1481 lines
33 KiB
C++
1481 lines
33 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: bit.cc,v 1.43 2007-11-29 21:52:16 sshwarts Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
|
|
#if BX_CPU_LEVEL >= 3
|
|
|
|
void BX_CPU_C::SETO_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = getB_OF();
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETNO_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = !getB_OF();
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETB_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = getB_CF();
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETNB_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = !getB_CF();
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETZ_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = getB_ZF();
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETNZ_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = !getB_ZF();
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETBE_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = (getB_CF() | getB_ZF());
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETNBE_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = !(getB_CF() | getB_ZF());
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETS_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = getB_SF();
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETNS_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = !getB_SF();
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETP_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = getB_PF();
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETNP_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = !getB_PF();
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETL_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = (getB_SF() ^ getB_OF());
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETNL_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8 = !(getB_SF() ^ getB_OF());
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETLE_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8;
|
|
|
|
if (get_ZF() || (getB_SF()!=getB_OF()))
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::SETNLE_Eb(bxInstruction_c *i)
|
|
{
|
|
Bit8u result_8;
|
|
|
|
if ((get_ZF()==0) && (getB_SF()==getB_OF()))
|
|
result_8 = 1;
|
|
else
|
|
result_8 = 0;
|
|
|
|
/* now write result back to destination */
|
|
if (i->modC0()) {
|
|
BX_WRITE_8BIT_REGx(i->rm(), i->extend8bitL(), result_8);
|
|
}
|
|
else {
|
|
write_virtual_byte(i->seg(), RMAddr(i), &result_8);
|
|
}
|
|
}
|
|
|
|
void BX_CPU_C::BSF_GwEw(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16, op2_16;
|
|
|
|
/* op2_16 is a register or memory reference */
|
|
if (i->modC0()) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
|
|
}
|
|
|
|
if (op2_16 == 0) {
|
|
assert_ZF(); /* op1_16 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_16 = 0;
|
|
while ( (op2_16 & 0x01) == 0 ) {
|
|
op1_16++;
|
|
op2_16 >>= 1;
|
|
}
|
|
|
|
SET_FLAGS_OSZAPC_LOGIC_16(op1_16);
|
|
clear_ZF();
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_16BIT_REG(i->nnn(), op1_16);
|
|
}
|
|
|
|
void BX_CPU_C::BSF_GdEd(bxInstruction_c *i)
|
|
{
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32;
|
|
|
|
/* op2_32 is a register or memory reference */
|
|
if (i->modC0()) {
|
|
op2_32 = BX_READ_32BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
|
|
}
|
|
|
|
if (op2_32 == 0) {
|
|
assert_ZF(); /* op1_32 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_32 = 0;
|
|
while ( (op2_32 & 0x01) == 0 ) {
|
|
op1_32++;
|
|
op2_32 >>= 1;
|
|
}
|
|
|
|
SET_FLAGS_OSZAPC_LOGIC_32(op1_32);
|
|
clear_ZF();
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BSF_GqEq(bxInstruction_c *i)
|
|
{
|
|
/* for 64 bit operand size mode */
|
|
Bit64u op1_64, op2_64;
|
|
|
|
/* op2_64 is a register or memory reference */
|
|
if (i->modC0()) {
|
|
op2_64 = BX_READ_64BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_qword(i->seg(), RMAddr(i), &op2_64);
|
|
}
|
|
|
|
if (op2_64 == 0) {
|
|
assert_ZF(); /* op1_64 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_64 = 0;
|
|
while ( (op2_64 & 0x01) == 0 ) {
|
|
op1_64++;
|
|
op2_64 >>= 1;
|
|
}
|
|
|
|
SET_FLAGS_OSZAPC_LOGIC_64(op1_64);
|
|
clear_ZF();
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_64BIT_REG(i->nnn(), op1_64);
|
|
}
|
|
#endif // #if BX_SUPPORT_X86_64
|
|
|
|
void BX_CPU_C::BSR_GwEw(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16, op2_16;
|
|
|
|
/* op2_16 is a register or memory reference */
|
|
if (i->modC0()) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
|
|
}
|
|
|
|
if (op2_16 == 0) {
|
|
assert_ZF(); /* op1_16 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_16 = 15;
|
|
while ( (op2_16 & 0x8000) == 0 ) {
|
|
op1_16--;
|
|
op2_16 <<= 1;
|
|
}
|
|
|
|
SET_FLAGS_OSZAPC_LOGIC_16(op1_16);
|
|
clear_ZF();
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_16BIT_REG(i->nnn(), op1_16);
|
|
}
|
|
|
|
void BX_CPU_C::BSR_GdEd(bxInstruction_c *i)
|
|
{
|
|
/* for 32 bit operand size mode */
|
|
Bit32u op1_32, op2_32;
|
|
|
|
/* op2_32 is a register or memory reference */
|
|
if (i->modC0()) {
|
|
op2_32 = BX_READ_32BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
|
|
}
|
|
|
|
if (op2_32 == 0) {
|
|
assert_ZF(); /* op1_32 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_32 = 31;
|
|
while ( (op2_32 & 0x80000000) == 0 ) {
|
|
op1_32--;
|
|
op2_32 <<= 1;
|
|
}
|
|
|
|
SET_FLAGS_OSZAPC_LOGIC_32(op1_32);
|
|
clear_ZF();
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BSR_GqEq(bxInstruction_c *i)
|
|
{
|
|
/* for 64 bit operand size mode */
|
|
Bit64u op1_64, op2_64;
|
|
|
|
/* op2_64 is a register or memory reference */
|
|
if (i->modC0()) {
|
|
op2_64 = BX_READ_64BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_qword(i->seg(), RMAddr(i), &op2_64);
|
|
}
|
|
|
|
if (op2_64 == 0) {
|
|
assert_ZF(); /* op1_64 undefined */
|
|
return;
|
|
}
|
|
|
|
op1_64 = 63;
|
|
while ( (op2_64 & BX_CONST64(0x8000000000000000)) == 0 ) {
|
|
op1_64--;
|
|
op2_64 <<= 1;
|
|
}
|
|
|
|
SET_FLAGS_OSZAPC_LOGIC_64(op1_64);
|
|
clear_ZF();
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_64BIT_REG(i->nnn(), op1_64);
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::BSWAP_ERX(bxInstruction_c *i)
|
|
{
|
|
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
|
|
Bit32u val32, b0, b1, b2, b3;
|
|
|
|
if (i->os32L() == 0) {
|
|
BX_ERROR(("BSWAP with 16-bit opsize: undefined behavior !"));
|
|
}
|
|
|
|
val32 = BX_READ_32BIT_REG(i->opcodeReg());
|
|
b0 = val32 & 0xff; val32 >>= 8;
|
|
b1 = val32 & 0xff; val32 >>= 8;
|
|
b2 = val32 & 0xff; val32 >>= 8;
|
|
b3 = val32;
|
|
val32 = (b0<<24) | (b1<<16) | (b2<<8) | b3; // zero extended
|
|
|
|
// in 64-bit mode, hi-order 32 bits are not modified
|
|
BX_WRITE_32BIT_REGZ(i->opcodeReg(), val32);
|
|
#else
|
|
BX_INFO(("BSWAP_ERX: required CPU >= 4, use --enable-cpu-level=4 option"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BSWAP_RRX(bxInstruction_c *i)
|
|
{
|
|
Bit64u val64, b0, b1, b2, b3, b4, b5, b6, b7;
|
|
|
|
val64 = BX_READ_64BIT_REG(i->opcodeReg());
|
|
b0 = val64 & 0xff; val64 >>= 8;
|
|
b1 = val64 & 0xff; val64 >>= 8;
|
|
b2 = val64 & 0xff; val64 >>= 8;
|
|
b3 = val64 & 0xff; val64 >>= 8;
|
|
b4 = val64 & 0xff; val64 >>= 8;
|
|
b5 = val64 & 0xff; val64 >>= 8;
|
|
b6 = val64 & 0xff; val64 >>= 8;
|
|
b7 = val64;
|
|
val64 = (b0<<56) | (b1<<48) | (b2<<40) | (b3<<32) | (b4<<24) | (b4<<16) | (b4<<8) | b7;
|
|
|
|
BX_WRITE_64BIT_REG(i->opcodeReg(), val64);
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::BT_EwGwM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit16u op1_16, op2_16, index;
|
|
Bit32s displacement32;
|
|
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn());
|
|
index = op2_16 & 0x0f;
|
|
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
|
|
op1_addr = RMAddr(i) + 2 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg(), op1_addr, &op1_16);
|
|
|
|
set_CF((op1_16 >> index) & 0x01);
|
|
}
|
|
|
|
void BX_CPU_C::BT_EwGwR(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16, op2_16;
|
|
|
|
op1_16 = BX_READ_16BIT_REG(i->rm());
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn());
|
|
op2_16 &= 0x0f;
|
|
set_CF((op1_16 >> op2_16) & 0x01);
|
|
}
|
|
|
|
void BX_CPU_C::BT_EdGdM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit32u op1_32, op2_32, index;
|
|
Bit32s displacement32;
|
|
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn());
|
|
|
|
index = op2_32 & 0x1f;
|
|
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
|
|
op1_addr = RMAddr(i) + 4 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg(), op1_addr, &op1_32);
|
|
|
|
set_CF((op1_32 >> index) & 0x01);
|
|
}
|
|
|
|
void BX_CPU_C::BT_EdGdR(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32, op2_32;
|
|
|
|
op1_32 = BX_READ_32BIT_REG(i->rm());
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn());
|
|
op2_32 &= 0x1f;
|
|
|
|
set_CF((op1_32 >> op2_32) & 0x01);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BT_EqGqM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit64u op1_64, op2_64;
|
|
Bit64s displacement64;
|
|
Bit64u index;
|
|
|
|
op2_64 = BX_READ_64BIT_REG(i->nnn());
|
|
index = op2_64 & 0x3f;
|
|
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
|
|
op1_addr = RMAddr(i) + 8 * displacement64;
|
|
|
|
/* pointer, segment address pair */
|
|
read_virtual_qword(i->seg(), op1_addr, &op1_64);
|
|
|
|
set_CF((op1_64 >> index) & 0x01);
|
|
}
|
|
|
|
void BX_CPU_C::BT_EqGqR(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64, op2_64;
|
|
|
|
op1_64 = BX_READ_64BIT_REG(i->rm());
|
|
op2_64 = BX_READ_64BIT_REG(i->nnn());
|
|
op2_64 &= 0x3f;
|
|
set_CF((op1_64 >> op2_64) & 0x01);
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::BTS_EwGwM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit16u op1_16, op2_16, bit_i, index;
|
|
Bit32s displacement32;
|
|
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn());
|
|
index = op2_16 & 0x0f;
|
|
displacement32 = ((Bit16s) (op2_16 & 0xfff0)) / 16;
|
|
op1_addr = RMAddr(i) + 2 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg(), op1_addr, &op1_16);
|
|
|
|
bit_i = (op1_16 >> index) & 0x01;
|
|
op1_16 |= (((Bit16u) 1) << index);
|
|
|
|
write_RMW_virtual_word(op1_16);
|
|
|
|
set_CF(bit_i);
|
|
}
|
|
|
|
void BX_CPU_C::BTS_EwGwR(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16, op2_16;
|
|
|
|
op1_16 = BX_READ_16BIT_REG(i->rm());
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn());
|
|
op2_16 &= 0x0f;
|
|
set_CF((op1_16 >> op2_16) & 0x01);
|
|
op1_16 |= (((Bit16u) 1) << op2_16);
|
|
|
|
/* now write result back to the destination */
|
|
BX_WRITE_16BIT_REG(i->rm(), op1_16);
|
|
}
|
|
|
|
void BX_CPU_C::BTS_EdGdM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit32u op1_32, op2_32, bit_i, index;
|
|
Bit32s displacement32;
|
|
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn());
|
|
|
|
index = op2_32 & 0x1f;
|
|
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
|
|
op1_addr = RMAddr(i) + 4 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg(), op1_addr, &op1_32);
|
|
|
|
bit_i = (op1_32 >> index) & 0x01;
|
|
op1_32 |= (((Bit32u) 1) << index);
|
|
|
|
write_RMW_virtual_dword(op1_32);
|
|
|
|
set_CF(bit_i);
|
|
}
|
|
|
|
void BX_CPU_C::BTS_EdGdR(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32, op2_32;
|
|
|
|
op1_32 = BX_READ_32BIT_REG(i->rm());
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn());
|
|
op2_32 &= 0x1f;
|
|
set_CF((op1_32 >> op2_32) & 0x01);
|
|
op1_32 |= (((Bit32u) 1) << op2_32);
|
|
|
|
/* now write result back to the destination */
|
|
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BTS_EqGqM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit64u op1_64, op2_64, index;
|
|
Bit64s displacement64;
|
|
Bit64u bit_i;
|
|
|
|
op2_64 = BX_READ_64BIT_REG(i->nnn());
|
|
index = op2_64 & 0x3f;
|
|
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
|
|
op1_addr = RMAddr(i) + 8 * displacement64;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_qword(i->seg(), op1_addr, &op1_64);
|
|
|
|
bit_i = (op1_64 >> index) & 0x01;
|
|
op1_64 |= (((Bit64u) 1) << index);
|
|
|
|
write_RMW_virtual_qword(op1_64);
|
|
|
|
set_CF(bit_i);
|
|
}
|
|
|
|
void BX_CPU_C::BTS_EqGqR(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64, op2_64;
|
|
|
|
op1_64 = BX_READ_64BIT_REG(i->rm());
|
|
op2_64 = BX_READ_64BIT_REG(i->nnn());
|
|
op2_64 &= 0x3f;
|
|
set_CF((op1_64 >> op2_64) & 0x01);
|
|
op1_64 |= (((Bit64u) 1) << op2_64);
|
|
|
|
/* now write result back to the destination */
|
|
BX_WRITE_64BIT_REG(i->rm(), op1_64);
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::BTR_EwGwM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit16u op1_16, op2_16, index;
|
|
Bit32s displacement32;
|
|
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn());
|
|
index = op2_16 & 0x0f;
|
|
displacement32 = ((Bit16s) (op2_16&0xfff0)) / 16;
|
|
op1_addr = RMAddr(i) + 2 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_word(i->seg(), op1_addr, &op1_16);
|
|
|
|
bx_bool temp_cf = (op1_16 >> index) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << index);
|
|
|
|
/* now write back to destination */
|
|
write_RMW_virtual_word(op1_16);
|
|
|
|
set_CF(temp_cf);
|
|
}
|
|
|
|
void BX_CPU_C::BTR_EwGwR(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16, op2_16;
|
|
|
|
op1_16 = BX_READ_16BIT_REG(i->rm());
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn());
|
|
op2_16 &= 0x0f;
|
|
set_CF((op1_16 >> op2_16) & 0x01);
|
|
op1_16 &= ~(((Bit16u) 1) << op2_16);
|
|
|
|
/* now write result back to the destination */
|
|
BX_WRITE_16BIT_REG(i->rm(), op1_16);
|
|
}
|
|
|
|
void BX_CPU_C::BTR_EdGdM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit32u op1_32, op2_32, index;
|
|
Bit32s displacement32;
|
|
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn());
|
|
|
|
index = op2_32 & 0x1f;
|
|
displacement32 = ((Bit32s) (op2_32&0xffffffe0)) / 32;
|
|
op1_addr = RMAddr(i) + 4 * displacement32;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_dword(i->seg(), op1_addr, &op1_32);
|
|
|
|
bx_bool temp_cf = (op1_32 >> index) & 0x01;
|
|
op1_32 &= ~(((Bit32u) 1) << index);
|
|
|
|
/* now write back to destination */
|
|
write_RMW_virtual_dword(op1_32);
|
|
|
|
set_CF(temp_cf);
|
|
}
|
|
|
|
void BX_CPU_C::BTR_EdGdR(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32, op2_32;
|
|
|
|
op1_32 = BX_READ_32BIT_REG(i->rm());
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn());
|
|
op2_32 &= 0x1f;
|
|
set_CF((op1_32 >> op2_32) & 0x01);
|
|
op1_32 &= ~(((Bit32u) 1) << op2_32);
|
|
|
|
/* now write result back to the destination */
|
|
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BTR_EqGqM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit64u op1_64, op2_64, index;
|
|
Bit64s displacement64;
|
|
|
|
op2_64 = BX_READ_64BIT_REG(i->nnn());
|
|
index = op2_64 & 0x3f;
|
|
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
|
|
op1_addr = RMAddr(i) + 8 * displacement64;
|
|
|
|
/* pointer, segment address pair */
|
|
read_RMW_virtual_qword(i->seg(), op1_addr, &op1_64);
|
|
|
|
bx_bool temp_cf = (op1_64 >> index) & 0x01;
|
|
op1_64 &= ~(((Bit64u) 1) << index);
|
|
|
|
/* now write back to destination */
|
|
write_RMW_virtual_qword(op1_64);
|
|
|
|
set_CF(temp_cf);
|
|
}
|
|
|
|
void BX_CPU_C::BTR_EqGqR(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64, op2_64;
|
|
|
|
op1_64 = BX_READ_64BIT_REG(i->rm());
|
|
op2_64 = BX_READ_64BIT_REG(i->nnn());
|
|
op2_64 &= 0x3f;
|
|
set_CF((op1_64 >> op2_64) & 0x01);
|
|
op1_64 &= ~(((Bit64u) 1) << op2_64);
|
|
|
|
/* now write result back to the destination */
|
|
BX_WRITE_64BIT_REG(i->rm(), op1_64);
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::BTC_EwGwM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit16u op1_16, op2_16, index_16;
|
|
Bit16s displacement16;
|
|
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn());
|
|
index_16 = op2_16 & 0x0f;
|
|
|
|
displacement16 = ((Bit16s) (op2_16 & 0xfff0)) / 16;
|
|
op1_addr = RMAddr(i) + 2 * displacement16;
|
|
read_RMW_virtual_word(i->seg(), op1_addr, &op1_16);
|
|
|
|
bx_bool temp_CF = (op1_16 >> index_16) & 0x01;
|
|
op1_16 ^= (((Bit16u) 1) << index_16); /* toggle bit */
|
|
set_CF(temp_CF);
|
|
|
|
write_RMW_virtual_word(op1_16);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTC_EwGwR(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16, op2_16;
|
|
|
|
op1_16 = BX_READ_16BIT_REG(i->rm());
|
|
op2_16 = BX_READ_16BIT_REG(i->nnn());
|
|
op2_16 &= 0x0f;
|
|
|
|
bx_bool temp_CF = (op1_16 >> op2_16) & 0x01;
|
|
op1_16 ^= (((Bit16u) 1) << op2_16); /* toggle bit */
|
|
set_CF(temp_CF);
|
|
|
|
BX_WRITE_16BIT_REG(i->rm(), op1_16);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTC_EdGdM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit32u op1_32, op2_32, index_32;
|
|
Bit32s displacement32;
|
|
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn());
|
|
index_32 = op2_32 & 0x1f;
|
|
|
|
displacement32 = ((Bit32s) (op2_32 & 0xffffffe0)) / 32;
|
|
op1_addr = RMAddr(i) + 4 * displacement32;
|
|
read_RMW_virtual_dword(i->seg(), op1_addr, &op1_32);
|
|
|
|
bx_bool temp_CF = (op1_32 >> index_32) & 0x01;
|
|
op1_32 ^= (((Bit32u) 1) << index_32); /* toggle bit */
|
|
set_CF(temp_CF);
|
|
|
|
write_RMW_virtual_dword(op1_32);
|
|
}
|
|
|
|
void BX_CPU_C::BTC_EdGdR(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32, op2_32;
|
|
|
|
op1_32 = BX_READ_32BIT_REG(i->rm());
|
|
op2_32 = BX_READ_32BIT_REG(i->nnn());
|
|
op2_32 &= 0x1f;
|
|
|
|
bx_bool temp_CF = (op1_32 >> op2_32) & 0x01;
|
|
op1_32 ^= (((Bit32u) 1) << op2_32); /* toggle bit */
|
|
set_CF(temp_CF);
|
|
|
|
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BTC_EqGqM(bxInstruction_c *i)
|
|
{
|
|
bx_address op1_addr;
|
|
Bit64u op1_64, op2_64;
|
|
Bit64s displacement64;
|
|
Bit64u index;
|
|
|
|
op2_64 = BX_READ_64BIT_REG(i->nnn());
|
|
index = op2_64 & 0x3f;
|
|
displacement64 = ((Bit64s) (op2_64 & BX_CONST64(0xffffffffffffffc0))) / 64;
|
|
op1_addr = RMAddr(i) + 8 * displacement64;
|
|
read_RMW_virtual_qword(i->seg(), op1_addr, &op1_64);
|
|
|
|
bx_bool temp_CF = (op1_64 >> index) & 0x01;
|
|
op1_64 ^= (((Bit64u) 1) << index); /* toggle bit */
|
|
set_CF(temp_CF);
|
|
|
|
write_RMW_virtual_qword(op1_64);
|
|
}
|
|
|
|
void BX_CPU_C::BTC_EqGqR(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64, op2_64;
|
|
|
|
op1_64 = BX_READ_64BIT_REG(i->rm());
|
|
op2_64 = BX_READ_64BIT_REG(i->nnn());
|
|
op2_64 &= 0x3f;
|
|
|
|
bx_bool temp_CF = (op1_64 >> op2_64) & 0x01;
|
|
op1_64 ^= (((Bit64u) 1) << op2_64); /* toggle bit */
|
|
set_CF(temp_CF);
|
|
|
|
BX_WRITE_64BIT_REG(i->rm(), op1_64);
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::BT_EwIbM(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16;
|
|
Bit8u op2_8 = i->Ib() & 0xf;
|
|
|
|
read_virtual_word(i->seg(), RMAddr(i), &op1_16);
|
|
|
|
set_CF((op1_16 >> op2_8) & 0x01);
|
|
}
|
|
|
|
void BX_CPU_C::BT_EwIbR(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16 = BX_READ_16BIT_REG(i->rm());
|
|
Bit8u op2_8 = i->Ib() & 0xf;
|
|
|
|
set_CF((op1_16 >> op2_8) & 0x01);
|
|
}
|
|
|
|
void BX_CPU_C::BT_EdIbM(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32;
|
|
Bit8u op2_8 = i->Ib() & 0x1f;
|
|
|
|
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
|
|
|
|
set_CF((op1_32 >> op2_8) & 0x01);
|
|
}
|
|
|
|
void BX_CPU_C::BT_EdIbR(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32 = BX_READ_32BIT_REG(i->rm());
|
|
Bit8u op2_8 = i->Ib() & 0x1f;
|
|
|
|
set_CF((op1_32 >> op2_8) & 0x01);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BT_EqIbM(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64;
|
|
Bit8u op2_8 = i->Ib() & 0x3f;
|
|
|
|
read_virtual_qword(i->seg(), RMAddr(i), &op1_64);
|
|
|
|
set_CF((op1_64 >> op2_8) & 0x01);
|
|
}
|
|
|
|
void BX_CPU_C::BT_EqIbR(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64 = BX_READ_64BIT_REG(i->rm());
|
|
Bit8u op2_8 = i->Ib() & 0x3f;
|
|
|
|
set_CF((op1_64 >> op2_8) & 0x01);
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::BTS_EwIbM(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0xf;
|
|
|
|
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
|
|
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 |= (((Bit16u) 1) << op2_8);
|
|
write_RMW_virtual_word(op1_16);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTS_EwIbR(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0xf;
|
|
|
|
op1_16 = BX_READ_16BIT_REG(i->rm());
|
|
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 |= (((Bit16u) 1) << op2_8);
|
|
BX_WRITE_16BIT_REG(i->rm(), op1_16);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTS_EdIbM(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x1f;
|
|
|
|
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
|
|
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
op1_32 |= (((Bit32u) 1) << op2_8);
|
|
write_RMW_virtual_dword(op1_32);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTS_EdIbR(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x1f;
|
|
|
|
op1_32 = BX_READ_32BIT_REG(i->rm());
|
|
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
op1_32 |= (((Bit32u) 1) << op2_8);
|
|
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BTS_EqIbM(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x3f;
|
|
|
|
read_RMW_virtual_qword(i->seg(), RMAddr(i), &op1_64);
|
|
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
|
|
op1_64 |= (((Bit64u) 1) << op2_8);
|
|
write_RMW_virtual_qword(op1_64);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTS_EqIbR(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x3f;
|
|
|
|
op1_64 = BX_READ_64BIT_REG(i->rm());
|
|
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
|
|
op1_64 |= (((Bit64u) 1) << op2_8);
|
|
BX_WRITE_64BIT_REG(i->rm(), op1_64);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::BTC_EwIbM(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0xf;
|
|
|
|
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
|
|
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 ^= (((Bit16u) 1) << op2_8); /* toggle bit */
|
|
write_RMW_virtual_word(op1_16);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTC_EwIbR(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0xf;
|
|
|
|
op1_16 = BX_READ_16BIT_REG(i->rm());
|
|
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 ^= (((Bit16u) 1) << op2_8); /* toggle bit */
|
|
BX_WRITE_16BIT_REG(i->rm(), op1_16);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTC_EdIbM(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x1f;
|
|
|
|
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
|
|
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
op1_32 ^= (((Bit32u) 1) << op2_8); /* toggle bit */
|
|
write_RMW_virtual_dword(op1_32);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTC_EdIbR(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x1f;
|
|
|
|
op1_32 = BX_READ_32BIT_REG(i->rm());
|
|
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
op1_32 ^= (((Bit32u) 1) << op2_8); /* toggle bit */
|
|
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BTC_EqIbM(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x3f;
|
|
|
|
read_RMW_virtual_qword(i->seg(), RMAddr(i), &op1_64);
|
|
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
|
|
op1_64 ^= (((Bit64u) 1) << op2_8); /* toggle bit */
|
|
write_RMW_virtual_qword(op1_64);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTC_EqIbR(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x3f;
|
|
|
|
op1_64 = BX_READ_64BIT_REG(i->rm());
|
|
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
|
|
op1_64 ^= (((Bit64u) 1) << op2_8); /* toggle bit */
|
|
BX_WRITE_64BIT_REG(i->rm(), op1_64);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
|
|
void BX_CPU_C::BTR_EwIbM(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0xf;
|
|
|
|
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
|
|
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << op2_8);
|
|
write_RMW_virtual_word(op1_16);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTR_EwIbR(bxInstruction_c *i)
|
|
{
|
|
Bit16u op1_16;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0xf;
|
|
|
|
op1_16 = BX_READ_16BIT_REG(i->rm());
|
|
bx_bool temp_CF = (op1_16 >> op2_8) & 0x01;
|
|
op1_16 &= ~(((Bit16u) 1) << op2_8);
|
|
BX_WRITE_16BIT_REG(i->rm(), op1_16);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTR_EdIbM(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x1f;
|
|
|
|
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
|
|
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
op1_32 &= ~(((Bit32u) 1) << op2_8);
|
|
write_RMW_virtual_dword(op1_32);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTR_EdIbR(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x1f;
|
|
|
|
op1_32 = BX_READ_32BIT_REG(i->rm());
|
|
bx_bool temp_CF = (op1_32 >> op2_8) & 0x01;
|
|
op1_32 &= ~(((Bit32u) 1) << op2_8);
|
|
BX_WRITE_32BIT_REGZ(i->rm(), op1_32);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
void BX_CPU_C::BTR_EqIbM(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x3f;
|
|
|
|
read_RMW_virtual_qword(i->seg(), RMAddr(i), &op1_64);
|
|
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
|
|
op1_64 &= ~(((Bit64u) 1) << op2_8);
|
|
write_RMW_virtual_qword(op1_64);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
|
|
void BX_CPU_C::BTR_EqIbR(bxInstruction_c *i)
|
|
{
|
|
Bit64u op1_64;
|
|
|
|
Bit8u op2_8 = i->Ib() & 0x3f;
|
|
|
|
op1_64 = BX_READ_64BIT_REG(i->rm());
|
|
bx_bool temp_CF = (op1_64 >> op2_8) & 0x01;
|
|
op1_64 &= ~(((Bit64u) 1) << op2_8);
|
|
BX_WRITE_64BIT_REG(i->rm(), op1_64);
|
|
|
|
set_CF(temp_CF);
|
|
}
|
|
#endif
|
|
|
|
/* 0F B8 */
|
|
void BX_CPU_C::POPCNT_GwEw(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_POPCNT || (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0)
|
|
Bit16u op1_16, op2_16;
|
|
|
|
/* op2_16 is a register or memory reference */
|
|
if (i->modC0()) {
|
|
op2_16 = BX_READ_16BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
|
|
}
|
|
|
|
op1_16 = 0;
|
|
while (op2_16 != 0) {
|
|
if (op2_16 & 1) op1_16++;
|
|
op2_16 >>= 1;
|
|
}
|
|
|
|
Bit32u flags = op1_16 ? 0 : EFlagsZFMask;
|
|
setEFlagsOSZAPC(flags);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_16BIT_REG(i->nnn(), op1_16);
|
|
#else
|
|
BX_INFO(("POPCNT_GwEw: required POPCNT support, use --enable-popcnt option"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
/* 0F B8 */
|
|
void BX_CPU_C::POPCNT_GdEd(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_POPCNT || (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0)
|
|
Bit32u op1_32, op2_32;
|
|
|
|
/* op2_16 is a register or memory reference */
|
|
if (i->modC0()) {
|
|
op2_32 = BX_READ_32BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
|
|
}
|
|
|
|
op1_32 = 0;
|
|
while (op2_32 != 0) {
|
|
if (op2_32 & 1) op1_32++;
|
|
op2_32 >>= 1;
|
|
}
|
|
|
|
Bit32u flags = op1_32 ? 0 : EFlagsZFMask;
|
|
setEFlagsOSZAPC(flags);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
|
|
#else
|
|
BX_INFO(("POPCNT_GdEd: required POPCNT support, use --enable-popcnt option"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
/* 0F B8 */
|
|
void BX_CPU_C::POPCNT_GqEq(bxInstruction_c *i)
|
|
{
|
|
#if BX_SUPPORT_POPCNT || (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0)
|
|
Bit64u op1_64, op2_64;
|
|
|
|
/* op2_16 is a register or memory reference */
|
|
if (i->modC0()) {
|
|
op2_64 = BX_READ_64BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_qword(i->seg(), RMAddr(i), &op2_64);
|
|
}
|
|
|
|
op1_64 = 0;
|
|
while (op2_64 != 0) {
|
|
if (op2_64 & 1) op1_64++;
|
|
op2_64 >>= 1;
|
|
}
|
|
|
|
Bit32u flags = op1_64 ? 0 : EFlagsZFMask;
|
|
setEFlagsOSZAPC(flags);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_64BIT_REG(i->nnn(), op1_64);
|
|
#else
|
|
BX_INFO(("POPCNT_GqEq: required POPCNT support, use --enable-popcnt option"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
#endif // BX_SUPPORT_X86_64
|
|
|
|
// 3-byte opcodes
|
|
#if (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)
|
|
|
|
#define CRC32_POLYNOMIAL BX_CONST64(0x11edc6f41)
|
|
|
|
#if (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0)
|
|
// primitives for CRC32 usage
|
|
static Bit8u BitReflect8(Bit8u val8)
|
|
{
|
|
return ((val8 & 0x80) >> 7) |
|
|
((val8 & 0x40) >> 5) |
|
|
((val8 & 0x20) >> 3) |
|
|
((val8 & 0x10) >> 1) |
|
|
((val8 & 0x08) << 1) |
|
|
((val8 & 0x04) << 3) |
|
|
((val8 & 0x02) << 5) |
|
|
((val8 & 0x01) << 7);
|
|
}
|
|
|
|
BX_CPP_INLINE Bit16u BitReflect16(Bit16u val16)
|
|
{
|
|
return ((Bit16u)(BitReflect8(val16 & 0xff)) << 8) | BitReflect8(val16 >> 8);
|
|
}
|
|
|
|
BX_CPP_INLINE Bit32u BitReflect32(Bit32u val32)
|
|
{
|
|
return ((Bit32u)(BitReflect16(val32 & 0xffff)) << 16) | BitReflect16(val32 >> 16);
|
|
}
|
|
|
|
static Bit32u mod2_64bit(Bit64u divisor, Bit64u dividend)
|
|
{
|
|
Bit64u remainder = dividend >> 32;
|
|
|
|
for (int bitpos=31; bitpos>=0; bitpos--)
|
|
{
|
|
// copy one more bit from the dividend
|
|
remainder = (remainder << 1) | ((dividend >> bitpos) & 1);
|
|
|
|
// if MSB is set, then XOR divisor and get new remainder
|
|
if (((remainder >> 32) & 1) == 1)
|
|
{
|
|
remainder ^= divisor;
|
|
}
|
|
}
|
|
|
|
return remainder;
|
|
}
|
|
#endif // (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0)
|
|
|
|
void BX_CPU_C::CRC32_GdEb(bxInstruction_c *i)
|
|
{
|
|
#if (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0)
|
|
Bit8u op1;
|
|
|
|
if (i->modC0()) {
|
|
op1 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
|
|
}
|
|
else {
|
|
read_virtual_byte(i->seg(), RMAddr(i), &op1);
|
|
}
|
|
|
|
Bit32u op2 = BX_READ_32BIT_REG(i->nnn());
|
|
op2 = BitReflect32(op2);
|
|
|
|
Bit64u tmp1 = ((Bit64u) BitReflect8 (op1)) << 32;
|
|
Bit64u tmp2 = ((Bit64u) op2) << 8;
|
|
Bit64u tmp3 = tmp1 ^ tmp2;
|
|
op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3);
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_32BIT_REGZ(i->nnn(), BitReflect32(op2));
|
|
#else
|
|
BX_INFO(("CRC32_GdEb: required SSE4_2 support, required SSE4.2, use --enable-sse and --enable-sse-extension options"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
void BX_CPU_C::CRC32_GdEv(bxInstruction_c *i)
|
|
{
|
|
#if (BX_SUPPORT_SSE >= 5) || (BX_SUPPORT_SSE >= 4 && BX_SUPPORT_SSE_EXTENSION > 0)
|
|
|
|
Bit32u op2 = BX_READ_32BIT_REG(i->nnn());
|
|
op2 = BitReflect32(op2);
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->os64L()) /* 64 bit operand size */
|
|
{
|
|
Bit64u op1;
|
|
|
|
if (i->modC0()) {
|
|
op1 = BX_READ_64BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
read_virtual_qword(i->seg(), RMAddr(i), &op1);
|
|
}
|
|
|
|
Bit64u tmp1 = ((Bit64u) BitReflect32(op1 & 0xffffffff)) << 32;
|
|
Bit64u tmp2 = ((Bit64u) op2) << 32;
|
|
Bit64u tmp3 = tmp1 ^ tmp2;
|
|
op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3);
|
|
tmp1 = ((Bit64u) BitReflect32(op1 >> 32)) << 32;
|
|
tmp2 = ((Bit64u) op2) << 32;
|
|
tmp3 = tmp1 ^ tmp2;
|
|
op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
if (i->os32L()) /* 32 bit operand size */
|
|
{
|
|
Bit32u op1;
|
|
|
|
if (i->modC0()) {
|
|
op1 = BX_READ_32BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
read_virtual_dword(i->seg(), RMAddr(i), &op1);
|
|
}
|
|
|
|
Bit64u tmp1 = ((Bit64u) BitReflect32(op1)) << 32;
|
|
Bit64u tmp2 = ((Bit64u) op2) << 32;
|
|
Bit64u tmp3 = tmp1 ^ tmp2;
|
|
op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3);
|
|
}
|
|
else { /* 16 bit operand size */
|
|
Bit16u op1;
|
|
|
|
if (i->modC0()) {
|
|
op1 = BX_READ_16BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
read_virtual_word(i->seg(), RMAddr(i), &op1);
|
|
}
|
|
|
|
Bit64u tmp1 = ((Bit64u) BitReflect16(op1)) << 32;
|
|
Bit64u tmp2 = ((Bit64u) op2) << 16;
|
|
Bit64u tmp3 = tmp1 ^ tmp2;
|
|
op2 = mod2_64bit(CRC32_POLYNOMIAL, tmp3);
|
|
}
|
|
}
|
|
|
|
/* now write result back to destination */
|
|
BX_WRITE_32BIT_REGZ(i->nnn(), BitReflect32(op2));
|
|
|
|
#else
|
|
BX_INFO(("CRC32_GdEv: required SSE4_2 support, required SSE4.2, use --enable-sse and --enable-sse-extension options"));
|
|
UndefinedOpcode(i);
|
|
#endif
|
|
}
|
|
|
|
#endif // (BX_SUPPORT_SSE >= 4) || (BX_SUPPORT_SSE >= 3 && BX_SUPPORT_SSE_EXTENSION > 0)
|
|
|
|
#endif // (BX_CPU_LEVEL >= 3)
|