cec9135e9f
"bx_bool" which is always defined as Bit32u on all platforms. In Carbon specific code, Boolean is still used because the Carbon header files define it to unsigned char. - this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95. The bug was that some code in Bochs depends on Boolean to be a 32 bit value. (This should be fixed, but I don't know all the places where it needs to be fixed yet.) Because Carbon defined Boolean as an unsigned char, Bochs just followed along and used the unsigned char definition to avoid compile problems. This exposed the dependency on 32 bit Boolean on MacOS X only and led to major simulation problems, that could only be reproduced and debugged on that platform. - On the mailing list we debated whether to make all Booleans into "bool" or our own type. I chose bx_bool for several reasons. 1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all platforms, which makes it much less likely to have more platform-specific simulation differences in the future. (I spent hours on a borrowed MacOSX machine chasing bug 618388 before discovering that different sized Booleans were the problem, and I don't want to repeat that.) 2. We still have at least one dependency on 32 bit Booleans which must be fixed some time, but I don't want to risk introducing new bugs into the simulation just before the 2.0 release. Modified Files: bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile docs-html/cosimulation.html fpu/wmFPUemu_glue.cc gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h gui/x.cc instrument/example0/instrument.cc instrument/example0/instrument.h instrument/example1/instrument.cc instrument/example1/instrument.h instrument/stubs/instrument.cc instrument/stubs/instrument.h iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc iodev/eth_packetmaker.cc iodev/eth_packetmaker.h iodev/floppy.cc iodev/floppy.h iodev/guest2host.h iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
650 lines
20 KiB
C++
650 lines
20 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: cmos.cc,v 1.26 2002-10-25 11:44:38 bdenney Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2002 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
|
|
|
|
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
|
|
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
|
|
// is used to know when we are exporting symbols and when we are importing.
|
|
#define BX_PLUGGABLE
|
|
|
|
#include "bochs.h"
|
|
|
|
#define LOG_THIS theCmosDevice->
|
|
|
|
bx_cmos_c *theCmosDevice = NULL;
|
|
|
|
// check that BX_NUM_CMOS_REGS is 64 or 128
|
|
#if (BX_NUM_CMOS_REGS == 64)
|
|
#elif (BX_NUM_CMOS_REGS == 128)
|
|
#else
|
|
#error "Invalid BX_NUM_CMOS_REGS value in config.h"
|
|
#endif
|
|
|
|
|
|
int
|
|
libcmos_LTX_plugin_init(plugin_t *plugin, plugintype_t type, int argc, char *argv[])
|
|
{
|
|
theCmosDevice = new bx_cmos_c ();
|
|
bx_devices.pluginCmosDevice = theCmosDevice;
|
|
BX_REGISTER_DEVICE_DEVMODEL(plugin, type, theCmosDevice, BX_PLUGIN_CMOS);
|
|
return(0); // Success
|
|
}
|
|
|
|
void
|
|
libcmos_LTX_plugin_fini(void)
|
|
{
|
|
}
|
|
|
|
bx_cmos_c::bx_cmos_c(void)
|
|
{
|
|
unsigned i;
|
|
for (i=0; i<BX_NUM_CMOS_REGS; i++)
|
|
s.reg[i] = 0;
|
|
s.periodic_timer_index = BX_NULL_TIMER_HANDLE;
|
|
s.one_second_timer_index = BX_NULL_TIMER_HANDLE;
|
|
}
|
|
|
|
bx_cmos_c::~bx_cmos_c(void)
|
|
{
|
|
BX_DEBUG(("Exit."));
|
|
}
|
|
|
|
|
|
void
|
|
bx_cmos_c::init(void)
|
|
{
|
|
BX_DEBUG(("Init $Id: cmos.cc,v 1.26 2002-10-25 11:44:38 bdenney Exp $"));
|
|
// CMOS RAM & RTC
|
|
|
|
DEV_register_ioread_handler(this, read_handler, 0x0070, "CMOS RAM", 7);
|
|
DEV_register_ioread_handler(this, read_handler, 0x0071, "CMOS RAM", 7);
|
|
DEV_register_iowrite_handler(this, write_handler, 0x0070, "CMOS RAM", 7);
|
|
DEV_register_iowrite_handler(this, write_handler, 0x0071, "CMOS RAM", 7);
|
|
DEV_register_irq(8, "CMOS RTC");
|
|
if (BX_CMOS_THIS s.periodic_timer_index == BX_NULL_TIMER_HANDLE) {
|
|
BX_CMOS_THIS s.periodic_timer_index =
|
|
DEV_register_timer(this, periodic_timer_handler,
|
|
1000000, 1,0, "cmos"); // continuous, not-active
|
|
}
|
|
if (BX_CMOS_THIS s.one_second_timer_index == BX_NULL_TIMER_HANDLE) {
|
|
BX_CMOS_THIS s.one_second_timer_index =
|
|
DEV_register_timer(this, one_second_timer_handler,
|
|
1000000, 1,0, "cmos"); // continuous, not-active
|
|
}
|
|
|
|
#if BX_USE_SPECIFIED_TIME0 == 0
|
|
// ??? this will not be correct for using an image file.
|
|
// perhaps take values in CMOS and work backwards to find
|
|
// s.timeval from values read in.
|
|
BX_CMOS_THIS s.timeval = time(NULL);
|
|
#else
|
|
BX_CMOS_THIS s.timeval = BX_USE_SPECIFIED_TIME0;
|
|
#endif
|
|
|
|
if (bx_options.cmos.Otime0->get () == 1)
|
|
BX_CMOS_THIS s.timeval = time(NULL);
|
|
else if (bx_options.cmos.Otime0->get () != 0)
|
|
BX_CMOS_THIS s.timeval = bx_options.cmos.Otime0->get ();
|
|
|
|
char *tmptime;
|
|
while( (tmptime = strdup(ctime(&(BX_CMOS_THIS s.timeval)))) == NULL) {
|
|
BX_PANIC(("Out of memory."));
|
|
}
|
|
tmptime[strlen(tmptime)-1]='\0';
|
|
|
|
BX_INFO(("Setting initial clock to: %s (time0=%u)", tmptime, (Bit32u)BX_CMOS_THIS s.timeval));
|
|
|
|
update_clock();
|
|
|
|
// load CMOS from image file if requested.
|
|
if (bx_options.cmos.OcmosImage->get ()) {
|
|
// CMOS image file requested
|
|
int fd, ret;
|
|
struct stat stat_buf;
|
|
|
|
fd = open(bx_options.cmos.Opath->getptr (), O_RDONLY
|
|
#ifdef O_BINARY
|
|
| O_BINARY
|
|
#endif
|
|
);
|
|
if (fd < 0) {
|
|
BX_PANIC(("trying to open cmos image file '%s'",
|
|
bx_options.cmos.Opath->getptr ()));
|
|
}
|
|
ret = fstat(fd, &stat_buf);
|
|
if (ret) {
|
|
BX_PANIC(("CMOS: could not fstat() image file."));
|
|
}
|
|
if (stat_buf.st_size != BX_NUM_CMOS_REGS) {
|
|
BX_PANIC(("CMOS: image file not same size as BX_NUM_CMOS_REGS."));
|
|
}
|
|
|
|
ret = ::read(fd, (bx_ptr_t) BX_CMOS_THIS s.reg, BX_NUM_CMOS_REGS);
|
|
if (ret != BX_NUM_CMOS_REGS) {
|
|
BX_PANIC(("CMOS: error reading cmos file."));
|
|
}
|
|
close(fd);
|
|
BX_INFO(("successfuly read from image file '%s'.",
|
|
bx_options.cmos.Opath->getptr ()));
|
|
}
|
|
else {
|
|
// CMOS values generated
|
|
BX_CMOS_THIS s.reg[0x0a] = 0x26;
|
|
BX_CMOS_THIS s.reg[0x0b] = 0x02;
|
|
BX_CMOS_THIS s.reg[0x0c] = 0x00;
|
|
BX_CMOS_THIS s.reg[0x0d] = 0x80;
|
|
#if BX_SUPPORT_FPU == 1
|
|
BX_CMOS_THIS s.reg[0x14] |= 0x02;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void
|
|
bx_cmos_c::reset(unsigned type)
|
|
{
|
|
BX_CMOS_THIS s.cmos_mem_address = 0;
|
|
|
|
// RESET affects the following registers:
|
|
// CRA: no effects
|
|
// CRB: bits 4,5,6 forced to 0
|
|
// CRC: bits 4,5,6,7 forced to 0
|
|
// CRD: no effects
|
|
BX_CMOS_THIS s.reg[0x0b] &= 0x8f;
|
|
BX_CMOS_THIS s.reg[0x0c] = 0;
|
|
|
|
// One second timer for updating clock & alarm functions
|
|
bx_pc_system.activate_timer(BX_CMOS_THIS s.one_second_timer_index,
|
|
1000000, 1);
|
|
|
|
// handle periodic interrupt rate select
|
|
BX_CMOS_THIS CRA_change();
|
|
}
|
|
|
|
void
|
|
bx_cmos_c::CRA_change(void)
|
|
{
|
|
unsigned nibble;
|
|
|
|
// Periodic Interrupt timer
|
|
nibble = BX_CMOS_THIS s.reg[0x0a] & 0x0f;
|
|
if (nibble == 0) {
|
|
// No Periodic Interrupt Rate when 0, deactivate timer
|
|
bx_pc_system.deactivate_timer(BX_CMOS_THIS s.periodic_timer_index);
|
|
BX_CMOS_THIS s.periodic_interval_usec = (Bit32u) -1; // max value
|
|
}
|
|
else {
|
|
// values 0001b and 0010b are the same as 1000b and 1001b
|
|
if (nibble <= 2)
|
|
nibble += 7;
|
|
BX_CMOS_THIS s.periodic_interval_usec = (unsigned) (1000000.0L /
|
|
(32768.0L / (1 << (nibble - 1))));
|
|
|
|
// if Periodic Interrupt Enable bit set, activate timer
|
|
if ( BX_CMOS_THIS s.reg[0x0b] & 0x40 )
|
|
bx_pc_system.activate_timer(BX_CMOS_THIS s.periodic_timer_index,
|
|
BX_CMOS_THIS s.periodic_interval_usec, 1);
|
|
else
|
|
bx_pc_system.deactivate_timer(BX_CMOS_THIS s.periodic_timer_index);
|
|
}
|
|
}
|
|
|
|
|
|
// static IO port read callback handler
|
|
// redirects to non-static class handler to avoid virtual functions
|
|
|
|
Bit32u
|
|
bx_cmos_c::read_handler(void *this_ptr, Bit32u address, unsigned io_len)
|
|
{
|
|
#if !BX_USE_CMOS_SMF
|
|
bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;
|
|
|
|
return( class_ptr->read(address, io_len) );
|
|
}
|
|
|
|
Bit32u
|
|
bx_cmos_c::read(Bit32u address, unsigned io_len)
|
|
{
|
|
#else
|
|
UNUSED(this_ptr);
|
|
#endif
|
|
Bit8u ret8;
|
|
|
|
if (io_len > 1)
|
|
BX_PANIC(("io read from address 0x%04x len=%u",
|
|
(unsigned) address, (unsigned) io_len));
|
|
|
|
if (bx_dbg.cmos)
|
|
BX_INFO(("CMOS read of CMOS register 0x%02x",
|
|
(unsigned) BX_CMOS_THIS s.cmos_mem_address));
|
|
|
|
|
|
switch (address) {
|
|
case 0x0071:
|
|
if (BX_CMOS_THIS s.cmos_mem_address >= BX_NUM_CMOS_REGS) {
|
|
BX_PANIC(("unsupported cmos io read, register(0x%02x)!",
|
|
(unsigned) BX_CMOS_THIS s.cmos_mem_address));
|
|
}
|
|
|
|
ret8 = BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address];
|
|
// all bits of Register C are cleared after a read occurs.
|
|
if (BX_CMOS_THIS s.cmos_mem_address == 0x0c) {
|
|
BX_CMOS_THIS s.reg[0x0c] = 0x00;
|
|
DEV_pic_lower_irq(8);
|
|
}
|
|
return(ret8);
|
|
break;
|
|
|
|
default:
|
|
BX_PANIC(("unsupported cmos read, address=0x%04x!",
|
|
(unsigned) address));
|
|
return(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
// static IO port write callback handler
|
|
// redirects to non-static class handler to avoid virtual functions
|
|
|
|
void
|
|
bx_cmos_c::write_handler(void *this_ptr, Bit32u address, Bit32u value, unsigned io_len)
|
|
{
|
|
#if !BX_USE_CMOS_SMF
|
|
bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;
|
|
|
|
class_ptr->write(address, value, io_len);
|
|
}
|
|
|
|
void
|
|
bx_cmos_c::write(Bit32u address, Bit32u value, unsigned io_len)
|
|
{
|
|
#else
|
|
UNUSED(this_ptr);
|
|
#endif // !BX_USE_CMOS_SMF
|
|
|
|
if (io_len > 1)
|
|
BX_PANIC(("io write to address 0x%04x len=%u",
|
|
(unsigned) address, (unsigned) io_len));
|
|
|
|
if (bx_dbg.cmos)
|
|
BX_INFO(("CMOS write to address: 0x%04x = 0x%02x",
|
|
(unsigned) address, (unsigned) value));
|
|
|
|
|
|
switch (address) {
|
|
case 0x0070:
|
|
#if (BX_NUM_CMOS_REGS == 64)
|
|
BX_CMOS_THIS s.cmos_mem_address = value & 0x3F;
|
|
#else
|
|
BX_CMOS_THIS s.cmos_mem_address = value & 0x7F;
|
|
#endif
|
|
break;
|
|
|
|
case 0x0071:
|
|
if (BX_CMOS_THIS s.cmos_mem_address >= BX_NUM_CMOS_REGS) {
|
|
BX_PANIC(("unsupported cmos io write, register(0x%02x) = 0x%02x !",
|
|
(unsigned) BX_CMOS_THIS s.cmos_mem_address, (unsigned) value));
|
|
return;
|
|
}
|
|
switch (BX_CMOS_THIS s.cmos_mem_address) {
|
|
case 0x00: // seconds
|
|
case 0x01: // seconds alarm
|
|
case 0x02: // minutes
|
|
case 0x03: // minutes alarm
|
|
case 0x04: // hours
|
|
case 0x05: // hours alarm
|
|
case 0x06: // day of the week
|
|
case 0x07: // day of the month
|
|
case 0x08: // month
|
|
case 0x09: // year
|
|
//BX_INFO(("write reg 0x%02x: value = 0x%02x",
|
|
// (unsigned) BX_CMOS_THIS s.cmos_mem_address, (unsigned) value);
|
|
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
|
|
return;
|
|
break;
|
|
|
|
case 0x0a: // Control Register A
|
|
// bit 7: Update in Progress (read-only)
|
|
// 1 = signifies time registers will be updated within 244us
|
|
// 0 = time registers will not occur before 244us
|
|
// note: this bit reads 0 when CRB bit 7 is 1
|
|
// bit 6..4: Divider Chain Control
|
|
// 000 oscillator disabled
|
|
// 001 oscillator disabled
|
|
// 010 Normal operation
|
|
// 011 TEST
|
|
// 100 TEST
|
|
// 101 TEST
|
|
// 110 Divider Chain RESET
|
|
// 111 Divider Chain RESET
|
|
// bit 3..0: Periodic Interrupt Rate Select
|
|
// 0000 None
|
|
// 0001 3.90625 ms
|
|
// 0010 7.8125 ms
|
|
// 0011 122.070 us
|
|
// 0100 244.141 us
|
|
// 0101 488.281 us
|
|
// 0110 976.562 us
|
|
// 0111 1.953125 ms
|
|
// 1000 3.90625 ms
|
|
// 1001 7.8125 ms
|
|
// 1010 15.625 ms
|
|
// 1011 31.25 ms
|
|
// 1100 62.5 ms
|
|
// 1101 125 ms
|
|
// 1110 250 ms
|
|
// 1111 500 ms
|
|
|
|
unsigned dcc;
|
|
dcc = (value >> 4) & 0x07;
|
|
if (dcc != 0x02) {
|
|
BX_PANIC(("CRA: divider chain control 0x%02x", dcc));
|
|
}
|
|
BX_CMOS_THIS s.reg[0x0a] = value & 0x7f;
|
|
BX_CMOS_THIS CRA_change();
|
|
return;
|
|
break;
|
|
|
|
case 0x0b: // Control Register B
|
|
// bit 0: Daylight Savings Enable
|
|
// 1 = enable daylight savings
|
|
// 0 = disable daylight savings
|
|
// bit 1: 24/12 houre mode
|
|
// 1 = 24 hour format
|
|
// 0 = 12 hour format
|
|
// bit 2: Data Mode
|
|
// 1 = binary format
|
|
// 0 = BCD format
|
|
// bit 3: "square wave enable"
|
|
// Not supported and always read as 0
|
|
// bit 4: Update Ended Interrupt Enable
|
|
// 1 = enable generation of update ended interrupt
|
|
// 0 = disable
|
|
// bit 5: Alarm Interrupt Enable
|
|
// 1 = enable generation of alarm interrupt
|
|
// 0 = disable
|
|
// bit 6: Periodic Interrupt Enable
|
|
// 1 = enable generation of periodic interrupt
|
|
// 0 = disable
|
|
// bit 7: Set mode
|
|
// 1 = user copy of time is "frozen" allowing time registers
|
|
// to be accessed without regard for an occurance of an update
|
|
// 0 = time updates occur normally
|
|
|
|
// can not handle binary or 12-hour mode yet.
|
|
if (value & 0x04)
|
|
BX_PANIC(("write status reg B, binary format enabled."));
|
|
if ( !(value & 0x02) )
|
|
BX_PANIC(("write status reg B, 12 hour mode enabled."));
|
|
|
|
value &= 0xf7; // bit3 always 0
|
|
// Note: setting bit 7 clears bit 4
|
|
if (value & 0x80)
|
|
value &= 0xef;
|
|
|
|
unsigned prev_CRB;
|
|
prev_CRB = BX_CMOS_THIS s.reg[0x0b];
|
|
BX_CMOS_THIS s.reg[0x0b] = value;
|
|
if ( (prev_CRB & 0x40) != (value & 0x40) ) {
|
|
// Periodic Interrupt Enabled changed
|
|
if (prev_CRB & 0x40) {
|
|
// transition from 1 to 0, deactivate timer
|
|
bx_pc_system.deactivate_timer(
|
|
BX_CMOS_THIS s.periodic_timer_index);
|
|
}
|
|
else {
|
|
// transition from 0 to 1
|
|
// if rate select is not 0, activate timer
|
|
if ( (BX_CMOS_THIS s.reg[0x0a] & 0x0f) != 0 ) {
|
|
bx_pc_system.activate_timer(
|
|
BX_CMOS_THIS s.periodic_timer_index,
|
|
BX_CMOS_THIS s.periodic_interval_usec, 1);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
break;
|
|
|
|
case 0x0c: // Control Register C
|
|
case 0x0d: // Control Register D
|
|
BX_ERROR(("write to control register 0x%02x (read-only)",
|
|
BX_CMOS_THIS s.cmos_mem_address));
|
|
break;
|
|
|
|
case 0x0e: // diagnostic status
|
|
BX_DEBUG(("write register 0x0e: 0x%02x", (unsigned) value));;
|
|
break;
|
|
|
|
case 0x0f: // shutdown status
|
|
switch (value) {
|
|
case 0x00: /* proceed with normal POST (soft reset) */
|
|
BX_DEBUG(("Reg 0Fh(00): shutdown action = normal POST"));;
|
|
break;
|
|
case 0x01: /* shutdown after memory size check */
|
|
BX_DEBUG(("Reg 0Fh(01): request to change shutdown action"
|
|
" to shutdown after memory size check"));
|
|
case 0x02: /* shutdown after successful memory test */
|
|
BX_DEBUG(("Reg 0Fh(02): request to change shutdown action"
|
|
" to shutdown after successful memory test"));
|
|
break;
|
|
case 0x03: /* shutdown after failed memory test */
|
|
BX_DEBUG(("Reg 0Fh(03): request to change shutdown action"
|
|
" to shutdown after successful memory test"));
|
|
break;
|
|
case 0x04: /* jump to disk bootstrap routine */
|
|
BX_DEBUG(("Reg 0Fh(04): request to change shutdown action "
|
|
"to jump to disk bootstrap routine."));
|
|
break;
|
|
case 0x05: /* flush keyboard (issue EOI) and jump via 40h:0067h */
|
|
BX_DEBUG(("Reg 0Fh(05): request to change shutdown action "
|
|
"to flush keyboard (issue EOI) and jump via 40h:0067h."));
|
|
break;
|
|
case 0x06:
|
|
BX_DEBUG(("Reg 0Fh(06): Shutdown after memory test !"));;
|
|
break;
|
|
case 0x07: /* reset (after failed test in virtual mode) */
|
|
BX_DEBUG(("Reg 0Fh(07): request to change shutdown action "
|
|
"to reset (after failed test in virtual mode)."));
|
|
break;
|
|
case 0x08: /* used by POST during protected-mode RAM test (return to POST) */
|
|
BX_DEBUG(("Reg 0Fh(08): request to change shutdown action "
|
|
"to return to POST (used by POST during protected-mode RAM test)."));
|
|
break;
|
|
case 0x09: /* return to BIOS extended memory block move
|
|
(interrupt 15h, func 87h was in progress) */
|
|
BX_DEBUG(("Reg 0Fh(09): request to change shutdown action "
|
|
"to return to BIOS extended memory block move."));
|
|
break;
|
|
case 0x0a: /* jump to DWORD pointer at 40:67 */
|
|
BX_DEBUG(("Reg 0Fh(0a): request to change shutdown action"
|
|
" to jump to DWORD at 40:67"));
|
|
break;
|
|
case 0x0b: /* iret to DWORD pointer at 40:67 */
|
|
BX_DEBUG(("Reg 0Fh(0b): request to change shutdown action"
|
|
" to iret to DWORD at 40:67"));
|
|
break;
|
|
case 0x0c: /* retf to DWORD pointer at 40:67 */
|
|
BX_DEBUG(("Reg 0Fh(0c): request to change shutdown action"
|
|
" to retf to DWORD at 40:67"));
|
|
break;
|
|
default:
|
|
BX_PANIC(("unsupported cmos io write to reg F, case 0x%02x!",
|
|
(unsigned) value));
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
BX_DEBUG(("write reg 0x%02x: value = 0x%02x",
|
|
(unsigned) BX_CMOS_THIS s.cmos_mem_address, (unsigned) value));
|
|
break;
|
|
}
|
|
|
|
BX_CMOS_THIS s.reg[BX_CMOS_THIS s.cmos_mem_address] = value;
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
bx_cmos_c::checksum_cmos(void)
|
|
{
|
|
unsigned i;
|
|
Bit16u sum;
|
|
|
|
sum = 0;
|
|
for (i=0x10; i<=0x2d; i++) {
|
|
sum += BX_CMOS_THIS s.reg[i];
|
|
}
|
|
BX_CMOS_THIS s.reg[0x2e] = (sum >> 8) & 0xff; /* checksum high */
|
|
BX_CMOS_THIS s.reg[0x2f] = (sum & 0xff); /* checksum low */
|
|
}
|
|
|
|
void
|
|
bx_cmos_c::periodic_timer_handler(void *this_ptr)
|
|
{
|
|
bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;
|
|
|
|
class_ptr->periodic_timer();
|
|
}
|
|
|
|
void
|
|
bx_cmos_c::periodic_timer()
|
|
{
|
|
// if periodic interrupts are enabled, trip IRQ 8, and
|
|
// update status register C
|
|
if (BX_CMOS_THIS s.reg[0x0b] & 0x40) {
|
|
BX_CMOS_THIS s.reg[0x0c] |= 0xc0; // Interrupt Request, Periodic Int
|
|
DEV_pic_raise_irq(8);
|
|
}
|
|
}
|
|
|
|
void
|
|
bx_cmos_c::one_second_timer_handler(void *this_ptr)
|
|
{
|
|
bx_cmos_c *class_ptr = (bx_cmos_c *) this_ptr;
|
|
|
|
class_ptr->one_second_timer();
|
|
}
|
|
|
|
void
|
|
bx_cmos_c::one_second_timer()
|
|
{
|
|
// update internal time/date buffer
|
|
BX_CMOS_THIS s.timeval++;
|
|
|
|
// Dont update CMOS user copy of time/date if CRB bit7 is 1
|
|
// Nothing else do to
|
|
if (BX_CMOS_THIS s.reg[0x0b] & 0x80)
|
|
return;
|
|
|
|
update_clock();
|
|
|
|
// if update interrupts are enabled, trip IRQ 8, and
|
|
// update status register C
|
|
if (BX_CMOS_THIS s.reg[0x0b] & 0x10) {
|
|
BX_CMOS_THIS s.reg[0x0c] |= 0x90; // Interrupt Request, Update Ended
|
|
DEV_pic_raise_irq(8);
|
|
}
|
|
|
|
// compare CMOS user copy of time/date to alarm time/date here
|
|
if (BX_CMOS_THIS s.reg[0x0b] & 0x20) {
|
|
// Alarm interrupts enabled
|
|
bx_bool alarm_match = 1;
|
|
if ( (BX_CMOS_THIS s.reg[0x01] & 0xc0) != 0xc0 ) {
|
|
// seconds alarm not in dont care mode
|
|
if (BX_CMOS_THIS s.reg[0x00] != BX_CMOS_THIS s.reg[0x01])
|
|
alarm_match = 0;
|
|
}
|
|
if ( (BX_CMOS_THIS s.reg[0x03] & 0xc0) != 0xc0 ) {
|
|
// minutes alarm not in dont care mode
|
|
if (BX_CMOS_THIS s.reg[0x02] != BX_CMOS_THIS s.reg[0x03])
|
|
alarm_match = 0;
|
|
}
|
|
if ( (BX_CMOS_THIS s.reg[0x05] & 0xc0) != 0xc0 ) {
|
|
// hours alarm not in dont care mode
|
|
if (BX_CMOS_THIS s.reg[0x04] != BX_CMOS_THIS s.reg[0x05])
|
|
alarm_match = 0;
|
|
}
|
|
if (alarm_match) {
|
|
BX_CMOS_THIS s.reg[0x0c] |= 0xa0; // Interrupt Request, Alarm Int
|
|
DEV_pic_raise_irq(8);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
bx_cmos_c::update_clock()
|
|
{
|
|
struct tm *time_calendar;
|
|
unsigned year, month, day, century;
|
|
Bit8u val_bcd;
|
|
|
|
time_calendar = localtime(& BX_CMOS_THIS s.timeval);
|
|
|
|
// update seconds
|
|
val_bcd =
|
|
((time_calendar->tm_sec / 10) << 4) |
|
|
(time_calendar->tm_sec % 10);
|
|
BX_CMOS_THIS s.reg[0x00] = val_bcd;
|
|
|
|
// update minutes
|
|
val_bcd =
|
|
((time_calendar->tm_min / 10) << 4) |
|
|
(time_calendar->tm_min % 10);
|
|
BX_CMOS_THIS s.reg[0x02] = val_bcd;
|
|
|
|
// update hours
|
|
val_bcd =
|
|
((time_calendar->tm_hour / 10) << 4) |
|
|
(time_calendar->tm_hour % 10);
|
|
BX_CMOS_THIS s.reg[0x04] = val_bcd;
|
|
|
|
// update day of the week
|
|
day = time_calendar->tm_wday + 1; // 0..6 to 1..7
|
|
BX_CMOS_THIS s.reg[0x06] = ((day / 10) << 4) | (day % 10);
|
|
|
|
// update day of the month
|
|
day = time_calendar->tm_mday;
|
|
BX_CMOS_THIS s.reg[0x07] = ((day / 10) << 4) | (day % 10);
|
|
|
|
// update month
|
|
month = time_calendar->tm_mon + 1;
|
|
BX_CMOS_THIS s.reg[0x08] = ((month / 10) << 4) | (month % 10);
|
|
|
|
// update year
|
|
year = time_calendar->tm_year % 100;
|
|
BX_CMOS_THIS s.reg[0x09] = ((year / 10) << 4) | (year % 10);
|
|
|
|
// update century
|
|
century = (time_calendar->tm_year / 100) + 19;
|
|
BX_CMOS_THIS s.reg[0x32] = ((century / 10) << 4) | (century % 10);
|
|
}
|