
}
else
{
tailCnt=tail;
realCnt-=tail;
tail=0;
}
}
}
wordCnt = ( byteCnt >> 1 ) + ( byteCnt & 0x0001 );
totalBytesXfer=read_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.totalBytesXfer);
totalBytesXfer += ( wordCnt << 1 );
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.totalBytesXfer, totalBytesXfer);
wordCnt = ( realCnt >> 1 ) + ( realCnt & 0x0001 );
dpseg = (unsigned int) ( dpaddr >> 4 );
dpoff = (unsigned int) ( dpaddr & 0x0000000fL );
if ( dir )
{
if((headCnt!=0)||(tailCnt!=0))
BX_PANIC("");
atapio_rep_outword( CB_DATA, dpseg, dpoff, wordCnt );
}
else
{
atapio_dummyinb(CB_DATA,headCnt);
atapio_rep_inword( CB_DATA, dpseg, dpoff, wordCnt );
atapio_dummyinb(CB_DATA,tailCnt);
}
dpaddr = dpaddr + byteCnt;
DELAY400NS; // delay so device can get the status updated
}
// End of command...
// Wait for interrupt or poll for BSY=0,
// but don't do this if there was any error or if this
// was a commmand that did not transfer data.
if ( ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) == 0 ) && ( dir >= 0 ) )
{
atasub_atapi_delay( dev );
atareg_wait_poll( 56, 57 );
}
// Final status check, only if no previous error.
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) == 0 )
{
// Final status check...
// Read the primary status register and other regs.
status = atapio_inbyte( CB_STAT );
reason = atapio_inbyte( CB_SC );
lowCyl = atapio_inbyte( CB_CL );
highCyl = atapio_inbyte( CB_CH );
// Final status check...
// check for any error.
if ( status & ( CB_STAT_BSY | CB_STAT_DRQ | CB_STAT_ERR ) )
{
write_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec, 58);
}
}
// Final status check...
// Check for protocol failures...
// check: C/nD=1, IO=1.
if ( ( reason & ( CB_SC_P_TAG | CB_SC_P_REL ) )
|| ( ! ( reason & CB_SC_P_IO ) )
|| ( ! ( reason & CB_SC_P_CD ) )
)
{
failbits=read_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits);
failbits |= FAILBIT8;
write_word(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.failbits,failbits);
}
// Done...
atasub_trace_command();
// For interrupt mode, restore the INT 7x vector.
// int_restore_int_vect();
write_dword(ebda_seg,&EbdaData->atadrv_data.reg_atapi_max_bytes, 65536L); // reset max bytes
if ( read_byte(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.ec) )
return 1;
return 0;
}
// ---------------------------------------------------------------------------
// End of ATA/ATAPI Driver
// ---------------------------------------------------------------------------
// ---------------------------------------------------------------------------
// Start of ATA/ATAPI generic functions
// ---------------------------------------------------------------------------
void
ata_clear_buffer(bufseg,bufoff,size)
Bit16u bufseg, bufoff, size;
{
memsetb(bufseg,bufoff,0,size);
}
Bit16u
ata_identify(device, bufseg, bufoff)
Bit16u device, bufseg, bufoff;
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
Bit16u status;
Bit8u atatype=read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[device]);
if(atatype==REG_CONFIG_TYPE_ATAPI) {
// write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_delay_flag,0x01);
status=atareg_pio_data_in_lba(device,CMD_IDENTIFY_DEVICE_PACKET, 0, 0, 0L, bufseg,bufoff, 1, 0);
}
else if(atatype==REG_CONFIG_TYPE_ATA) {
status=atareg_pio_data_in_lba(device,CMD_IDENTIFY_DEVICE, 0, 0, 0L, bufseg,bufoff, 1, 0);
}
else return 0x0001;
return 0x0000;
}
Bit16u
atapi_get_sense(device)
Bit16u device;
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
Bit8u atacmd[12];
Bit8u buffer[128];
Bit8u i;
// Request SENSE
ata_clear_buffer(get_SS(),atacmd,12);
//write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_delay_flag,0x01);
atacmd[0]=0x03;
atacmd[4]=0x20;
if(atareg_packet(device,12,get_SS(),atacmd,0, 128L, 0,0, get_SS(), buffer)!=0)
return 0x0002;
if((buffer[0]&0x7e)==0x70){
return (((Bit16u)buffer[2]&0x0f)*0x100)+buffer[12];
}
return 0;
}
Bit16u
atapi_is_ready(device)
Bit16u device;
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
Bit8u atacmd[12];
Bit8u buffer[128];
// Test Unit Ready
ata_clear_buffer(get_SS(),atacmd,12);
//write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_delay_flag,0x01);
if(atareg_packet(device,12,get_SS(),atacmd,0, 128L, 0,0, get_SS(), buffer)!=0)
return 0x000f;
if(atapi_get_sense(device)!=0){
// try to send Test Unit Ready again
ata_clear_buffer(get_SS(),atacmd,12);
if(atareg_packet(device,12,get_SS(),atacmd,0, 128L, 0,0, get_SS(), buffer)!=0)
return 0x000f;
return atapi_get_sense(device);
}
return 0;
}
Bit16u
atapi_is_cdrom(device)
Bit8u device;
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
if(device>=BX_MAX_ATA_DEVICES)
return 0;
if(read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[device])!=REG_CONFIG_TYPE_ATAPI)
return 0;
if(read_byte(ebda_seg,&EbdaData->atadrv_data.device_type[device])!=ATA_TYPE_CDROM)
return 0;
return 1;
}
Bit16u
atapi_read_sectors2048(device,count,lba,bufseg,bufoff)
Bit16u device,bufseg,bufoff,count;
Bit32u lba;
{
return (atapi_read_sectors(device,count,lba,0,0,bufseg,bufoff));
}
// count : number of 2048B/sect sectors
// lba : lba on cd
// before : # 512B blocks to forget before reading
// after : # 512B blocks to forget after reading
Bit16u
atapi_read_sectors512(device,count,lba,before,after,bufseg,bufoff)
Bit16u device,count,bufseg,bufoff,before,after;
Bit32u lba;
{
return (atapi_read_sectors(device,count,lba,before*0x200,after*0x200,bufseg,bufoff));
}
Bit16u
atapi_read_sectors(device,count,lba,head,tail,bufseg,bufoff)
Bit16u device,bufseg,bufoff,count,head,tail;
Bit32u lba;
// Take care, the buffer should be big enough
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
Bit8u atacmd[12];
Bit16u status;
Bit16u lcount,lhead,ltail;
Bit32u llba;
// We set the maximum transfer size to 32K -> 0x10 sectors
// Bigger transfer size are split in 32K chunks
llba=lba;
while(count>0) {
// Maximum 0x10 sectors
if(count>0x10) lcount=0x10;
else lcount=count;
// New count. Now we have to read lcount
count-=lcount;
// test if unit ready
if((status=atapi_is_ready(device))!=0) {
return 1;
}
//write_byte(ebda_seg,&EbdaData->atadrv_data.reg_atapi_delay_flag,0x01);
ata_clear_buffer(get_SS(),atacmd,12);
atacmd[0]=0x28; // READ command
atacmd[7]=(lcount&0xff00)>>8; // Sectors
atacmd[8]=(lcount&0x00ff); // Sectors
atacmd[2]=(llba&0xff000000)>>24;
atacmd[3]=(llba&0x00ff0000)>>16;
atacmd[4]=(llba&0x0000ff00)>>8;
atacmd[5]=(llba&0x000000ff);
// We have to take the tail bytes into account only if last read
if(count==0)ltail=tail;
else ltail=0;
// We have to take the tail bytes into account only if first read
if(llba==lba)lhead=head;
else lhead=0;
// Read sectors
if(atareg_packet(device,12,get_SS(),atacmd,0, (Bit32u)lcount*2048L, lhead, ltail, bufseg, bufoff)!=0)
return 2;
// Check if all sectors read
if(read_dword(ebda_seg,&EbdaData->atadrv_data.reg_cmd_info.totalBytesXfer)!=((Bit32u)lcount*2048L))
return 3;
// increment lba
llba+=lcount;
// increment pointer by number of read bytes
bufoff+=(lcount*2048)-lhead;
// and normalize
bufseg+=(bufoff/16);
bufoff%=16;
}
return 0;
}
void
ata_read_device_types( )
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
Bit8u buffer[0x800];
Bit16u device;
Bit8u hdid=0,cdid=0,type;
atareg_reset(0,0);
// Initialisation of the disk and cdrom maps
for(device=0;device<BX_MAX_ATA_DEVICES;device++) {
write_byte(ebda_seg,&EbdaData->hdidmap[device],BX_MAX_ATA_DEVICES);
write_byte(ebda_seg,&EbdaData->cdidmap[device],BX_MAX_ATA_DEVICES);
}
// Identify each device
for(device=0;device<BX_MAX_ATA_DEVICES;device++) {
if(read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[device])==REG_CONFIG_TYPE_ATAPI) {
ata_clear_buffer(get_SS(),buffer,0x800);
ata_identify(device,get_SS(),buffer);
type=buffer[1]&0x1F;
}
else if (read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[device])==REG_CONFIG_TYPE_ATA) {
type=ATA_TYPE_HD;
}
else type=0;
// fill the hd and cd maps
if(type==ATA_TYPE_HD) {
write_byte(ebda_seg,&EbdaData->hdidmap[hdid],device);
hdid+=1;
}
else if (type==ATA_TYPE_CDROM) {
write_byte(ebda_seg,&EbdaData->cdidmap[cdid],device);
cdid+=1;
}
// save the device type
write_byte(ebda_seg,&EbdaData->atadrv_data.device_type[device],type);
}
}
Bit16u
ata_is_ata(device)
Bit8u device;
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
if(device>=BX_MAX_ATA_DEVICES)
return 0;
if(read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[device])!=REG_CONFIG_TYPE_ATA)
return 0;
return 1;
}
Bit16u
ata_is_atapi(device)
Bit8u device;
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
if(device>=BX_MAX_ATA_DEVICES)
return 0;
if(read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[device])!=REG_CONFIG_TYPE_ATAPI)
return 0;
return 1;
}
static char device_types[][10]={"Hard-Disk","CD-ROM","Unknown"};
static char ata_atapi[][8]={"None","Unknown","ATA","ATAPI"};
void
ata_show_devices( )
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
Bit8u buffer[0x800],model[41],version;
Bit8u atadev, atatype;
Bit16u i, device, type, ataversion;
atareg_reset(0,0);
for(device=0;device<2;device++) {
atatype=read_byte(ebda_seg,&EbdaData->atadrv_data.reg_config_info[device]);
atadev=read_byte(ebda_seg,&EbdaData->atadrv_data.device_type[device]);
if(atatype>REG_CONFIG_TYPE_NONE){
if(atatype>REG_CONFIG_TYPE_UNKN){
ata_clear_buffer(get_SS(),buffer,0x800);
if(ata_identify(device, get_SS(), buffer)==0){
// Read ATA/ATAPI version
ataversion=(buffer[161]<<8)|buffer[160];
for(version=15;version>0;version--) {
if((ataversion&(1<<version))!=0)
break;
}
// Read model name
for(i=0;i<20;i++){
model[(i*2)]=buffer[(i*2)+54+1];
model[(i*2)+1]=buffer[(i*2)+54];
}
model[40]=0x00;
for(i=39;i>0;i--){
if(model[i]==0x20)model[i]=0x00;
else break;
}
if(atatype==REG_CONFIG_TYPE_ATA)type=0;
else if(atadev==ATA_TYPE_CDROM)type=1;
else type=2;
printf("IDE0-%d: ",device);
i=0; while(model[i]) printf("%c",model[i++]);
printf(" %s-%d %s device\n",ata_atapi[atatype],version,device_types[type]);
}
else
printf("IDE0-%d: unknown device\n",device);
}
}
}
printf("\n");
}
// ---------------------------------------------------------------------------
// End of ATA/ATAPI generic functions
// ---------------------------------------------------------------------------
#endif // BX_USE_ATADRV
#if BX_ELTORITO_BOOT
// ---------------------------------------------------------------------------
// Start of El-Torito boot functions
// ---------------------------------------------------------------------------
//
// cdboot contains 0 if floppy/harddisk, 1 otherwise
// drive contains real/emulated boot drive
//
void
boot_from_msg(cdboot, drive)
Bit16u drive;
{
Bit8u i;
if(cdboot)i=2; // CD-Rom
else if((drive&0x0080)==0x00)i=0; // Floppy
else if((drive&0x0080)==0x80)i=1; // Hard drive
else return;
printf("Booting from %s...\n",drivetypes[i]);
}
void
cdemu_init()
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
// the only important data is this one for now
write_byte(ebda_seg,&EbdaData->cdemu_data.active,0x00);
}
Bit8u
cdemu_isactive()
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
return(read_byte(ebda_seg,&EbdaData->cdemu_data.active));
}
Bit8u
cdemu_emulated_drive()
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
return(read_byte(ebda_seg,&EbdaData->cdemu_data.emulated_drive));
}
void
cdrom_bootfailed_msg( code )
Bit16u code;
{
bios_printf(BIOS_PRINTF_SCREEN | BIOS_PRINTF_INFO, "CDROM boot failure code : %04x\n",code);
return;
}
static char isotag[6]="CD001";
static char eltorito[24]="EL TORITO SPECIFICATION";
//
// Returns ah: emulated drive, al: error code
//
Bit16u
cdrom_boot()
{
Bit16u ebda_seg = read_word(0x0040, 0x000E);
Bit8u buffer[2048];
Bit32u lba;
Bit16u boot_segment, nbsectors, i, error;
// Basic types checks
// FIXME ElTorito Hardcoded. cdrom is hardcoded as device 1. Should be fixed if two ide interface
if(!ata_is_atapi(1)) return 1;
if(!atapi_is_cdrom(1)) return 2;
// Read the Boot Record Volume Descriptor
if((error=atapi_read_sectors2048(1,1,0x11L,get_SS(),buffer))!=0)
return 3;
// Validity checks
if(buffer[0]!=0)return 4;
for(i=0;i<5;i++){
if(buffer[1+i]!=read_byte(0xf000,&isotag[i]))return 5;
}
for(i=0;i<23;i++)
if(buffer[7+i]!=read_byte(0xf000,&eltorito[i]))return 6;
// ok, now we calculate the Boot catalog address
lba=buffer[0x4A]*0x1000000+buffer[0x49]*0x10000+buffer[0x48]*0x100+buffer[0x47];
// And we read the Boot Catalog
if(atapi_read_sectors2048(1,1,lba,get_SS(),buffer)!=0)
return 7;
// Validation entry
if(buffer[0x00]!=0x01)return 8; // Header
if(buffer[0x01]!=0x00)return 9; // Platform
if(buffer[0x1E]!=0x55)return 10; // key 1
if(buffer[0x1F]!=0xAA)return 10; // key 2
// Initial/Default Entry
if(buffer[0x20]!=0x88)return 11; // Bootable
write_byte(ebda_seg,&EbdaData->cdemu_data.media,buffer[0x21]);
if(buffer[0x21]<4)
write_byte(ebda_seg,&EbdaData->cdemu_data.emulated_drive,0x00);
else
write_byte(ebda_seg,&EbdaData->cdemu_data.emulated_drive,0x80);
// FIXME ElTorito Harddisk. current code can only emulate a floppy
if(read_byte(ebda_seg,&EbdaData->cdemu_data.emulated_drive)!=0x00)
BX_PANIC("El-Torito: Cannot boot as a harddisk yet\n");
// FIXME ElTorito Hardcoded. cdrom is hardcoded as device 1. Should be fixed if two ide interface
write_byte(ebda_seg,&EbdaData->cdemu_data.controller_index,0x00);
write_byte(ebda_seg,&EbdaData->cdemu_data.device_spec,0x01);
boot_segment=buffer[0x23]*0x100+buffer[0x22];
if(boot_segment==0x0000)boot_segment=0x07C0;
write_word(ebda_seg,&EbdaData->cdemu_data.load_segment,boot_segment);
write_word(ebda_seg,&EbdaData->cdemu_data.buffer_segment,0x0000);
nbsectors=buffer[0x27]*0x100+buffer[0x26];
write_word(ebda_seg,&EbdaData->cdemu_data.sector_count,nbsectors);
lba=buffer[0x2B]*0x1000000+buffer[0x2A]*0x10000+buffer[0x29]*0x100+buffer[0x28];
write_dword(ebda_seg,&EbdaData->cdemu_data.ilba,lba);
// And we read the image in the buffer
// FIXME ElTorito Hardcoded. cdrom is hardcoded as device 1. Should be fixed if two ide interface
if(atapi_read_sectors512(1,1+(nbsectors-1)/4,lba,0,3-((nbsectors-1)%4),boot_segment,0)!=0)
return 12;
// Remeber the media type
switch(read_byte(ebda_seg,&EbdaData->cdemu_data.media)) {
case 0x01: // 1.2M floppy
write_word(ebda_seg,&EbdaData->cdemu_data.vsectors,15);
write_word(ebda_seg,&EbdaData->cdemu_data.vcylinders,80);
write_word(ebda_seg,&EbdaData->cdemu_data.vheads,2);
break;
case 0x02: // 1.44M floppy
write_word(ebda_seg,&EbdaData->cdemu_data.vsectors,18);
write_word(ebda_seg,&EbdaData->cdemu_data.vcylinders,80);
write_word(ebda_seg,&EbdaData->cdemu_data.vheads,2);
break;
case 0x03: // 2.88M floppy
write_word(ebda_seg,&EbdaData->cdemu_data.vsectors,36);
write_word(ebda_seg,&EbdaData->cdemu_data.vcylinders,80);
write_word(ebda_seg,&EbdaData->cdemu_data.vheads,2);
break;
}
// Increase bios installed hardware number of floppy, booted from floppy
if(read_byte(ebda_seg,&EbdaData->cdemu_data.media)!=0)
if(read_byte(ebda_seg,&EbdaData->cdemu_data.emulated_drive)==0x00)
write_byte(0x40,0x10,read_byte(0x40,0x10)|0x41);
// everything is ok, so from now on, the emulation is active
if(read_byte(ebda_seg,&EbdaData->cdemu_data.media)!=0)
write_byte(ebda_seg,&EbdaData->cdemu_data.active,0x01);
// if we are not emulating a device
if(read_byte(ebda_seg,&EbdaData->cdemu_data.media)==0) {
// FIXME ElTorito Hardcoded. cdrom is hardcoded as device 0xE0.
// Win2000 cd boot needs this
write_byte(ebda_seg,&EbdaData->cdemu_data.emulated_drive,0xE0);
}
// return the boot drive + no error
return (read_byte(ebda_seg,&EbdaData->cdemu_data.emulated_drive)*0x100)+0;
}
// ---------------------------------------------------------------------------
// End of El-Torito boot functions
// ---------------------------------------------------------------------------
#endif // BX_ELTORITO_BOOT
ASM_START
;------------------------------------------
;- INT74h : PS/2 mouse hardware interrupt -
;------------------------------------------
int74_handler:
sti
pusha
push ds ;; save DS
push #0x00 ;; placeholder for status
push #0x00 ;; placeholder for X
push #0x00 ;; placeholder for Y
push #0x00 ;; placeholder for Z
push #0x00 ;; placeholder for make_far_call boolean
call _int74_function
pop cx ;; remove make_far_call from stack
jcxz int74_done
;; make far call to EBDA:0022
push #0x00
pop ds
push 0x040E ;; push 0000:040E (opcodes 0xff, 0x36, 0x0E, 0x04)
pop ds
//CALL_EP(0x0022) ;; call far routine (call_Ep DS:0022 :opcodes 0xff, 0x1e, 0x22, 0x00)
call far ptr[0x22]
int74_done:
cli
mov al, #0x20
;; send EOI to slave & master PICs
out #0xA0, al ;; slave PIC EOI
out #0x20, al ;; master PIC EOI
add sp, #8 ;; pop status, x, y, z
pop ds ;; restore DS
popa
iret
;; This will perform an IRET, but will retain value of current CF
;; by altering flags on stack. Better than RETF #02.
iret_modify_cf:
jc carry_set
push bp
mov bp, sp
and BYTE [bp + 0x06], #0xfe
pop bp
iret
carry_set:
push bp
mov bp, sp
or BYTE [bp + 0x06], #0x01
pop bp
iret
;----------------------
;- INT13h (relocated) -
;----------------------
;
; int13_relocated is a little bit messed up since I played with it
; I have to rewrite it:
; - call a function that detect which function to call
; - make all called C function get the same parameters list
;
int13_relocated:
#if BX_ELTORITO_BOOT
// check for an eltorito function
cmp ah,#0x4a
jb int13_not_eltorito
cmp ah,#0x4d
ja int13_not_eltorito
jmp int13_eltorito
int13_not_eltorito:
push ax
push bx
push cx
push dx
// check if emulation active
call _cdemu_isactive
cmp al,#0x00
je int13_cdemu_inactive
// check if access to the emulated drive
call _cdemu_emulated_drive
pop dx
push dx
cmp al,dl ;; int13 on emulated drive
je int13_cdemu
// otherwise
and dl,#0xE0 ;; mask to get device class, including cdroms
cmp al,dl ;; al is 0x00 or 0x80
jne int13_cdemu_inactive ;; inactive for device class
int13_cdemu_active:
pop dx
pop cx
pop bx
pop ax
dec dl ;; real drive is dl - 1
jmp int13_legacy
int13_cdemu_inactive:
pop dx
pop cx
pop bx
pop ax
int13_legacy:
#endif // BX_ELTORITO_BOOT
pushf
test dl, #0x80
jz int13_floppy
#if BX_ELTORITO_BOOT
int13_disk_or_cdrom:
cmp dl, #0xE0
jae int13_cdrom
#endif // BX_ELTORITO_BOOT
int13_disk:
;; pushf already done
push es
push ds
push ss
pop ds
pusha
call _int13_harddisk
popa
pop ds
pop es
popf
// JMPL(iret_modify_cf)
jmp iret_modify_cf
int13_floppy:
popf
// JMPL(int13_diskette)
jmp int13_diskette
#if BX_ELTORITO_BOOT
int13_cdrom:
;; pushf already done
;; popf
;; pushf
push es
push ds
push ss
pop ds
pusha
call _int13_cdrom
popa
pop ds
pop es
popf
// JMPL(iret_modify_cf)
jmp iret_modify_cf
int13_cdemu:
pop dx
pop cx
pop bx
pop ax
push ds
push ss
pop ds
pushf
push es
pusha
call _int13_cdemu
popa
pop es
popf
pop ds
jmp iret_modify_cf
int13_eltorito:
pushf
push es
push ds
push ss
pop ds
pusha
call _int13_eltorito
popa
pop ds
pop es
popf
jmp iret_modify_cf
#endif // BX_ELTORITO_BOOT
;----------
;- INT18h -
;----------
int18_handler: ;; Boot Failure routing
HALT(__LINE__)
iret
;----------
;- INT19h -
;----------
int19_relocated: ;; Boot function, relocated
;; int19 was beginning to be really complex, so now it
;; just calls an C function, that does the work
;; it returns in BL the boot drive, and in AX the boot segment
;; the boot segment will be 0x0000 if something has failed
push bp
mov bp, sp
;; drop ds
xor ax, ax
mov ds, ax
call _int19_function
;; bl contains the boot drive
;; ax contains the boot segment or 0 if failure
test ax, ax ;; id ax is 0 call int18
jz int18_handler
mov dl, bl ;; set drive so guest os find it
shl eax, #0x04 ;; convert seg to ip
mov 2[bp], ax ;; set ip
shr eax, #0x04 ;; get cs back
and ax, #0xF000 ;; remove what went in ip
mov 4[bp], ax ;; set cs
xor ax, ax
mov es, ax ;; set es to zero fixes [ 549815 ]
mov [bp], ax ;; set bp to zero
mov ax, #0xaa55 ;; set ok flag
pop bp
iret ;; Beam me up Scotty
;----------
;- INT1Ch -
;----------
int1c_handler: ;; User Timer Tick
iret
;----------------------
;- POST: Floppy Drive -
;----------------------
floppy_drive_post:
mov ax, #0x0000
mov ds, ax
mov al, #0x00
mov 0x043e, al ;; drive 0 & 1 uncalibrated, no interrupt has occurred
mov 0x043f, al ;; diskette motor status: read op, drive0, motors off
mov 0x0440, al ;; diskette motor timeout counter: not active
mov 0x0441, al ;; diskette controller status return code
mov 0x0442, al ;; disk & diskette controller status register 0
mov 0x0443, al ;; diskette controller status register 1
mov 0x0444, al ;; diskette controller status register 2
mov 0x0445, al ;; diskette controller cylinder number
mov 0x0446, al ;; diskette controller head number
mov 0x0447, al ;; diskette controller sector number
mov 0x0448, al ;; diskette controller bytes written
mov 0x048b, al ;; diskette configuration data
;; -----------------------------------------------------------------
;; (048F) diskette controller information
;;
mov al, #0x10 ;; get CMOS diskette drive type
out 0x70, AL
in AL, 0x71
mov ah, al ;; save byte to AH
look_drive0:
shr al, #4 ;; look at top 4 bits for drive 0
jz f0_missing ;; jump if no drive0
mov bl, #0x07 ;; drive0 determined, multi-rate, has changed line
jmp look_drive1
f0_missing:
mov bl, #0x00 ;; no drive0
look_drive1:
mov al, ah ;; restore from AH
and al, #0x0f ;; look at bottom 4 bits for drive 1
jz f1_missing ;; jump if no drive1
or bl, #0x70 ;; drive1 determined, multi-rate, has changed line
f1_missing:
;; leave high bits in BL zerod
mov 0x048f, bl ;; put new val in BDA (diskette controller information)
;; -----------------------------------------------------------------
mov al, #0x00
mov 0x0490, al ;; diskette 0 media state
mov 0x0491, al ;; diskette 1 media state
;; diskette 0,1 operational starting state
;; drive type has not been determined,
;; has no changed detection line
mov 0x0492, al
mov 0x0493, al
mov 0x0494, al ;; diskette 0 current cylinder
mov 0x0495, al ;; diskette 1 current cylinder
mov al, #0x02
out #0x0a, al ;; clear DMA-1 channel 2 mask bit
SET_INT_VECTOR(0x1E, #0xF000, #diskette_param_table)
SET_INT_VECTOR(0x40, #0xF000, #int13_diskette)
SET_INT_VECTOR(0x0E, #0xF000, #int0e_handler) ;; IRQ 6
ret
;--------------------
;- POST: HARD DRIVE -
;--------------------
; relocated here because the primary POST area isnt big enough.
hard_drive_post:
// IRQ 14 = INT 76h
// INT 76h calls INT 15h function ax=9100
mov al, #0x0a ; 0000 1010 = reserved, disable IRQ 14
mov dx, #0x03f6
out dx, al
mov ax, #0x0000
mov ds, ax
mov 0x0474, al /* hard disk status of last operation */
mov 0x0477, al /* hard disk port offset (XT only ???) */
mov 0x048c, al /* hard disk status register */
mov 0x048d, al /* hard disk error register */
mov 0x048e, al /* hard disk task complete flag */
mov al, #0x01
mov 0x0475, al /* hard disk number attached */
mov al, #0xc0
mov 0x0476, al /* hard disk control byte */
SET_INT_VECTOR(0x13, #0xF000, #int13_handler)
SET_INT_VECTOR(0x76, #0xF000, #int76_handler)
;; INT 41h: hard disk 0 configuration pointer
;; INT 46h: hard disk 1 configuration pointer
SET_INT_VECTOR(0x41, #EBDA_SEG, #0x003D)
SET_INT_VECTOR(0x46, #EBDA_SEG, #0x004D)
;; move disk geometry data from CMOS to EBDA disk parameter table(s)
mov al, #0x12
out #0x70, al
in al, #0x71
and al, #0xf0
cmp al, #0xf0
je post_d0_extended
jmp check_for_hd1
post_d0_extended:
mov al, #0x19
out #0x70, al
in al, #0x71
cmp al, #47 ;; decimal 47 - user definable
je post_d0_type47
HALT(__LINE__)
post_d0_type47:
;; CMOS purpose param table offset
;; 1b cylinders low 0
;; 1c cylinders high 1
;; 1d heads 2
;; 1e write pre-comp low 5
;; 1f write pre-comp high 6
;; 20 retries/bad map/heads>8 8
;; 21 landing zone low C
;; 22 landing zone high D
;; 23 sectors/track E
mov ax, #EBDA_SEG
mov ds, ax
;;; Filling EBDA table for hard disk 0.
mov al, #0x1f
out #0x70, al
in al, #0x71
mov ah, al
mov al, #0x1e
out #0x70, al
in al, #0x71
mov (0x003d + 0x05), ax ;; write precomp word
mov al, #0x20
out #0x70, al
in al, #0x71
mov (0x003d + 0x08), al ;; drive control byte
mov al, #0x22
out #0x70, al
in al, #0x71
mov ah, al
mov al, #0x21
out #0x70, al
in al, #0x71
mov (0x003d + 0x0C), ax ;; landing zone word
mov al, #0x1c ;; get cylinders word in AX
out #0x70, al
in al, #0x71 ;; high byte
mov ah, al
mov al, #0x1b
out #0x70, al
in al, #0x71 ;; low byte
mov bx, ax ;; BX = cylinders
mov al, #0x1d
out #0x70, al
in al, #0x71
mov cl, al ;; CL = heads
mov al, #0x23
out #0x70, al
in al, #0x71
mov dl, al ;; DL = sectors
cmp bx, #1024
jnbe hd0_post_logical_chs ;; if cylinders > 1024, use translated style CHS
hd0_post_physical_chs:
;; no logical CHS mapping used, just physical CHS
;; use Standard Fixed Disk Parameter Table (FDPT)
mov (0x003d + 0x00), bx ;; number of physical cylinders
mov (0x003d + 0x02), cl ;; number of physical heads
mov (0x003d + 0x0E), dl ;; number of physical sectors
jmp check_for_hd1
hd0_post_logical_chs:
;; complies with Phoenix style Translated Fixed Disk Parameter Table (FDPT)
mov (0x003d + 0x09), bx ;; number of physical cylinders
mov (0x003d + 0x0b), cl ;; number of physical heads
mov (0x003d + 0x04), dl ;; number of physical sectors
mov (0x003d + 0x0e), dl ;; number of logical sectors (same)
mov al, #0xa0
mov (0x003d + 0x03), al ;; A0h signature, indicates translated table
cmp bx, #2048
jnbe hd0_post_above_2048
;; 1024 < c <= 2048 cylinders
shr bx, #0x01
shl cl, #0x01
jmp hd0_post_store_logical
hd0_post_above_2048:
cmp bx, #4096
jnbe hd0_post_above_4096
;; 2048 < c <= 4096 cylinders
shr bx, #0x02
shl cl, #0x02
jmp hd0_post_store_logical
hd0_post_above_4096:
cmp bx, #8192
jnbe hd0_post_above_8192
;; 4096 < c <= 8192 cylinders
shr bx, #0x03
shl cl, #0x03
jmp hd0_post_store_logical
hd0_post_above_8192:
;; 8192 < c <= 16384 cylinders
shr bx, #0x04
shl cl, #0x04
hd0_post_store_logical:
mov (0x003d + 0x00), bx ;; number of physical cylinders
mov (0x003d + 0x02), cl ;; number of physical heads
;; checksum
mov cl, #0x0f ;; repeat count
mov si, #0x003d ;; offset to disk0 FDPT
mov al, #0x00 ;; sum
hd0_post_checksum_loop:
add al, [si]
inc si
dec cl
jnz hd0_post_checksum_loop
not al ;; now take 2s complement
inc al
mov [si], al
;;; Done filling EBDA table for hard disk 0.
check_for_hd1:
;; is there really a second hard disk? if not, return now
mov al, #0x12
out #0x70, al
in al, #0x71
and al, #0x0f
jnz post_d1_exists
ret
post_d1_exists:
;; check that the hd type is really 0x0f.
cmp al, #0x0f
jz post_d1_extended
HALT(__LINE__)
post_d1_extended:
;; check that the extended type is 47 - user definable
mov al, #0x1a
out #0x70, al
in al, #0x71
cmp al, #47 ;; decimal 47 - user definable
je post_d1_type47
HALT(__LINE__)
post_d1_type47:
;; Table for disk1.
;; CMOS purpose param table offset
;; 0x24 cylinders low 0
;; 0x25 cylinders high 1
;; 0x26 heads 2
;; 0x27 write pre-comp low 5
;; 0x28 write pre-comp high 6
;; 0x29 heads>8 8
;; 0x2a landing zone low C
;; 0x2b landing zone high D
;; 0x2c sectors/track E
;;; Fill EBDA table for hard disk 1.
mov ax, #EBDA_SEG
mov ds, ax
mov al, #0x28
out #0x70, al
in al, #0x71
mov ah, al
mov al, #0x27
out #0x70, al
in al, #0x71
mov (0x004d + 0x05), ax ;; write precomp word
mov al, #0x29
out #0x70, al
in al, #0x71
mov (0x004d + 0x08), al ;; drive control byte
mov al, #0x2b
out #0x70, al
in al, #0x71
mov ah, al
mov al, #0x2a
out #0x70, al
in al, #0x71
mov (0x004d + 0x0C), ax ;; landing zone word
mov al, #0x25 ;; get cylinders word in AX
out #0x70, al
in al, #0x71 ;; high byte
mov ah, al
mov al, #0x24
out #0x70, al
in al, #0x71 ;; low byte
mov bx, ax ;; BX = cylinders
mov al, #0x26
out #0x70, al
in al, #0x71
mov cl, al ;; CL = heads
mov al, #0x2c
out #0x70, al
in al, #0x71
mov dl, al ;; DL = sectors
cmp bx, #1024
jnbe hd1_post_logical_chs ;; if cylinders > 1024, use translated style CHS
hd1_post_physical_chs:
;; no logical CHS mapping used, just physical CHS
;; use Standard Fixed Disk Parameter Table (FDPT)
mov (0x004d + 0x00), bx ;; number of physical cylinders
mov (0x004d + 0x02), cl ;; number of physical heads
mov (0x004d + 0x0E), dl ;; number of physical sectors
ret
hd1_post_logical_chs:
;; complies with Phoenix style Translated Fixed Disk Parameter Table (FDPT)
mov (0x004d + 0x09), bx ;; number of physical cylinders
mov (0x004d + 0x0b), cl ;; number of physical heads
mov (0x004d + 0x04), dl ;; number of physical sectors
mov (0x004d + 0x0e), dl ;; number of logical sectors (same)
mov al, #0xa0
mov (0x004d + 0x03), al ;; A0h signature, indicates translated table
cmp bx, #2048
jnbe hd1_post_above_2048
;; 1024 < c <= 2048 cylinders
shr bx, #0x01
shl cl, #0x01
jmp hd1_post_store_logical
hd1_post_above_2048:
cmp bx, #4096
jnbe hd1_post_above_4096
;; 2048 < c <= 4096 cylinders
shr bx, #0x02
shl cl, #0x02
jmp hd1_post_store_logical
hd1_post_above_4096:
cmp bx, #8192
jnbe hd1_post_above_8192
;; 4096 < c <= 8192 cylinders
shr bx, #0x03
shl cl, #0x03
jmp hd1_post_store_logical
hd1_post_above_8192:
;; 8192 < c <= 16384 cylinders
shr bx, #0x04
shl cl, #0x04
hd1_post_store_logical:
mov (0x004d + 0x00), bx ;; number of physical cylinders
mov (0x004d + 0x02), cl ;; number of physical heads
;; checksum
mov cl, #0x0f ;; repeat count
mov si, #0x004d ;; offset to disk0 FDPT
mov al, #0x00 ;; sum
hd1_post_checksum_loop:
add al, [si]
inc si
dec cl
jnz hd1_post_checksum_loop
not al ;; now take 2s complement
inc al
mov [si], al
;;; Done filling EBDA table for hard disk 1.
ret
BcdToBin:
;; in: AL in BCD format
;; out: AL in binary format, AH will always be 0
;; trashes BX
mov bl, al
and bl, #0x0f ;; bl has low digit
shr al, #4 ;; al has high digit
mov bh, #10
mul al, bh ;; multiply high digit by 10 (result in AX)
add al, bl ;; then add low digit
ret
timer_tick_post:
;; Setup the Timer Ticks Count (0x46C:dword) and
;; Timer Ticks Roller Flag (0x470:byte)
;; The Timer Ticks Count needs to be set according to
;; the current CMOS time, as if ticks have been occurring
;; at 18.2hz since midnight up to this point. Calculating
;; this is a little complicated. Here are the factors I gather
;; regarding this. 14,318,180 hz was the original clock speed,
;; chosen so it could be divided by either 3 to drive the 5Mhz CPU
;; at the time, or 4 to drive the CGA video adapter. The div3
;; source was divided again by 4 to feed a 1.193Mhz signal to
;; the timer. With a maximum 16bit timer count, this is again
;; divided down by 65536 to 18.2hz.
;;
;; 14,318,180 Hz clock
;; /3 = 4,772,726 Hz fed to orginal 5Mhz CPU
;; /4 = 1,193,181 Hz fed to timer
;; /65536 (maximum timer count) = 18.20650736 ticks/second
;; 1 second = 18.20650736 ticks
;; 1 minute = 1092.390442 ticks
;; 1 hour = 65543.42651 ticks
;;
;; Given the values in the CMOS clock, one could calculate
;; the number of ticks by the following:
;; ticks = (BcdToBin(seconds) * 18.206507) +
;; (BcdToBin(minutes) * 1092.3904)
;; (BcdToBin(hours) * 65543.427)
;; To get a little more accuracy, since Im using integer
;; arithmatic, I use:
;; ticks = (BcdToBin(seconds) * 18206507) / 1000000 +
;; (BcdToBin(minutes) * 10923904) / 10000 +
;; (BcdToBin(hours) * 65543427) / 1000
;; assuming DS=0000
;; get CMOS seconds
xor eax, eax ;; clear EAX
mov al, #0x00
out #0x70, al
in al, #0x71 ;; AL has CMOS seconds in BCD
call BcdToBin ;; EAX now has seconds in binary
mov edx, #18206507
mul eax, edx
mov ebx, #1000000
xor edx, edx
div eax, ebx
mov ecx, eax ;; ECX will accumulate total ticks
;; get CMOS minutes
xor eax, eax ;; clear EAX
mov al, #0x02
out #0x70, al
in al, #0x71 ;; AL has CMOS minutes in BCD
call BcdToBin ;; EAX now has minutes in binary
mov edx, #10923904
mul eax, edx
mov ebx, #10000
xor edx, edx
div eax, ebx
add ecx, eax ;; add to total ticks
;; get CMOS hours
xor eax, eax ;; clear EAX
mov al, #0x04
out #0x70, al
in al, #0x71 ;; AL has CMOS hours in BCD
call BcdToBin ;; EAX now has hours in binary
mov edx, #65543427
mul eax, edx
mov ebx, #1000
xor edx, edx
div eax, ebx
add ecx, eax ;; add to total ticks
mov 0x46C, ecx ;; Timer Ticks Count
xor al, al
mov 0x470, al ;; Timer Ticks Rollover Flag
ret
int76_handler:
;; record completion in BIOS task complete flag
push ax
push ds
mov ax, #0x0040
mov ds, ax
mov 0x008E, #0xff
mov al, #0x20
out #0xA0, al ;; slave PIC EOI
out #0x20, al ;; master PIC EOI
pop ds
pop ax
iret
#if BX_PCIBIOS
use32 386
.align 16
bios32_structure:
db 0x5f, 0x33, 0x32, 0x5f ;; "_32_" signature
dw bios32_entry_point, 0xf ;; 32 bit physical address
db 0 ;; revision level
;; length in paragraphs and checksum stored in a word to prevent errors
dw (~(((bios32_entry_point >> 8) + (bios32_entry_point & 0xff) + 0x32) \
& 0xff) << 8) + 0x01
db 0,0,0,0,0 ;; reserved
.align 16
bios32_entry_point:
pushf
cmp eax, #0x49435024
jne unknown_service
mov eax, #0x80000000
mov dx, #0x0cf8
out dx, eax
mov dx, #0x0cfc
in eax, dx
cmp eax, #0x12378086
jne unknown_service
mov ebx, #0x000f0000
mov ecx, #0
mov edx, #pcibios_protected
xor al, al
jmp bios32_end
unknown_service:
mov al, #0x80
bios32_end:
popf
retf
.align 16
pcibios_protected:
pushf
cli
cmp al, #0x01 ;; installation check
jne pci_pro_f02
mov bx, #0x0210
mov cx, #0
mov edx, #0x20494350
mov al, #0x01
jmp pci_pro_ok
pci_pro_f02: ;; find pci device
cmp al, #0x02
jne pci_pro_f08
shl ecx, #16
or ecx, edx
mov bx, #0x0000
mov di, #0x00
pci_pro_devloop:
call pci_pro_select_reg
mov dx, #0x0cfc
in eax, dx
cmp eax, ecx
jne pci_pro_nextdev
cmp si, #0
je pci_pro_ok
dec si
pci_pro_nextdev:
inc bx
cmp bx, #0x0100
jne pci_pro_devloop
mov ah, #0x86
jmp pci_pro_fail
pci_pro_f08: ;; read configuration byte
cmp al, #0x08
jne pci_pro_f09
call pci_pro_select_reg
mov dx, di
and dx, #0x03
add dx, #0x0cfc
in al, dx
mov cl, al
jmp pci_pro_ok
pci_pro_f09: ;; read configuration word
cmp al, #0x09
jne pci_pro_f0a
call pci_pro_select_reg
mov dx, di
and dx, #0x02
add dx, #0x0cfc
in ax, dx
mov cx, ax
jmp pci_pro_ok
pci_pro_f0a: ;; read configuration dword
cmp al, #0x0a
jne pci_pro_f0b
call pci_pro_select_reg
mov dx, #0x0cfc
in eax, dx
mov ecx, eax
jmp pci_pro_ok
pci_pro_f0b: ;; write configuration byte
cmp al, #0x0b
jne pci_pro_f0c
call pci_pro_select_reg
mov dx, di
and dx, #0x03
add dx, #0x0cfc
mov al, cl
out dx, al
jmp pci_pro_ok
pci_pro_f0c: ;; write configuration word
cmp al, #0x0c
jne pci_pro_f0d
call pci_pro_select_reg
mov dx, di
and dx, #0x02
add dx, #0x0cfc
mov ax, cx
out dx, ax
jmp pci_pro_ok
pci_pro_f0d: ;; write configuration dword
cmp al, #0x0d
jne pci_pro_unknown
call pci_pro_select_reg
mov dx, #0x0cfc
mov eax, ecx
out dx, eax
jmp pci_pro_ok
pci_pro_unknown:
mov ah, #0x81
pci_pro_fail:
sti
popf
stc
retf
pci_pro_ok:
xor ah, ah
sti
popf
clc
retf
pci_pro_select_reg:
mov eax, #0x800000
mov ax, bx
shl eax, #8
and di, #0xff
or ax, di
and al, #0xfc
mov dx, #0x0cf8
out dx, eax
ret
use16 386
pcibios_real:
push ax
push dx
mov eax, #0x80000000
mov dx, #0x0cf8
out dx, eax
mov dx, #0x0cfc
in eax, dx
cmp eax, #0x12378086
je pci_present
pop dx
pop ax
mov ah, #0xff
stc
ret
pci_present:
pop dx
pop ax
cmp al, #0x01 ;; installation check
jne pci_real_f02
mov ax, #0x0001
mov bx, #0x0210
mov cx, #0
mov edx, #0x20494350
mov edi, #pcibios_protected
or edi, #0xf0000
clc
ret
pci_real_f02: ;; find pci device
cmp al, #0x02
jne pci_real_f08
shl ecx, #16
or ecx, edx
mov bx, #0x0000
mov di, #0x00
pci_real_devloop:
call pci_real_select_reg
mov dx, #0x0cfc
in eax, dx
cmp eax, ecx
jne pci_real_nextdev
cmp si, #0
je pci_real_ok
dec si
pci_real_nextdev:
inc bx
cmp bx, #0x0100
jne pci_real_devloop
mov dx, cx
shr ecx, #16
mov ah, #0x86
jmp pci_real_fail
pci_real_f08: ;; read configuration byte
cmp al, #0x08
jne pci_real_f09
call pci_real_select_reg
mov dx, di
and dx, #0x03
add dx, #0x0cfc
in al, dx
mov cl, al
jmp pci_real_ok
pci_real_f09: ;; read configuration word
cmp al, #0x09
jne pci_real_f0a
call pci_real_select_reg
mov dx, di
and dx, #0x02
add dx, #0x0cfc
in ax, dx
mov cx, ax
jmp pci_real_ok
pci_real_f0a: ;; read configuration dword
cmp al, #0x0a
jne pci_real_f0b
call pci_real_select_reg
mov dx, #0x0cfc
in eax, dx
mov ecx, eax
jmp pci_real_ok
pci_real_f0b: ;; write configuration byte
cmp al, #0x0b
jne pci_real_f0c
call pci_real_select_reg
mov dx, di
and dx, #0x03
add dx, #0x0cfc
mov al, cl
out dx, al
jmp pci_real_ok
pci_real_f0c: ;; write configuration word
cmp al, #0x0c
jne pci_real_f0d
call pci_real_select_reg
mov dx, di
and dx, #0x02
add dx, #0x0cfc
mov ax, cx
out dx, ax
jmp pci_real_ok
pci_real_f0d: ;; write configuration dword
cmp al, #0x0d
jne pci_real_unknown
call pci_real_select_reg
mov dx, #0x0cfc
mov eax, ecx
out dx, eax
jmp pci_real_ok
pci_real_unknown:
mov ah, #0x81
pci_real_fail:
stc
ret
pci_real_ok:
xor ah, ah
clc
ret
pci_real_select_reg:
mov eax, #0x800000
mov ax, bx
shl eax, #8
and di, #0xff
or ax, di
and al, #0xfc
mov dx, #0x0cf8
out dx, eax
ret
#endif
;; for 'C' strings and other data, insert them here with
;; a the following hack:
;; DATA_SEG_DEFS_HERE
;--------
;- POST -
;--------
.org 0xe05b ; POST Entry Point
post:
;; Examine CMOS shutdown status.
;; 0 = normal startup
mov AL, #0x0f
out 0x70, AL
in AL, 0x71
cmp AL, #0x00
jz normal_post
HALT(__LINE__)
;
mov AL, #0x0f
out 0x70, AL ; select CMOS register Fh
mov AL, #0x00
out 0x71, AL ; set shutdown action to normal
;
;#if 0
; 0xb0, 0x20, /* mov al, #0x20 */
; 0xe6, 0x20, /* out 0x20, al ;send EOI to PIC */
;#endif
;
pop es
pop ds
popa
iret
normal_post:
; case 0: normal startup
cli
mov ax, #0xfffe
mov sp, ax
mov ax, #0x0000
mov ds, ax
mov ss, ax
;; zero out BIOS data area (40:00..40:ff)
mov es, ax
mov cx, #0x0080 ;; 128 words
mov di, #0x0400
cld
rep
stosw
call _log_bios_start
;; set all interrupts to default handler
mov bx, #0x0000 ;; offset index
mov cx, #0x0100 ;; counter (256 interrupts)
mov ax, #dummy_iret_handler
mov dx, #0xF000
post_default_ints:
mov [bx], ax
inc bx
inc bx
mov [bx], dx
inc bx
inc bx
loop post_default_ints
;; base memory in K 40:13 (word)
mov ax, #BASE_MEM_IN_K
mov 0x0413, ax
;; Manufacturing Test 40:12
;; zerod out above
;; Warm Boot Flag 0040:0072
;; value of 1234h = skip memory checks
;; zerod out above
;; Printer Services vector
SET_INT_VECTOR(0x17, #0xF000, #int17_handler)
;; Bootstrap failure vector
SET_INT_VECTOR(0x18, #0xF000, #int18_handler)
;; Bootstrap Loader vector
SET_INT_VECTOR(0x19, #0xF000, #int19_handler)
;; User Timer Tick vector
SET_INT_VECTOR(0x1c, #0xF000, #int1c_handler)
;; Memory Size Check vector
SET_INT_VECTOR(0x12, #0xF000, #int12_handler)
;; Equipment Configuration Check vector
SET_INT_VECTOR(0x11, #0xF000, #int11_handler)
;; System Services
SET_INT_VECTOR(0x15, #0xF000, #int15_handler)
mov ax, #0x0000 ; mov EBDA seg into 40E
mov ds, ax
mov 0x40E, #EBDA_SEG
;; PIT setup
SET_INT_VECTOR(0x08, #0xF000, #int08_handler)
;; int 1C already points at dummy_iret_handler (above)
mov al, #0x34 ; timer0: binary count, 16bit count, mode 2
out 0x43, al
mov al, #0x00 ; maximum count of 0000H = 18.2Hz
out 0x40, al
out 0x40, al
;; Keyboard
SET_INT_VECTOR(0x09, #0xF000, #int09_handler)
SET_INT_VECTOR(0x16, #0xF000, #int16_handler)
mov ax, #0x0000
mov ds, ax
mov 0x0417, al /* keyboard shift flags, set 1 */
mov 0x0418, al /* keyboard shift flags, set 2 */
mov 0x0419, al /* keyboard alt-numpad work area */
mov 0x0471, al /* keyboard ctrl-break flag */
mov 0x0497, al /* keyboard status flags 4 */
mov al, #0x10
mov 0x0496, al /* keyboard status flags 3 */
/* keyboard head of buffer pointer */
mov bx, #0x001E
mov 0x041A, bx
/* keyboard end of buffer pointer */
mov 0x041C, bx
/* keyboard pointer to start of buffer */
mov bx, #0x001E
mov 0x0480, bx
/* keyboard pointer to end of buffer */
mov bx, #0x003E
mov 0x0482, bx
/* clear the output buffer and enable keyboard */
in al, 0x60
mov al, #0xae
out 0x64, al
/* (mch) Keyboard self-test */
mov al, #0xaa
out 0x64, al
kbd_wait:
in al, 0x64
test al, #0x01
jz kbd_wait
in al, 0x60
cmp al, #0x55
je keyboard_ok
call _keyboard_panic
keyboard_ok:
;; mov CMOS Equipment Byte to BDA Equipment Word
mov ax, 0x0410
mov al, #0x14
out 0x70, al
in al, 0x71
mov 0x0410, ax
;; DMA
mov al, #0xC0
out 0xD6, al ; cascade mode of channel 4 enabled
mov al, #0x00
out 0xD4, al ; unmask channel 4
;; Parallel setup
SET_INT_VECTOR(0x0F, #0xF000, #dummy_iret_handler)
mov ax, #0x0000
mov ds, ax
mov 0x408, #0x378 ; Parallel I/O address, port 1
mov 0x478, #0x14 ; Parallel printer 1 timeout
mov AX, 0x410 ; Equipment word bits 14..15 determing # parallel ports
and AX, #0x3fff
or AX, #0x4000 ; one parallel port
mov 0x410, AX
;; Serial setup
SET_INT_VECTOR(0x0C, #0xF000, #dummy_iret_handler)
SET_INT_VECTOR(0x14, #0xF000, #int14_handler)
mov 0x400, #0x03F8 ; Serial I/O address, port 1
mov 0x47C, #0x0a ; Serial 1 timeout
mov AX, 0x410 ; Equipment word bits 9..11 determing # serial ports
and AX, #0xf1ff
or AX, #0x0200 ; one serial port
mov 0x410, AX
;; CMOS RTC
SET_INT_VECTOR(0x1A, #0xF000, #int1a_handler)
SET_INT_VECTOR(0x4A, #0xF000, #dummy_iret_handler)
SET_INT_VECTOR(0x70, #0xF000, #int70_handler)
;; BIOS DATA AREA 0x4CE ???
call timer_tick_post
;; PS/2 mouse setup
SET_INT_VECTOR(0x74, #0xF000, #int74_handler)
;; Video setup
SET_INT_VECTOR(0x10, #0xF000, #int10_handler)
;; PIC
mov al, #0x11 ; send initialisation commands
out 0x20, al
out 0xa0, al
mov al, #0x08
out 0x21, al
mov al, #0x70
out 0xa1, al
mov al, #0x04
out 0x21, al
mov al, #0x02
out 0xa1, al
mov al, #0x01
out 0x21, al
out 0xa1, al
mov al, #0xb8
out 0x21, AL ;master pic: unmask IRQ 0, 1, 2, 6
#if BX_USE_PS2_MOUSE
mov al, #0x8f
#else
mov al, #0x9f
#endif
out 0xa1, AL ;slave pic: unmask IRQ 12, 13, 14
;; Scan for existence of valid expansion ROMS.
;; Video ROM: from 0xC0000..0xC7FFF in 2k increments
;; General ROM: from 0xC8000..0xDFFFF in 2k increments
;; System ROM: only 0xE0000
;;
;; Header:
;; Offset Value
;; 0 0x55
;; 1 0xAA
;; 2 ROM length in 512-byte blocks
;; 3 ROM initialization entry point (FAR CALL)
mov cx, #0xc000
rom_scan_loop:
mov ds, cx
mov ax, #0x0004 ;; start with increment of 4 (512-byte) blocks = 2k
cmp [0], #0xAA55 ;; look for signature
jne rom_scan_increment
mov al, [2] ;; change increment to ROM length in 512-byte blocks
;; We want our increment in 512-byte quantities, rounded to
;; the nearest 2k quantity, since we only scan at 2k intervals.
test al, #0x03
jz block_count_rounded
and al, #0xfc ;; needs rounding up
add al, #0x04
block_count_rounded:
xor bx, bx ;; Restore DS back to 0000:
mov ds, bx
push ax ;; Save AX
;; Push addr of ROM entry point
push cx ;; Push seg
push #0x0003 ;; Push offset
mov bp, sp ;; Call ROM init routine using seg:off on stack
db 0xff ;; call_far ss:[bp+0]
db 0x5e
db 0
cli ;; In case expansion ROM BIOS turns IF on
add sp, #2 ;; Pop offset value
pop cx ;; Pop seg value (restore CX)
pop ax ;; Restore AX
rom_scan_increment:
shl ax, #5 ;; convert 512-bytes blocks to 16-byte increments
;; because the segment selector is shifted left 4 bits.
add cx, ax
cmp cx, #0xe000
jbe rom_scan_loop
xor ax, ax ;; Restore DS back to 0000:
mov ds, ax
;; display version string
call _print_bios_banner
;;
;; Hard Drive setup
;;
call hard_drive_post
;;
;; Floppy setup
;;
call floppy_drive_post
#if BX_USE_ATADRV
;;
;; ATA/ATAPI driver setup
;;
call _atadrv_init
call _atareg_config
call _ata_read_device_types
call _ata_show_devices
#endif // BX_USE_ATADRV
#if BX_ELTORITO_BOOT
;;
;; floppy/harddisk cd emulation
;;
call _cdemu_init
#endif // BX_ELTORITO_BOOT
int #0x19
//JMP_EP(0x0064) ; INT 19h location
.org 0xe2c3 ; NMI Handler Entry Point
call _nmi_handler_msg
HALT(__LINE__)
iret
;-------------------------------------------
;- INT 13h Fixed Disk Services Entry Point -
;-------------------------------------------
.org 0xe3fe ; INT 13h Fixed Disk Services Entry Point
int13_handler:
//JMPL(int13_relocated)
jmp int13_relocated
.org 0xe401 ; Fixed Disk Parameter Table
;----------
;- INT19h -
;----------
.org 0xe6f2 ; INT 19h Boot Load Service Entry Point
int19_handler:
jmp int19_relocated
;-------------------------------------------
;- System BIOS Configuration Data Table
;-------------------------------------------
.org BIOS_CONFIG_TABLE
db 0x08 ; Table size (bytes) -Lo
db 0x00 ; Table size (bytes) -Hi
db SYS_MODEL_ID
db SYS_SUBMODEL_ID
db BIOS_REVISION
; Feature byte 1
; b7: 1=DMA channel 3 used by hard disk
; b6: 1=2 interrupt controllers present
; b5: 1=RTC present
; b4: 1=BIOS calls int 15h/4Fh every key
; b3: 1=wait for extern event supported (Int 15h/41h)
; b2: 1=extended BIOS data area used
; b1: 0=AT or ESDI bus, 1=MicroChannel
; b0: 1=Dual bus (MicroChannel + ISA)
db (0 << 7) | \
(1 << 6) | \
(1 << 5) | \
(BX_CALL_INT15_4F << 4) | \
(0 << 3) | \
(BX_USE_EBDA << 2) | \
(0 << 1) | \
(0 << 0)
; Feature byte 2
; b7: 1=32-bit DMA supported
; b6: 1=int16h, function 9 supported
; b5: 1=int15h/C6h (get POS data) supported
; b4: 1=int15h/C7h (get mem map info) supported
; b3: 1=int15h/C8h (en/dis CPU) supported
; b2: 1=non-8042 kb controller
; b1: 1=data streaming supported
; b0: reserved
db (0 << 7) | \
(1 << 6) | \
(0 << 5) | \
(0 << 4) | \
(0 << 3) | \
(0 << 2) | \
(0 << 1) | \
(0 << 0)
; Feature byte 3
; b7: not used
; b6: reserved
; b5: reserved
; b4: POST supports ROM-to-RAM enable/disable
; b3: SCSI on system board
; b2: info panel installed
; b1: Initial Machine Load (IML) system - BIOS on disk
; b0: SCSI supported in IML
db 0x00
; Feature byte 4
; b7: IBM private
; b6: EEPROM present
; b5-3: ABIOS presence (011 = not supported)
; b2: private
; b1: memory split above 16Mb supported
; b0: POSTEXT directly supported by POST
db 0x00
; Feature byte 5 (IBM)
; b1: enhanced mouse
; b0: flash EPROM
db 0x00
.org 0xe729 ; Baud Rate Generator Table
;----------
;- INT14h -
;----------
.org 0xe739 ; INT 14h Serial Communications Service Entry Point
int14_handler:
push ds
pusha
mov ax, #0x0000
mov ds, ax
call _int14_function
popa
pop ds
iret
;----------------------------------------
;- INT 16h Keyboard Service Entry Point -
;----------------------------------------
.org 0xe82e
int16_handler:
push ds
pushf
pusha
cmp ah, #0x00
je int16_F00
cmp ah, #0x10
je int16_F00
mov bx, #0xf000
mov ds, bx
call _int16_function
popa
popf
pop ds
jz int16_zero_set
int16_zero_clear:
push bp
mov bp, sp
//SEG SS
and BYTE [bp + 0x06], #0xbf
pop bp
iret
int16_zero_set:
push bp
mov bp, sp
//SEG SS
or BYTE [bp + 0x06], #0x40
pop bp
iret
int16_F00:
mov bx, #0x0040
mov ds, bx
int16_wait_for_key:
cli
mov bx, 0x001a
cmp bx, 0x001c
jne int16_key_found
sti
nop
#if 0
/* no key yet, call int 15h, function AX=9002 */
0x50, /* push AX */
0xb8, 0x02, 0x90, /* mov AX, #0x9002 */
0xcd, 0x15, /* int 15h */
0x58, /* pop AX */
0xeb, 0xea, /* jmp WAIT_FOR_KEY */
#endif
jmp int16_wait_for_key
int16_key_found:
mov bx, #0xf000
mov ds, bx
call _int16_function
popa
popf
pop ds
#if 0
/* notify int16 complete w/ int 15h, function AX=9102 */
0x50, /* push AX */
0xb8, 0x02, 0x91, /* mov AX, #0x9102 */
0xcd, 0x15, /* int 15h */
0x58, /* pop AX */
#endif
iret
;-------------------------------------------------
;- INT09h : Keyboard Hardware Service Entry Point -
;-------------------------------------------------
.org 0xe987
int09_handler:
cli
push ax
mov al, #0xAD ;;disable keyboard
out #0x64, al
mov al, #0x0B
out #0x20, al
in al, #0x20
and al, #0x02
jz int09_finish
in al, #0x60 ;;read key from keyboard controller
//test al, #0x80 ;;look for key release
//jnz int09_process_key ;; dont pass releases to intercept?
sti
#ifdef BX_CALL_INT15_4F
mov ah, #0x4f ;; allow for keyboard intercept
stc
int #0x15
jnc int09_done
#endif
//int09_process_key:
push ds
pusha
mov bx, #0xf000
mov ds, bx
call _int09_function
popa
pop ds
int09_done:
cli
mov al, #0x20 ;; send EOI to master PIC
out #0x20, al
int09_finish:
mov al, #0xAE ;;enable keyboard
out #0x64, al
pop ax
iret
;----------------------------------------
;- INT 13h Diskette Service Entry Point -
;----------------------------------------
.org 0xec59
int13_diskette:
pushf
push es
pusha
call _int13_diskette_function
popa
pop es
popf
//JMPL(iret_modify_cf)
jmp iret_modify_cf
#if 0
pushf
cmp ah, #0x01
je i13d_f01
;; pushf already done
push es
pusha
call _int13_diskette_function
popa
pop es
popf
//JMPL(iret_modify_cf)
jmp iret_modify_cf
i13d_f01:
popf
push ds
push bx
mov bx, #0x0000
mov ds, bx
mov ah, 0x0441
pop bx
pop ds
clc
;; ??? dont know if this service changes the return status
//JMPL(iret_modify_cf)
jmp iret_modify_cf
#endif
;---------------------------------------------
;- INT 0Eh Diskette Hardware ISR Entry Point -
;---------------------------------------------
.org 0xef57 ; INT 0Eh Diskette Hardware ISR Entry Point
int0e_handler:
push ax
push dx
mov dx, #0x03f4
in al, dx
and al, #0xc0
cmp al, #0xc0
je int0e_normal
mov dx, #0x03f5
mov al, #0x08 ; sense interrupt status
out dx, al
int0e_loop1:
mov dx, #0x03f4
in al, dx
and al, #0xc0
cmp al, #0xc0
jne int0e_loop1
int0e_loop2:
mov dx, #0x03f5
in al, dx
mov dx, #0x03f4
in al, dx
and al, #0xc0
cmp al, #0xc0
je int0e_loop2
int0e_normal:
push ds
mov ax, #0x0000 ;; segment 0000
mov ds, ax
mov al, #0x20
out 0x20, al ;; send EOI to PIC
mov al, 0x043e
or al, #0x80 ;; diskette interrupt has occurred
mov 0x043e, al
pop ds
pop dx
pop ax
iret
.org 0xefc7 ; Diskette Controller Parameter Table
diskette_param_table:
;; Since no provisions are made for multiple drive types, most
;; values in this table are ignored. I set parameters for 1.44M
;; floppy here
db 0xAF
db 0x02 ;; head load time 0000001, DMA used
db 0x25
db 0x02
db 18
db 0x1B
db 0xFF
db 0x6C
db 0xF6
db 0x0F
db 0x08
;----------------------------------------
;- INT17h : Printer Service Entry Point -
;----------------------------------------
.org 0xefd2
int17_handler:
push ds
pusha
mov ax, #0x0000
mov ds, ax
call _int17_function
popa
pop ds
iret
.org 0xf045 ; INT 10 Functions 0-Fh Entry Point
HALT(__LINE__)
iret
;----------
;- INT10h -
;----------
.org 0xf065 ; INT 10h Video Support Service Entry Point
int10_handler:
;; dont do anything, since the VGA BIOS handles int10h requests
iret
.org 0xf0a4 ; MDA/CGA Video Parameter Table (INT 1Dh)
;----------
;- INT12h -
;----------
.org 0xf841 ; INT 12h Memory Size Service Entry Point
; ??? different for Pentium (machine check)?
int12_handler:
push ds
mov ax, #0x0040
mov ds, ax
mov ax, 0x0013
pop ds
iret
;----------
;- INT11h -
;----------
.org 0xf84d ; INT 11h Equipment List Service Entry Point
int11_handler:
push ds
mov ax, #0x0040
mov ds, ax
mov ax, 0x0010
pop ds
iret
;----------
;- INT15h -
;----------
.org 0xf859 ; INT 15h System Services Entry Point
int15_handler:
pushf
push ds
push es
pusha
call _int15_function
popa
pop es
pop ds
popf
//JMPL(iret_modify_cf)
jmp iret_modify_cf
;; Protected mode IDT descriptor
;;
;; I just make the limit 0, so the machine will shutdown
;; if an exception occurs during protected mode memory
;; transfers.
;;
;; Set base to f0000 to correspond to beginning of BIOS,
;; in case I actually define an IDT later
;; Set limit to 0
pmode_IDT_info:
dw 0x0000 ;; limit 15:00
dw 0x0000 ;; base 15:00
db 0x0f ;; base 23:16
;; Real mode IDT descriptor
;;
;; Set to typical real-mode values.
;; base = 000000
;; limit = 03ff
rmode_IDT_info:
dw 0x03ff ;; limit 15:00
dw 0x0000 ;; base 15:00
db 0x00 ;; base 23:16
.org 0xfa6e ; Character Font for 320x200 & 640x200 Graphics (lower 128 characters)
;----------
;- INT1Ah -
;----------
.org 0xfe6e ; INT 1Ah Time-of-day Service Entry Point
int1a_handler:
#if BX_PCIBIOS
cmp ah, #0xb1
jne int1a_normal
call pcibios_real
jc pcibios_error
push ax
mov ax, ss
push ds
mov ds, ax
push bp
mov bp, sp
lahf
mov [bp+10], ah
pop bp
pop ds
pop ax
iret
pcibios_error:
mov al, ah
mov ah, #0xb1
int1a_normal:
#endif
push ds
pusha
mov ax, #0x0000
mov ds, ax
call _int1a_function
popa
pop ds
iret
;;
;; int70h: IRQ8 - CMOS RTC
;;
int70_handler:
push ds
pusha
mov ax, #0x0000
mov ds, ax
call _int70_function
popa
pop ds
iret
;---------
;- INT08 -
;---------
.org 0xfea5 ; INT 08h System Timer ISR Entry Point
int08_handler:
sti
push eax
push ds
mov ax, #0x0000
mov ds, ax
mov eax, 0x046c ;; get ticks dword
inc eax
;; compare eax to one days worth of timer ticks at 18.2 hz
cmp eax, #0x001800B0
jb int08_store_ticks
;; there has been a midnight rollover at this point
xor eax, eax ;; zero out counter
inc BYTE 0x0470 ;; increment rollover flag
int08_store_ticks:
mov 0x046c, eax ;; store new ticks dword
;; chain to user timer tick INT #0x1c
//pushf
//;; call_ep [ds:loc]
//CALL_EP( 0x1c << 2 )
int #0x1c
cli
mov al, #0x20
out 0x20, al ; send EOI to PIC
pop ds
pop eax
iret
.org 0xfef3 ; Initial Interrupt Vector Offsets Loaded by POST
;------------------------------------------------
;- IRET Instruction for Dummy Interrupt Handler -
;------------------------------------------------
.org 0xff53 ; IRET Instruction for Dummy Interrupt Handler
dummy_iret_handler:
iret
.org 0xff54 ; INT 05h Print Screen Service Entry Point
HALT(__LINE__)
iret
; .org 0xff00
; .ascii "(c) 1994-2000 Kevin P. Lawton"
.org 0xfff0 ; Power-up Entry Point
jmp 0xf000:post;
.org 0xfff5 ; ASCII Date ROM was built - 8 characters in MM/DD/YY
.ascii "06/23/99"
.org 0xfffe ; System Model ID
db SYS_MODEL_ID
db 0x00 ; filler
.org 0xd000
// bcc-generated data will be placed here
// For documentation of this config structure, look on developer.intel.com and
// search for multiprocessor specification. Note that when you change anything
// you must update the checksum (a pain!). It would be better to construct this
// with C structures, or at least fill in the checksum automatically.
#if (BX_SMP_PROCESSORS==1)
// no structure necessary.
#elif (BX_SMP_PROCESSORS==2)
// define the Intel MP Configuration Structure for 2 processors at
// APIC ID 0,1. I/O APIC at ID=2.
.align 16
mp_config_table:
db 0x50, 0x43, 0x4d, 0x50 ;; "PCMP" signature
dw (mp_config_end-mp_config_table) ;; table length
db 4 ;; spec rev
db 0x65 ;; checksum
.ascii "BOCHSCPU" ;; OEM id = "BOCHSCPU"
db 0x30, 0x2e, 0x31, 0x20 ;; vendor id = "0.1 "
db 0x20, 0x20, 0x20, 0x20
db 0x20, 0x20, 0x20, 0x20
dw 0,0 ;; oem table ptr
dw 0 ;; oem table size
dw 20 ;; entry count
dw 0x0000, 0xfee0 ;; memory mapped address of local APIC
dw 0 ;; extended table length
db 0 ;; extended table checksum
db 0 ;; reserved
mp_config_proc0:
db 0 ;; entry type=processor
db 0 ;; local APIC id
db 0x11 ;; local APIC version number
db 3 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc1:
db 0 ;; entry type=processor
db 1 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_isa_bus:
db 1 ;; entry type=bus
db 0 ;; bus ID
db 0x49, 0x53, 0x41, 0x20, 0x20, 0x20 ;; bus type="ISA "
mp_config_ioapic:
db 2 ;; entry type=I/O APIC
db 2 ;; apic id=2. linux will set.
db 0x11 ;; I/O APIC version number
db 1 ;; flags=1=enabled
dw 0x0000, 0xfec0 ;; memory mapped address of I/O APIC
mp_config_irqs:
db 3 ;; entry type=I/O interrupt
db 0 ;; interrupt type=vectored interrupt
db 0,0 ;; flags po=0, el=0 (linux uses as default)
db 0 ;; source bus ID is ISA
db 0 ;; source bus IRQ
db 2 ;; destination I/O APIC ID
db 0 ;; destination I/O APIC interrrupt in
;; repeat pattern for interrupts 0-15
db 3,0,0,0,0,1,2,1
db 3,0,0,0,0,2,2,2
db 3,0,0,0,0,3,2,3
db 3,0,0,0,0,4,2,4
db 3,0,0,0,0,5,2,5
db 3,0,0,0,0,6,2,6
db 3,0,0,0,0,7,2,7
db 3,0,0,0,0,8,2,8
db 3,0,0,0,0,9,2,9
db 3,0,0,0,0,10,2,10
db 3,0,0,0,0,11,2,11
db 3,0,0,0,0,12,2,12
db 3,0,0,0,0,13,2,13
db 3,0,0,0,0,14,2,14
db 3,0,0,0,0,15,2,15
#elif (BX_SMP_PROCESSORS==4)
// define the Intel MP Configuration Structure for 4 processors at
// APIC ID 0,1,2,3. I/O APIC at ID=4.
.align 16
mp_config_table:
db 0x50, 0x43, 0x4d, 0x50 ;; "PCMP" signature
dw (mp_config_end-mp_config_table) ;; table length
db 4 ;; spec rev
db 0xdd ;; checksum
.ascii "BOCHSCPU" ;; OEM id = "BOCHSCPU"
db 0x30, 0x2e, 0x31, 0x20 ;; vendor id = "0.1 "
db 0x20, 0x20, 0x20, 0x20
db 0x20, 0x20, 0x20, 0x20
dw 0,0 ;; oem table ptr
dw 0 ;; oem table size
dw 22 ;; entry count
dw 0x0000, 0xfee0 ;; memory mapped address of local APIC
dw 0 ;; extended table length
db 0 ;; extended table checksum
db 0 ;; reserved
mp_config_proc0:
db 0 ;; entry type=processor
db 0 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc1:
db 0 ;; entry type=processor
db 1 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc2:
db 0 ;; entry type=processor
db 2 ;; local APIC id
db 0x11 ;; local APIC version number
db 3 ;; cpu flags: enabled, bootstrap processor
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc3:
db 0 ;; entry type=processor
db 3 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_isa_bus:
db 1 ;; entry type=bus
db 0 ;; bus ID
db 0x49, 0x53, 0x41, 0x20, 0x20, 0x20 ;; bus type="ISA "
mp_config_ioapic:
db 2 ;; entry type=I/O APIC
db 4 ;; apic id=2. linux will set.
db 0x11 ;; I/O APIC version number
db 1 ;; flags=1=enabled
dw 0x0000, 0xfec0 ;; memory mapped address of I/O APIC
mp_config_irqs:
db 3 ;; entry type=I/O interrupt
db 0 ;; interrupt type=vectored interrupt
db 0,0 ;; flags po=0, el=0 (linux uses as default)
db 0 ;; source bus ID is ISA
db 0 ;; source bus IRQ
db 4 ;; destination I/O APIC ID
db 0 ;; destination I/O APIC interrrupt in
;; repeat pattern for interrupts 0-15
db 3,0,0,0,0,1,4,1
db 3,0,0,0,0,2,4,2
db 3,0,0,0,0,3,4,3
db 3,0,0,0,0,4,4,4
db 3,0,0,0,0,5,4,5
db 3,0,0,0,0,6,4,6
db 3,0,0,0,0,7,4,7
db 3,0,0,0,0,8,4,8
db 3,0,0,0,0,9,4,9
db 3,0,0,0,0,10,4,10
db 3,0,0,0,0,11,4,11
db 3,0,0,0,0,12,4,12
db 3,0,0,0,0,13,4,13
db 3,0,0,0,0,14,4,14
db 3,0,0,0,0,15,4,15
#elif (BX_SMP_PROCESSORS==8)
// define the Intel MP Configuration Structure for 4 processors at
// APIC ID 0,1,2,3. I/O APIC at ID=4.
.align 16
mp_config_table:
db 0x50, 0x43, 0x4d, 0x50 ;; "PCMP" signature
dw (mp_config_end-mp_config_table) ;; table length
db 4 ;; spec rev
db 0x2e ;; checksum
.ascii "BOCHSCPU" ;; OEM id = "BOCHSCPU"
db 0x30, 0x2e, 0x31, 0x20 ;; vendor id = "0.1 "
db 0x20, 0x20, 0x20, 0x20
db 0x20, 0x20, 0x20, 0x20
dw 0,0 ;; oem table ptr
dw 0 ;; oem table size
dw 22 ;; entry count
dw 0x0000, 0xfee0 ;; memory mapped address of local APIC
dw 0 ;; extended table length
db 0 ;; extended table checksum
db 0 ;; reserved
mp_config_proc0:
db 0 ;; entry type=processor
db 0 ;; local APIC id
db 0x11 ;; local APIC version number
db 3 ;; cpu flags: bootstrap cpu
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc1:
db 0 ;; entry type=processor
db 1 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc2:
db 0 ;; entry type=processor
db 2 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc3:
db 0 ;; entry type=processor
db 3 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc4:
db 0 ;; entry type=processor
db 4 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc5:
db 0 ;; entry type=processor
db 5 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc6:
db 0 ;; entry type=processor
db 6 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_proc7:
db 0 ;; entry type=processor
db 7 ;; local APIC id
db 0x11 ;; local APIC version number
db 1 ;; cpu flags: enabled
db 0,6,0,0 ;; cpu signature
dw 0x201,0 ;; feature flags
dw 0,0 ;; reserved
dw 0,0 ;; reserved
mp_config_isa_bus:
db 1 ;; entry type=bus
db 0 ;; bus ID
db 0x49, 0x53, 0x41, 0x20, 0x20, 0x20 ;; bus type="ISA "
mp_config_ioapic:
db 2 ;; entry type=I/O APIC
db 0x11 ;; apic id=2. linux will set.
db 0x11 ;; I/O APIC version number
db 1 ;; flags=1=enabled
dw 0x0000, 0xfec0 ;; memory mapped address of I/O APIC
mp_config_irqs:
db 3 ;; entry type=I/O interrupt
db 0 ;; interrupt type=vectored interrupt
db 0,0 ;; flags po=0, el=0 (linux uses as default)
db 0 ;; source bus ID is ISA
db 0 ;; source bus IRQ
db 0x11 ;; destination I/O APIC ID, Linux can't address it but won't need to
db 0 ;; destination I/O APIC interrrupt in
;; repeat pattern for interrupts 0-15
db 3,0,0,0,0,1,0x11,1
db 3,0,0,0,0,2,0x11,2
db 3,0,0,0,0,3,0x11,3
db 3,0,0,0,0,4,0x11,4
db 3,0,0,0,0,5,0x11,5
db 3,0,0,0,0,6,0x11,6
db 3,0,0,0,0,7,0x11,7
db 3,0,0,0,0,8,0x11,8
db 3,0,0,0,0,9,0x11,9
db 3,0,0,0,0,10,0x11,10
db 3,0,0,0,0,11,0x11,11
db 3,0,0,0,0,12,0x11,12
db 3,0,0,0,0,13,0x11,13
db 3,0,0,0,0,14,0x11,14
db 3,0,0,0,0,15,0x11,15
#else
# error Sorry, rombios only has configurations for 1, 2, or 4 processors.
#endif // if (BX_SMP_PROCESSORS==...)
mp_config_end: // this label used to find length of mp structure
db 0
#if (BX_SMP_PROCESSORS>1)
.align 16
mp_floating_pointer_structure:
db 0x5f, 0x4d, 0x50, 0x5f ; "_MP_" signature
dw mp_config_table, 0xf ;; pointer to MP configuration table
db 1 ;; length of this struct in 16-bit byte chunks
db 4 ;; MP spec revision
db 0xc1 ;; checksum
db 0 ;; MP feature byte 1. value 0 means look at the config table
db 0,0,0,0 ;; MP feature bytes 2-5.
#endif
ASM_END