Bochs/bochs/iodev/vvfat.cc
Volker Ruppert afef1e621e - update redolog image position with lseek() if the read/write access is not
handled by the volatile redolog (fixes tests with Windows XP)
- allow volatile write to boot sector
2011-12-31 12:51:07 +00:00

1980 lines
58 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2010/2011 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
// Virtual VFAT image support (shadows a local directory)
// ported from the Qemu block driver (written by Johannes E. Schindelin)
// ADDITIONS:
// - win32 specific directory functions (required for MSVC)
// - configurable disk geometry
// - read MBR and boot sector from file
// - FAT32 support
// - volatile runtime write support using the hdimage redolog_t class
// - ask user on Bochs exit if directory and file changes should be committed
// - save and restore FAT file attributes using a separate file
// - set file modification date and time after committing file changes
// - vvfat floppy support (1.44 MB media only)
// Define BX_PLUGGABLE in files that can be compiled into plugins. For
// platforms that require a special tag on exported symbols, BX_PLUGGABLE
// is used to know when we are exporting symbols and when we are importing.
#define BX_PLUGGABLE
#ifndef WIN32
#include <dirent.h>
#include <utime.h>
#endif
#include "iodev.h"
#include "hdimage.h"
#include "vvfat.h"
#define LOG_THIS bx_devices.pluginHDImageCtl->
#define VVFAT_MBR "vvfat_mbr.bin"
#define VVFAT_BOOT "vvfat_boot.bin"
#define VVFAT_ATTR "vvfat_attr.cfg"
#if defined (BX_LITTLE_ENDIAN)
#define htod16(val) (val)
#else
#define htod16(val) ( (((val)&0xff00)>>8) | (((val)&0xff)<<8) )
#endif
#define dtoh16 htod16
#ifndef F_OK
#define F_OK 0
#endif
// portable mkdir / rmdir
static int bx_mkdir(const char *path)
{
#ifndef WIN32
return mkdir(path, 0755);
#else
return (CreateDirectory(path, NULL) != 0) ? 0 : -1;
#endif
}
static int bx_rmdir(const char *path)
{
#ifndef WIN32
return rmdir(path);
#else
return (RemoveDirectory(path) != 0) ? 0 : -1;
#endif
}
// dynamic array functions
static inline void array_init(array_t* array,unsigned int item_size)
{
array->pointer = NULL;
array->size = 0;
array->next = 0;
array->item_size = item_size;
}
static inline void array_free(array_t* array)
{
if (array->pointer)
free(array->pointer);
array->size=array->next = 0;
}
// does not automatically grow
static inline void* array_get(array_t* array,unsigned int index)
{
assert(index < array->next);
return array->pointer + index * array->item_size;
}
static inline int array_ensure_allocated(array_t* array, int index)
{
if ((index + 1) * array->item_size > array->size) {
int new_size = (index + 32) * array->item_size;
array->pointer = (char*)realloc(array->pointer, new_size);
if (!array->pointer)
return -1;
array->size = new_size;
array->next = index + 1;
}
return 0;
}
static inline void* array_get_next(array_t* array)
{
unsigned int next = array->next;
void* result;
if (array_ensure_allocated(array, next) < 0)
return NULL;
array->next = next + 1;
result = array_get(array, next);
return result;
}
static inline void* array_insert(array_t* array,unsigned int index,unsigned int count)
{
if ((array->next+count)*array->item_size > array->size) {
int increment = count*array->item_size;
array->pointer = (char*)realloc(array->pointer, array->size+increment);
if (!array->pointer)
return NULL;
array->size += increment;
}
memmove(array->pointer+(index+count)*array->item_size,
array->pointer+index*array->item_size,
(array->next-index)*array->item_size);
array->next += count;
return array->pointer+index*array->item_size;
}
/* this performs a "roll", so that the element which was at index_from becomes
* index_to, but the order of all other elements is preserved. */
static inline int array_roll(array_t* array, int index_to, int index_from, int count)
{
char* buf;
char* from;
char* to;
int is;
if (!array ||
(index_to < 0) || (index_to >= (int)array->next) ||
(index_from < 0 || (index_from >= (int)array->next)))
return -1;
if (index_to == index_from)
return 0;
is = array->item_size;
from = array->pointer+index_from*is;
to = array->pointer+index_to*is;
buf = (char*)malloc(is*count);
memcpy(buf, from, is*count);
if (index_to < index_from)
memmove(to+is*count, to, from-to);
else
memmove(from, from+is*count, to-from);
memcpy(to, buf, is*count);
free(buf);
return 0;
}
#if 0
static inline int array_remove_slice(array_t* array,int index, int count)
{
assert(index >=0);
assert(count > 0);
assert(index + count <= (int)array->next);
if (array_roll(array,array->next-1,index,count))
return -1;
array->next -= count;
return 0;
}
static int array_remove(array_t* array,int index)
{
return array_remove_slice(array, index, 1);
}
// return the index for a given member
static int array_index(array_t* array, void* pointer)
{
size_t offset = (char*)pointer - array->pointer;
assert((offset % array->item_size) == 0);
assert(offset/array->item_size < array->next);
return offset/array->item_size;
}
#endif
#if defined(_MSC_VER)
#pragma pack(push, 1)
#elif defined(__MWERKS__) && defined(macintosh)
#pragma options align=packed
#endif
typedef
#if defined(_MSC_VER) && (_MSC_VER>=1300)
__declspec(align(1))
#endif
struct bootsector_t {
Bit8u jump[3];
Bit8u name[8];
Bit16u sector_size;
Bit8u sectors_per_cluster;
Bit16u reserved_sectors;
Bit8u number_of_fats;
Bit16u root_entries;
Bit16u total_sectors16;
Bit8u media_type;
Bit16u sectors_per_fat;
Bit16u sectors_per_track;
Bit16u number_of_heads;
Bit32u hidden_sectors;
Bit32u total_sectors;
union {
#if defined(_MSC_VER) && (_MSC_VER>=1300)
__declspec(align(1))
#endif
struct {
Bit8u drive_number;
Bit8u reserved;
Bit8u signature;
Bit32u id;
Bit8u volume_label[11];
Bit8u fat_type[8];
Bit8u ignored[0x1c0];
}
#if !defined(_MSC_VER)
GCC_ATTRIBUTE((packed))
#endif
fat16;
#if defined(_MSC_VER) && (_MSC_VER>=1300)
__declspec(align(1))
#endif
struct {
Bit32u sectors_per_fat;
Bit16u flags;
Bit8u major, minor;
Bit32u first_cluster_of_root_dir;
Bit16u info_sector;
Bit16u backup_boot_sector;
Bit8u reserved1[12];
Bit8u drive_number;
Bit8u reserved2;
Bit8u signature;
Bit32u id;
Bit8u volume_label[11];
Bit8u fat_type[8];
Bit8u ignored[0x1a4];
}
#if !defined(_MSC_VER)
GCC_ATTRIBUTE((packed))
#endif
fat32;
} u;
Bit8u magic[2];
}
#if !defined(_MSC_VER)
GCC_ATTRIBUTE((packed))
#endif
bootsector_t;
typedef
#if defined(_MSC_VER) && (_MSC_VER>=1300)
__declspec(align(1))
#endif
struct partition_t {
Bit8u attributes; /* 0x80 = bootable */
mbr_chs_t start_CHS;
Bit8u fs_type; /* 0x1 = FAT12, 0x6 = FAT16, 0xe = FAT16_LBA, 0xb = FAT32, 0xc = FAT32_LBA */
mbr_chs_t end_CHS;
Bit32u start_sector_long;
Bit32u length_sector_long;
}
#if !defined(_MSC_VER)
GCC_ATTRIBUTE((packed))
#endif
partition_t;
typedef
#if defined(_MSC_VER) && (_MSC_VER>=1300)
__declspec(align(1))
#endif
struct mbr_t {
Bit8u ignored[0x1b8];
Bit32u nt_id;
Bit8u ignored2[2];
partition_t partition[4];
Bit8u magic[2];
}
#if !defined(_MSC_VER)
GCC_ATTRIBUTE((packed))
#endif
mbr_t;
typedef
#if defined(_MSC_VER) && (_MSC_VER>=1300)
__declspec(align(1))
#endif
struct infosector_t {
Bit32u signature1;
Bit8u ignored[0x1e0];
Bit32u signature2;
Bit32u free_clusters;
Bit32u mra_cluster; // most recently allocated cluster
Bit8u reserved[14];
Bit8u magic[2];
}
#if !defined(_MSC_VER)
GCC_ATTRIBUTE((packed))
#endif
infosector_t;
#if defined(_MSC_VER)
#pragma pack(pop)
#elif defined(__MWERKS__) && defined(macintosh)
#pragma options align=reset
#endif
vvfat_image_t::vvfat_image_t(Bit64u size, const char* _redolog_name)
{
first_sectors = new Bit8u[0xc000];
memset(&first_sectors[0], 0, 0xc000);
hd_size = size;
redolog = new redolog_t();
redolog_temp = NULL;
redolog_name = NULL;
if (_redolog_name != NULL) {
if (strcmp(_redolog_name,"") != 0) {
redolog_name = strdup(_redolog_name);
}
}
}
vvfat_image_t::~vvfat_image_t()
{
delete [] first_sectors;
delete redolog;
}
bx_bool vvfat_image_t::sector2CHS(Bit32u spos, mbr_chs_t *chs)
{
Bit32u head, sector;
sector = spos % spt;
spos /= spt;
head = spos % heads;
spos /= heads;
if (spos > 1023) {
/* Overflow,
it happens if 32bit sector positions are used, while CHS is only 24bit.
Windows/Dos is said to take 1023/255/63 as nonrepresentable CHS */
chs->head = 0xff;
chs->sector = 0xff;
chs->cylinder = 0xff;
return 1;
}
chs->head = (Bit8u)head;
chs->sector = (Bit8u)((sector+1) | ((spos >> 8) << 6));
chs->cylinder = (Bit8u)spos;
return 0;
}
void vvfat_image_t::init_mbr(void)
{
mbr_t* real_mbr = (mbr_t*)first_sectors;
partition_t* partition = &(real_mbr->partition[0]);
bx_bool lba;
// Win NT Disk Signature
real_mbr->nt_id = htod32(0xbe1afdfa);
partition->attributes = 0x80; // bootable
// LBA is used when partition is outside the CHS geometry
lba = sector2CHS(offset_to_bootsector, &partition->start_CHS);
lba |= sector2CHS(sector_count - 1, &partition->end_CHS);
// LBA partitions are identified only by start/length_sector_long not by CHS
partition->start_sector_long = htod32(offset_to_bootsector);
partition->length_sector_long = htod32(sector_count - offset_to_bootsector);
/* FAT12/FAT16/FAT32 */
/* DOS uses different types when partition is LBA,
probably to prevent older versions from using CHS on them */
partition->fs_type = fat_type==12 ? 0x1:
fat_type==16 ? (lba?0xe:0x06):
/*fat_tyoe==32*/ (lba?0xc:0x0b);
real_mbr->magic[0] = 0x55;
real_mbr->magic[1] = 0xaa;
}
// dest is assumed to hold 258 bytes, and pads with 0xffff up to next multiple of 26
static inline int short2long_name(char* dest,const char* src)
{
int i;
int len;
for (i = 0; (i < 129) && src[i]; i++) {
dest[2*i] = src[i];
dest[2*i+1] = 0;
}
len = 2 * i;
dest[2*i] = dest[2*i+1] = 0;
for (i = 2 * i + 2; (i % 26); i++)
dest[i] = (char)0xff;
return len;
}
direntry_t* vvfat_image_t::create_long_filename(const char* filename)
{
char buffer[258];
int length = short2long_name(buffer, filename),
number_of_entries = (length+25) / 26, i;
direntry_t* entry;
for (i = 0; i < number_of_entries; i++) {
entry = (direntry_t*)array_get_next(&directory);
entry->attributes = 0xf;
entry->reserved[0] = 0;
entry->begin = 0;
entry->name[0] = (number_of_entries - i) | (i==0 ? 0x40:0);
}
for (i = 0; i < 26 * number_of_entries; i++) {
int offset = (i % 26);
if (offset < 10) offset = 1 + offset;
else if (offset < 22) offset = 14 + offset - 10;
else offset = 28 + offset - 22;
entry = (direntry_t*)array_get(&directory, directory.next - 1 - (i / 26));
entry->name[offset] = buffer[i];
}
return (direntry_t*)array_get(&directory, directory.next-number_of_entries);
}
static char is_long_name(const direntry_t* direntry)
{
return direntry->attributes == 0xf;
}
static void set_begin_of_direntry(direntry_t* direntry, Bit32u begin)
{
direntry->begin = htod16(begin & 0xffff);
direntry->begin_hi = htod16((begin >> 16) & 0xffff);
}
static inline Bit8u fat_chksum(const direntry_t* entry)
{
Bit8u chksum = 0;
int i;
for (i = 0; i < 11; i++) {
unsigned char c;
c = (i < 8) ? entry->name[i] : entry->extension[i-8];
chksum = (((chksum & 0xfe) >> 1) | ((chksum & 0x01) ? 0x80:0)) + c;
}
return chksum;
}
// if return_time==0, this returns the fat_date, else the fat_time
#ifndef WIN32
static Bit16u fat_datetime(time_t time, int return_time)
{
struct tm* t;
struct tm t1;
t = &t1;
localtime_r(&time, t);
if (return_time)
return htod16((t->tm_sec/2) | (t->tm_min<<5) | (t->tm_hour<<11));
return htod16((t->tm_mday) | ((t->tm_mon+1)<<5) | ((t->tm_year-80)<<9));
}
#else
static Bit16u fat_datetime(FILETIME time, int return_time)
{
FILETIME localtime;
SYSTEMTIME systime;
FileTimeToLocalFileTime(&time, &localtime);
FileTimeToSystemTime(&localtime, &systime);
if (return_time)
return htod16((systime.wSecond/2) | (systime.wMinute<<5) | (systime.wHour<<11));
return htod16((systime.wDay) | (systime.wMonth<<5) | ((systime.wYear-1980)<<9));
}
#endif
void vvfat_image_t::fat_set(unsigned int cluster, Bit32u value)
{
if (fat_type == 32) {
Bit32u* entry = (Bit32u*)array_get(&fat, cluster);
*entry = htod32(value);
} else if (fat_type == 16) {
Bit16u* entry = (Bit16u*)array_get(&fat, cluster);
*entry = htod16(value & 0xffff);
} else {
int offset = (cluster * 3 / 2);
Bit8u* p = (Bit8u*)array_get(&fat, offset);
switch (cluster & 1) {
case 0:
p[0] = value & 0xff;
p[1] = (p[1] & 0xf0) | ((value>>8) & 0xf);
break;
case 1:
p[0] = (p[0]&0xf) | ((value&0xf)<<4);
p[1] = (value>>4);
break;
}
}
}
void vvfat_image_t::init_fat(void)
{
if (fat_type == 12) {
array_init(&fat, 1);
array_ensure_allocated(&fat, sectors_per_fat * 0x200 * 3 / 2 - 1);
} else {
array_init(&fat, (fat_type==32) ? 4:2);
array_ensure_allocated(&fat, sectors_per_fat * 0x200 / fat.item_size - 1);
}
memset(fat.pointer, 0, fat.size);
switch (fat_type) {
case 12: max_fat_value = 0xfff; break;
case 16: max_fat_value = 0xffff; break;
case 32: max_fat_value = 0x0fffffff; break;
default: max_fat_value = 0; /* error... */
}
}
direntry_t* vvfat_image_t::create_short_and_long_name(
unsigned int directory_start, const char* filename, int is_dot)
{
int i, j, long_index = directory.next;
direntry_t* entry = NULL;
direntry_t* entry_long = NULL;
if (is_dot) {
entry = (direntry_t*)array_get_next(&directory);
memset(entry->name,0x20,11);
memcpy(entry->name,filename,strlen(filename));
return entry;
}
entry_long = create_long_filename(filename);
i = strlen(filename);
for (j = i - 1; j>0 && filename[j]!='.';j--);
if (j > 0)
i = (j > 8 ? 8 : j);
else if (i > 8)
i = 8;
entry = (direntry_t*)array_get_next(&directory);
memset(entry->name, 0x20, 11);
memcpy(entry->name, filename, i);
if (j > 0)
for (i = 0; i < 3 && filename[j+1+i]; i++)
entry->extension[i] = filename[j+1+i];
// upcase & remove unwanted characters
for (i=10;i>=0;i--) {
if (i==10 || i==7) for (;i>0 && entry->name[i]==' ';i--);
if (entry->name[i]<=' ' || entry->name[i]>0x7f
|| strchr(".*?<>|\":/\\[];,+='",entry->name[i]))
entry->name[i]='_';
else if (entry->name[i]>='a' && entry->name[i]<='z')
entry->name[i]+='A'-'a';
}
if (entry->name[0] == 0xe5) entry->name[0] = 0x05;
// mangle duplicates
while (1) {
direntry_t* entry1 = (direntry_t*)array_get(&directory, directory_start);
int j;
for (;entry1<entry;entry1++)
if (!is_long_name(entry1) && !memcmp(entry1->name,entry->name,11))
break; // found dupe
if (entry1==entry) // no dupe found
break;
// use all 8 characters of name
if (entry->name[7]==' ') {
int j;
for(j=6;j>0 && entry->name[j]==' ';j--)
entry->name[j]='~';
}
// increment number
for (j=7;j>0 && entry->name[j]=='9';j--)
entry->name[j]='0';
if (j > 0) {
if (entry->name[j]<'0' || entry->name[j]>'9')
entry->name[j]='0';
else
entry->name[j]++;
}
}
// calculate checksum; propagate to long name
if (entry_long) {
Bit8u chksum = fat_chksum(entry);
// calculate anew, because realloc could have taken place
entry_long = (direntry_t*)array_get(&directory, long_index);
while (entry_long<entry && is_long_name(entry_long)) {
entry_long->reserved[1]=chksum;
entry_long++;
}
}
return entry;
}
/*
* Read a directory. (the index of the corresponding mapping must be passed).
*/
int vvfat_image_t::read_directory(int mapping_index)
{
mapping_t* mapping = (mapping_t*)array_get(&this->mapping, mapping_index);
direntry_t* direntry;
const char* dirname = mapping->path;
Bit32u first_cluster = mapping->begin;
int parent_index = mapping->info.dir.parent_mapping_index;
mapping_t* parent_mapping = (mapping_t*)
(parent_index >= 0 ? array_get(&this->mapping, parent_index) : NULL);
int first_cluster_of_parent = parent_mapping ? (int)parent_mapping->begin : -1;
int count = 0;
#ifndef WIN32
DIR* dir = opendir(dirname);
struct dirent* entry;
int i;
assert(mapping->mode & MODE_DIRECTORY);
if (!dir) {
mapping->end = mapping->begin;
return -1;
}
i = mapping->info.dir.first_dir_index =
first_cluster == first_cluster_of_root_dir ? 0 : directory.next;
if (first_cluster != first_cluster_of_root_dir) {
// create the top entries of a subdirectory
direntry = create_short_and_long_name(i, ".", 1);
direntry = create_short_and_long_name(i, "..", 1);
}
// actually read the directory, and allocate the mappings
while ((entry=readdir(dir))) {
if ((first_cluster == 0) && (directory.next >= (Bit16u)(root_entries - 1))) {
BX_ERROR(("Too many entries in root directory, using only %d", count));
closedir(dir);
return -2;
}
unsigned int length = strlen(dirname) + 2 + strlen(entry->d_name);
char* buffer;
direntry_t* direntry;
struct stat st;
bx_bool is_dot = !strcmp(entry->d_name, ".");
bx_bool is_dotdot = !strcmp(entry->d_name, "..");
if ((first_cluster == first_cluster_of_root_dir) && (is_dotdot || is_dot))
continue;
buffer = (char*)malloc(length);
snprintf(buffer,length,"%s/%s",dirname,entry->d_name);
if (stat(buffer, &st) < 0) {
free(buffer);
continue;
}
bx_bool is_mbr_file = !strcmp(entry->d_name, VVFAT_MBR);
bx_bool is_boot_file = !strcmp(entry->d_name, VVFAT_BOOT);
bx_bool is_attr_file = !strcmp(entry->d_name, VVFAT_ATTR);
if (first_cluster == first_cluster_of_root_dir) {
if (is_attr_file || ((is_mbr_file || is_boot_file) && (st.st_size == 512))) {
free(buffer);
continue;
}
}
count++;
// create directory entry for this file
if (!is_dot && !is_dotdot) {
direntry = create_short_and_long_name(i, entry->d_name, 0);
} else {
direntry = (direntry_t*)array_get(&directory, is_dot ? i : i + 1);
}
direntry->attributes = (S_ISDIR(st.st_mode) ? 0x10 : 0x20);
direntry->reserved[0] = direntry->reserved[1]=0;
direntry->ctime = fat_datetime(st.st_ctime, 1);
direntry->cdate = fat_datetime(st.st_ctime, 0);
direntry->adate = fat_datetime(st.st_atime, 0);
direntry->begin_hi = 0;
direntry->mtime = fat_datetime(st.st_mtime, 1);
direntry->mdate = fat_datetime(st.st_mtime, 0);
if (is_dotdot)
set_begin_of_direntry(direntry, first_cluster_of_parent);
else if (is_dot)
set_begin_of_direntry(direntry, first_cluster);
else
direntry->begin = 0; // do that later
if (st.st_size > 0x7fffffff) {
BX_ERROR(("File '%s' is larger than 2GB", buffer));
free(buffer);
closedir(dir);
return -3;
}
direntry->size = htod32(S_ISDIR(st.st_mode) ? 0:st.st_size);
// create mapping for this file
if (!is_dot && !is_dotdot && (S_ISDIR(st.st_mode) || st.st_size)) {
current_mapping = (mapping_t*)array_get_next(&this->mapping);
current_mapping->begin = 0;
current_mapping->end = st.st_size;
/*
* we get the direntry of the most recent direntry, which
* contains the short name and all the relevant information.
*/
current_mapping->dir_index = directory.next-1;
current_mapping->first_mapping_index = -1;
if (S_ISDIR(st.st_mode)) {
current_mapping->mode = MODE_DIRECTORY;
current_mapping->info.dir.parent_mapping_index =
mapping_index;
} else {
current_mapping->mode = MODE_UNDEFINED;
current_mapping->info.file.offset = 0;
}
current_mapping->path = buffer;
current_mapping->read_only =
(st.st_mode & (S_IWUSR | S_IWGRP | S_IWOTH)) == 0;
}
}
closedir(dir);
#else
WIN32_FIND_DATA finddata;
char filter[MAX_PATH];
wsprintf(filter, "%s\\*.*", dirname);
HANDLE hFind = FindFirstFile(filter, &finddata);
int i;
assert(mapping->mode & MODE_DIRECTORY);
if (hFind == INVALID_HANDLE_VALUE) {
mapping->end = mapping->begin;
return -1;
}
i = mapping->info.dir.first_dir_index =
first_cluster == first_cluster_of_root_dir ? 0 : directory.next;
if (first_cluster != first_cluster_of_root_dir) {
// create the top entries of a subdirectory
direntry = create_short_and_long_name(i, ".", 1);
direntry = create_short_and_long_name(i, "..", 1);
}
// actually read the directory, and allocate the mappings
do {
if ((first_cluster == 0) && (directory.next >= (Bit16u)(root_entries - 1))) {
BX_ERROR(("Too many entries in root directory, using only %d", count));
FindClose(hFind);
return -2;
}
unsigned int length = lstrlen(dirname) + 2 + lstrlen(finddata.cFileName);
char* buffer;
direntry_t* direntry;
bx_bool is_dot = !lstrcmp(finddata.cFileName, ".");
bx_bool is_dotdot = !lstrcmp(finddata.cFileName, "..");
if ((first_cluster == first_cluster_of_root_dir) && (is_dotdot || is_dot))
continue;
bx_bool is_mbr_file = !lstrcmp(finddata.cFileName, VVFAT_MBR);
bx_bool is_boot_file = !lstrcmp(finddata.cFileName, VVFAT_BOOT);
bx_bool is_attr_file = !lstrcmp(finddata.cFileName, VVFAT_ATTR);
if (first_cluster == first_cluster_of_root_dir) {
if (is_attr_file || ((is_mbr_file || is_boot_file) && (finddata.nFileSizeLow == 512)))
continue;
}
buffer = (char*)malloc(length);
snprintf(buffer, length, "%s/%s", dirname, finddata.cFileName);
count++;
// create directory entry for this file
if (!is_dot && !is_dotdot) {
direntry = create_short_and_long_name(i, finddata.cFileName, 0);
} else {
direntry = (direntry_t*)array_get(&directory, is_dot ? i : i + 1);
}
direntry->attributes = ((finddata.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) ? 0x10 : 0x20);
direntry->reserved[0] = direntry->reserved[1]=0;
direntry->ctime = fat_datetime(finddata.ftCreationTime, 1);
direntry->cdate = fat_datetime(finddata.ftCreationTime, 0);
direntry->adate = fat_datetime(finddata.ftLastAccessTime, 0);
direntry->begin_hi = 0;
direntry->mtime = fat_datetime(finddata.ftLastWriteTime, 1);
direntry->mdate = fat_datetime(finddata.ftLastWriteTime, 0);
if (is_dotdot)
set_begin_of_direntry(direntry, first_cluster_of_parent);
else if (is_dot)
set_begin_of_direntry(direntry, first_cluster);
else
direntry->begin = 0; // do that later
if (finddata.nFileSizeLow > 0x7fffffff) {
BX_ERROR(("File '%s' is larger than 2GB", buffer));
free(buffer);
FindClose(hFind);
return -3;
}
direntry->size = htod32((finddata.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) ? 0:finddata.nFileSizeLow);
// create mapping for this file
if (!is_dot && !is_dotdot && ((finddata.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) || finddata.nFileSizeLow)) {
current_mapping = (mapping_t*)array_get_next(&this->mapping);
current_mapping->begin = 0;
current_mapping->end = finddata.nFileSizeLow;
/*
* we get the direntry of the most recent direntry, which
* contains the short name and all the relevant information.
*/
current_mapping->dir_index = directory.next-1;
current_mapping->first_mapping_index = -1;
if (finddata.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) {
current_mapping->mode = MODE_DIRECTORY;
current_mapping->info.dir.parent_mapping_index =
mapping_index;
} else {
current_mapping->mode = MODE_UNDEFINED;
current_mapping->info.file.offset = 0;
}
current_mapping->path=buffer;
current_mapping->read_only = (finddata.dwFileAttributes & FILE_ATTRIBUTE_READONLY);
}
} while (FindNextFile(hFind, &finddata));
FindClose(hFind);
#endif
// fill with zeroes up to the end of the cluster
while (directory.next % (0x10 * sectors_per_cluster)) {
direntry_t* direntry = (direntry_t*)array_get_next(&directory);
memset(direntry, 0, sizeof(direntry_t));
}
if (fat_type != 32) {
if ((mapping_index == 0) && (directory.next < root_entries)) {
// root directory
int cur = directory.next;
array_ensure_allocated(&directory, root_entries - 1);
memset(array_get(&directory, cur), 0,
(root_entries - cur) * sizeof(direntry_t));
}
}
// reget the mapping, since this->mapping was possibly realloc()ed
mapping = (mapping_t*)array_get(&this->mapping, mapping_index);
if (first_cluster == 0) {
first_cluster = 2;
} else {
first_cluster += (directory.next - mapping->info.dir.first_dir_index)
* 0x20 / cluster_size;
}
mapping->end = first_cluster;
direntry = (direntry_t*)array_get(&directory, mapping->dir_index);
set_begin_of_direntry(direntry, mapping->begin);
return 0;
}
Bit32u vvfat_image_t::sector2cluster(off_t sector_num)
{
return (Bit32u)((sector_num - offset_to_data) / sectors_per_cluster) + 2;
}
off_t vvfat_image_t::cluster2sector(Bit32u cluster_num)
{
return (off_t)(offset_to_data + (cluster_num - 2) * sectors_per_cluster);
}
int vvfat_image_t::init_directories(const char* dirname)
{
bootsector_t* bootsector;
infosector_t* infosector;
mapping_t* mapping;
unsigned int i;
unsigned int cluster;
char size_txt[8];
Bit32u volume_sector_count = 0, tmpsc;
cluster_size = sectors_per_cluster * 0x200;
cluster_buffer = new Bit8u[cluster_size];
bootsector = (bootsector_t*)(first_sectors + offset_to_bootsector * 0x200);
if (!use_boot_file) {
volume_sector_count = sector_count - offset_to_bootsector;
tmpsc = volume_sector_count - reserved_sectors - root_entries / 16;
cluster_count = (tmpsc * 0x200) / ((sectors_per_cluster * 0x200) + fat_type / 4);
sectors_per_fat = ((cluster_count + 2) * fat_type / 8) / 0x200;
sectors_per_fat += (((cluster_count + 2) * fat_type / 8) % 0x200) > 0;
} else {
if (fat_type != 32) {
sectors_per_fat = bootsector->sectors_per_fat;
} else {
sectors_per_fat = bootsector->u.fat32.sectors_per_fat;
}
}
offset_to_fat = offset_to_bootsector + reserved_sectors;
offset_to_root_dir = offset_to_fat + sectors_per_fat * 2;
offset_to_data = offset_to_root_dir + root_entries / 16;
if (use_boot_file) {
cluster_count = (sector_count - offset_to_data) / sectors_per_cluster;
}
array_init(&this->mapping, sizeof(mapping_t));
array_init(&directory, sizeof(direntry_t));
/* add volume label */
{
direntry_t *entry = (direntry_t*)array_get_next(&directory);
entry->attributes = 0x28; // archive | volume label
entry->mdate = 0x3d81; // 01.12.2010
entry->mtime = 0x6000; // 12:00:00
memcpy(entry->name, "BOCHS VV", 8);
memcpy(entry->extension, "FAT", 3);
}
// Now build FAT, and write back information into directory
init_fat();
mapping = (mapping_t*)array_get_next(&this->mapping);
mapping->begin = 0;
mapping->dir_index = 0;
mapping->info.dir.parent_mapping_index = -1;
mapping->first_mapping_index = -1;
mapping->path = strdup(dirname);
i = strlen(mapping->path);
if (i > 0 && mapping->path[i - 1] == '/')
mapping->path[i - 1] = '\0';
mapping->mode = MODE_DIRECTORY;
mapping->read_only = 0;
vvfat_path = mapping->path;
for (i = 0, cluster = first_cluster_of_root_dir; i < this->mapping.next; i++) {
// fix fat entry if not root directory of FAT12/FAT16
int fix_fat = (cluster != 0);
mapping = (mapping_t*)array_get(&this->mapping, i);
if (mapping->mode & MODE_DIRECTORY) {
mapping->begin = cluster;
if (read_directory(i)) {
BX_PANIC(("Could not read directory '%s'", mapping->path));
return -1;
}
mapping = (mapping_t*)array_get(&this->mapping, i);
} else {
assert(mapping->mode == MODE_UNDEFINED);
mapping->mode = MODE_NORMAL;
mapping->begin = cluster;
if (mapping->end > 0) {
direntry_t* direntry = (direntry_t*)array_get(&directory, mapping->dir_index);
mapping->end = cluster + 1 + (mapping->end-1) / cluster_size;
set_begin_of_direntry(direntry, mapping->begin);
} else {
mapping->end = cluster + 1;
fix_fat = 0;
}
}
assert(mapping->begin < mapping->end);
/* next free cluster */
cluster = mapping->end;
if (cluster >= (cluster_count + 2)) {
sprintf(size_txt, "%d", (sector_count >> 11));
BX_PANIC(("Directory does not fit in FAT%d (capacity %s MB)",
fat_type,
(fat_type == 12) ? (sector_count == 2880) ? "1.44":"2.88"
: size_txt));
return -EINVAL;
}
// fix fat for entry
if (fix_fat) {
int j;
for (j = mapping->begin; j < (int)(mapping->end - 1); j++)
fat_set(j, j + 1);
fat_set(mapping->end - 1, max_fat_value);
}
}
mapping = (mapping_t*)array_get(&this->mapping, 0);
assert((fat_type == 32) || (mapping->end == 2));
// the FAT signature
fat_set(0, max_fat_value);
fat_set(1, max_fat_value);
current_mapping = NULL;
if (!use_boot_file) {
bootsector->jump[0] = 0xeb;
if (fat_type != 32) {
bootsector->jump[1] = 0x3e;
} else {
bootsector->jump[1] = 0x58;
}
bootsector->jump[2] = 0x90;
memcpy(bootsector->name,"MSWIN4.1", 8); // Win95/98 need this to detect FAT32
bootsector->sector_size = htod16(0x200);
bootsector->sectors_per_cluster = sectors_per_cluster;
bootsector->reserved_sectors = htod16(reserved_sectors);
bootsector->number_of_fats = 0x2;
if (fat_type != 32) {
bootsector->root_entries = htod16(root_entries);
}
bootsector->total_sectors16 = (volume_sector_count > 0xffff) ? 0:htod16(volume_sector_count);
bootsector->media_type = ((fat_type != 12) ? 0xf8:0xf0);
if (fat_type != 32) {
bootsector->sectors_per_fat = htod16(sectors_per_fat);
}
bootsector->sectors_per_track = htod16(spt);
bootsector->number_of_heads = htod16(heads);
bootsector->hidden_sectors = htod32(offset_to_bootsector);
bootsector->total_sectors = htod32((volume_sector_count > 0xffff) ? volume_sector_count:0);
if (fat_type != 32) {
bootsector->u.fat16.drive_number = (fat_type == 12) ? 0:0x80; // assume this is hda (TODO)
bootsector->u.fat16.signature = 0x29;
bootsector->u.fat16.id = htod32(0xfabe1afd);
memcpy(bootsector->u.fat16.volume_label, "BOCHS VVFAT", 11);
memcpy(bootsector->u.fat16.fat_type, (fat_type==12) ? "FAT12 ":"FAT16 ", 8);
} else {
bootsector->u.fat32.sectors_per_fat = htod32(sectors_per_fat);
bootsector->u.fat32.first_cluster_of_root_dir = first_cluster_of_root_dir;
bootsector->u.fat32.info_sector = htod16(1);
bootsector->u.fat32.backup_boot_sector = htod16(6);
bootsector->u.fat32.drive_number = 0x80; // assume this is hda (TODO)
bootsector->u.fat32.signature = 0x29;
bootsector->u.fat32.id = htod32(0xfabe1afd);
memcpy(bootsector->u.fat32.volume_label, "BOCHS VVFAT", 11);
memcpy(bootsector->u.fat32.fat_type, "FAT32 ", 8);
}
bootsector->magic[0] = 0x55;
bootsector->magic[1] = 0xaa;
}
fat.pointer[0] = bootsector->media_type;
if (fat_type == 32) {
// backup boot sector
memcpy(&first_sectors[(offset_to_bootsector + 6) * 0x200], &first_sectors[offset_to_bootsector * 0x200], 0x200);
// FS info sector
infosector = (infosector_t*)(first_sectors + (offset_to_bootsector + 1) * 0x200);
infosector->signature1 = htod32(0x41615252);
infosector->signature2 = htod32(0x61417272);
infosector->free_clusters = htod32(cluster_count - cluster + 2);
infosector->mra_cluster = htod32(2);
infosector->magic[0] = 0x55;
infosector->magic[1] = 0xaa;
}
return 0;
}
bx_bool vvfat_image_t::read_sector_from_file(const char *path, Bit8u *buffer, Bit32u sector)
{
int fd = ::open(path, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
#ifdef O_LARGEFILE
| O_LARGEFILE
#endif
);
if (fd < 0)
return 0;
int offset = sector * 0x200;
if (::lseek(fd, offset, SEEK_SET) != offset) {
return 0;
::close(fd);
}
int result = ::read(fd, buffer, 0x200);
::close(fd);
bx_bool bootsig = ((buffer[0x1fe] == 0x55) && (buffer[0x1ff] == 0xaa));
return (result == 0x200) && bootsig;
}
void vvfat_image_t::set_file_attributes(void)
{
char path[BX_PATHNAME_LEN];
char fpath[BX_PATHNAME_LEN];
char line[512];
char *ret, *ptr;
FILE *fd;
Bit8u attributes;
int i;
sprintf(path, "%s/%s", vvfat_path, VVFAT_ATTR);
fd = fopen(path, "r");
if (fd != NULL) {
do {
ret = fgets(line, sizeof(line) - 1, fd);
if (ret != NULL) {
line[sizeof(line) - 1] = '\0';
size_t len = strlen(line);
if ((len > 0) && (line[len - 1] < ' ')) line[len - 1] = '\0';
ptr = strtok(line, ":");
if (ptr[0] == 34) {
strcpy(fpath, ptr + 1);
} else {
strcpy(fpath, ptr);
}
if (fpath[strlen(fpath) - 1] == 34) {
fpath[strlen(fpath) - 1] = '\0';
}
mapping_t* mapping = find_mapping_for_path(fpath);
if (mapping != NULL) {
direntry_t* entry = (direntry_t*)array_get(&directory, mapping->dir_index);
attributes = entry->attributes;
ptr = strtok(NULL, "");
for (i = 0; i < (int)strlen(ptr); i++) {
switch (ptr[i]) {
case 'a':
attributes &= ~0x20;
break;
case 'S':
attributes |= 0x04;
break;
case 'H':
attributes |= 0x02;
break;
case 'R':
attributes |= 0x01;
break;
}
}
entry->attributes = attributes;
}
}
} while (!feof(fd));
fclose(fd);
}
}
int vvfat_image_t::open(const char* dirname)
{
Bit32u size_in_mb;
char path[BX_PATHNAME_LEN];
Bit8u sector_buffer[0x200];
int filedes;
const char *logname = NULL;
char ftype[10];
bx_bool ftype_ok;
use_mbr_file = 0;
use_boot_file = 0;
fat_type = 0;
sectors_per_cluster = 0;
snprintf(path, BX_PATHNAME_LEN, "%s/%s", dirname, VVFAT_MBR);
if (read_sector_from_file(path, sector_buffer, 0)) {
mbr_t* real_mbr = (mbr_t*)sector_buffer;
partition_t* partition = &(real_mbr->partition[0]);
if ((partition->fs_type != 0) && (partition->length_sector_long > 0)) {
if ((partition->fs_type == 0x06) || (partition->fs_type == 0x0e)) {
fat_type = 16;
} else if ((partition->fs_type == 0x0b) || (partition->fs_type == 0x0c)) {
fat_type = 32;
} else {
BX_ERROR(("MBR file: unsupported FS type = 0x%02x", partition->fs_type));
}
if (fat_type != 0) {
sector_count = partition->start_sector_long + partition->length_sector_long;
spt = partition->start_sector_long;
if (partition->end_CHS.head > 15) {
heads = 16;
} else {
heads = partition->end_CHS.head + 1;
}
cylinders = sector_count / (heads * spt);
offset_to_bootsector = spt;
memcpy(&first_sectors[0], sector_buffer, 0x200);
use_mbr_file = 1;
BX_INFO(("VVFAT: using MBR from file"));
}
}
}
snprintf(path, BX_PATHNAME_LEN, "%s/%s", dirname, VVFAT_BOOT);
if (read_sector_from_file(path, sector_buffer, 0)) {
bootsector_t* bs = (bootsector_t*)sector_buffer;
if (use_mbr_file) {
sprintf(ftype, "FAT%d ", fat_type);
if (fat_type == 32) {
ftype_ok = memcmp(bs->u.fat32.fat_type, ftype, 8) == 0;
} else {
ftype_ok = memcmp(bs->u.fat16.fat_type, ftype, 8) == 0;
}
Bit32u sc = bs->total_sectors16 + bs->total_sectors + bs->hidden_sectors;
if (ftype_ok && (sc == sector_count) && (bs->number_of_fats == 2)) {
use_boot_file = 1;
}
} else {
if (memcmp(bs->u.fat16.fat_type, "FAT12 ", 8) == 0) {
fat_type = 12;
} else if (memcmp(bs->u.fat16.fat_type, "FAT16 ", 8) == 0) {
fat_type = 16;
} else if (memcmp(bs->u.fat32.fat_type, "FAT32 ", 8) == 0) {
fat_type = 32;
} else {
memcpy(ftype, bs->u.fat16.fat_type, 8);
ftype[8] = 0;
BX_PANIC(("boot sector file: unsupported FS type = '%s'", ftype));
return -1;
}
if ((fat_type != 0) && (bs->number_of_fats == 2)) {
sector_count = bs->total_sectors16 + bs->total_sectors + bs->hidden_sectors;
spt = bs->sectors_per_track;
if (bs->number_of_heads > 15) {
heads = 16;
} else {
heads = bs->number_of_heads;
}
cylinders = sector_count / (heads * spt);
offset_to_bootsector = bs->hidden_sectors;
use_boot_file = 1;
}
}
if (use_boot_file) {
sectors_per_cluster = bs->sectors_per_cluster;
reserved_sectors = bs->reserved_sectors;
root_entries = bs->root_entries;
first_cluster_of_root_dir = (fat_type != 32) ? 0 : bs->u.fat32.first_cluster_of_root_dir;
memcpy(&first_sectors[offset_to_bootsector * 0x200], sector_buffer, 0x200);
BX_INFO(("VVFAT: using boot sector from file"));
}
}
if (!use_mbr_file && !use_boot_file) {
if (hd_size == 1474560) {
// floppy support
cylinders = 80;
heads = 2;
spt = 18;
offset_to_bootsector = 0;
fat_type = 12;
sectors_per_cluster = 1;
first_cluster_of_root_dir = 0;
root_entries = 224;
reserved_sectors = 1;
} else {
if (cylinders == 0) {
cylinders = 1024;
heads = 16;
spt = 63;
}
offset_to_bootsector = spt;
}
sector_count = cylinders * heads * spt;
}
hd_size = sector_count * 512;
if (sectors_per_cluster == 0) {
size_in_mb = (Bit32u)(hd_size >> 20);
if ((size_in_mb >= 2047) || (fat_type == 32)) {
fat_type = 32;
if (size_in_mb >= 32767) {
sectors_per_cluster = 64;
} else if (size_in_mb >= 16383) {
sectors_per_cluster = 32;
} else if (size_in_mb >= 8191) {
sectors_per_cluster = 16;
} else {
sectors_per_cluster = 8;
}
first_cluster_of_root_dir = 2;
root_entries = 0;
reserved_sectors = 32;
} else {
fat_type = 16;
if (size_in_mb >= 1023) {
sectors_per_cluster = 64;
} else if (size_in_mb >= 511) {
sectors_per_cluster = 32;
} else if (size_in_mb >= 255) {
sectors_per_cluster = 16;
} else if (size_in_mb >= 127) {
sectors_per_cluster = 8;
} else {
sectors_per_cluster = 4;
}
first_cluster_of_root_dir = 0;
root_entries = 512;
reserved_sectors = 1;
}
}
current_cluster = 0xffff;
current_fd = 0;
if ((!use_mbr_file) && (offset_to_bootsector > 0))
init_mbr();
init_directories(dirname);
set_file_attributes();
// VOLATILE WRITE SUPPORT
snprintf(path, BX_PATHNAME_LEN, "%s/vvfat.dir", dirname);
// if redolog name was set
if (redolog_name != NULL) {
if (strcmp(redolog_name, "") != 0) {
logname = redolog_name;
}
}
// otherwise use path as template
if (logname == NULL) {
logname = path;
}
redolog_temp = (char*)malloc(strlen(logname) + VOLATILE_REDOLOG_EXTENSION_LENGTH + 1);
sprintf(redolog_temp, "%s%s", logname, VOLATILE_REDOLOG_EXTENSION);
filedes = mkstemp(redolog_temp);
if (filedes < 0) {
BX_PANIC(("Can't create volatile redolog '%s'", redolog_temp));
return -1;
}
if (redolog->create(filedes, REDOLOG_SUBTYPE_VOLATILE, hd_size) < 0) {
BX_PANIC(("Can't create volatile redolog '%s'", redolog_temp));
return -1;
}
#if (!defined(WIN32)) && !BX_WITH_MACOS
// on unix it is legal to delete an open file
unlink(redolog_temp);
#endif
vvfat_modified = 0;
BX_INFO(("'vvfat' disk opened: directory is '%s', redolog is '%s'", dirname, redolog_temp));
return 0;
}
direntry_t* vvfat_image_t::read_direntry(Bit8u *buffer, char *filename)
{
const Bit8u lfn_map[13] = {1, 3, 5, 7, 9, 14, 16, 18, 20, 22, 24, 28, 30};
direntry_t *entry;
bx_bool entry_ok = 0, has_lfn = 0;
char lfn_tmp[BX_PATHNAME_LEN];
int i;
memset(filename, 0, BX_PATHNAME_LEN);
lfn_tmp[0] = 0;
do {
entry = (direntry_t*)buffer;
if (entry->name[0] == 0) {
entry = NULL;
break;
} else if ((entry->name[0] != '.') && (entry->name[0] != 0xe5) &&
((entry->attributes & 0x0f) != 0x08)) {
if (is_long_name(entry)) {
for (i = 0; i < 13; i++) {
lfn_tmp[i] = buffer[lfn_map[i]];
}
lfn_tmp[i] = 0;
strcat(lfn_tmp, filename);
strcpy(filename, lfn_tmp);
has_lfn = 1;
buffer += 32;
} else {
if (!has_lfn) {
if (entry->name[0] == 0x05) entry->name[0] = 0xe5;
memcpy(filename, entry->name, 8);
i = 7;
while ((i > 0) && (filename[i] == ' ')) filename[i--] = 0;
if (entry->extension[0] != ' ') strcat(filename, ".");
memcpy(filename+i+2, entry->extension, 3);
i = strlen(filename) - 1;
while (filename[i] == ' ') filename[i--] = 0;
for (i = 0; i < (int)strlen(filename); i++) {
if ((filename[i] > 0x40) && (filename[i] < 0x5b)) {
filename[i] |= 0x20;
}
}
}
entry_ok = 1;
}
} else {
buffer += 32;
}
} while (!entry_ok);
return entry;
}
Bit32u vvfat_image_t::fat_get_next(Bit32u current)
{
if (fat_type == 32) {
return dtoh32(((Bit32u*)fat2)[current]);
} else if (fat_type == 16) {
return dtoh16(((Bit16u*)fat2)[current]);
} else {
int offset = (current * 3 / 2);
Bit8u* p = (((Bit8u*)fat2) + offset);
Bit32u value = 0;
switch (current & 1) {
case 0:
value = p[0] | ((p[1] & 0x0f) << 8);
break;
case 1:
value = (p[0] >> 4) | (p[1] << 4);
break;
}
return value;
}
}
bx_bool vvfat_image_t::write_file(const char *path, direntry_t *entry, bx_bool create)
{
int fd;
Bit32u csize, fsize, fstart, cur, next, rsvd_clusters, bad_cluster;
Bit64u offset;
Bit8u *buffer;
#ifndef WIN32
struct tm tv;
struct utimbuf ut;
#else
HANDLE hFile;
FILETIME at, mt, tmp;
SYSTEMTIME st;
#endif
csize = sectors_per_cluster * 0x200;
rsvd_clusters = max_fat_value - 15;
bad_cluster = max_fat_value - 8;
fsize = dtoh32(entry->size);
fstart = dtoh16(entry->begin) | (dtoh16(entry->begin_hi) << 16);
if (create) {
fd = ::open(path, O_CREAT | O_RDWR | O_TRUNC
#ifdef O_BINARY
| O_BINARY
#endif
#ifdef O_LARGEFILE
| O_LARGEFILE
#endif
, 0644);
} else {
fd = ::open(path, O_RDWR | O_TRUNC
#ifdef O_BINARY
| O_BINARY
#endif
#ifdef O_LARGEFILE
| O_LARGEFILE
#endif
);
}
if (fd < 0)
return 0;
buffer = (Bit8u*)malloc(csize);
next = fstart;
do {
cur = next;
offset = cluster2sector(cur);
lseek(offset * 0x200, SEEK_SET);
read(buffer, csize);
if (fsize > csize) {
::write(fd, buffer, csize);
fsize -= csize;
} else {
::write(fd, buffer, fsize);
}
next = fat_get_next(cur);
if ((next >= rsvd_clusters) && (next < bad_cluster)) {
BX_ERROR(("reserved clusters not supported"));
}
} while (next < rsvd_clusters);
::close(fd);
#ifndef WIN32
tv.tm_year = (entry->mdate >> 9) + 80;
tv.tm_mon = ((entry->mdate >> 5) & 0x0f) - 1;
tv.tm_mday = entry->mdate & 0x1f;
tv.tm_hour = (entry->mtime >> 11);
tv.tm_min = (entry->mtime >> 5) & 0x3f;
tv.tm_sec = (entry->mtime & 0x1f) << 1;
tv.tm_isdst = -1;
ut.modtime = mktime(&tv);
if (entry->adate != 0) {
tv.tm_year = (entry->adate >> 9) + 80;
tv.tm_mon = ((entry->adate >> 5) & 0x0f) - 1;
tv.tm_mday = entry->adate & 0x1f;
tv.tm_hour = 0;
tv.tm_min = 0;
tv.tm_sec = 0;
ut.actime = mktime(&tv);
} else {
ut.actime = ut.modtime;
}
utime(path, &ut);
#else
hFile = CreateFile(path, GENERIC_WRITE, 0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (hFile != INVALID_HANDLE_VALUE) {
memset(&st, 0, sizeof(st));
st.wYear = (entry->mdate >> 9) + 1980;
st.wMonth = ((entry->mdate >> 5) & 0x0f);
st.wDay = entry->mdate & 0x1f;
st.wHour = (entry->mtime >> 11);
st.wMinute = (entry->mtime >> 5) & 0x3f;
st.wSecond = (entry->mtime & 0x1f) << 1;
SystemTimeToFileTime(&st, &tmp);
LocalFileTimeToFileTime(&tmp, &mt);
if (entry->adate != 0) {
st.wYear = (entry->adate >> 9) + 1980;
st.wMonth = ((entry->adate >> 5) & 0x0f);
st.wDay = entry->adate & 0x1f;
st.wHour = 0;
st.wMinute = 0;
st.wSecond = 0;
SystemTimeToFileTime(&st, &tmp);
LocalFileTimeToFileTime(&tmp, &at);
} else {
at = mt;
}
SetFileTime(hFile, NULL, &at, &mt);
CloseHandle(hFile);
}
#endif
return 1;
}
void vvfat_image_t::parse_directory(const char *path, Bit32u start_cluster)
{
Bit32u csize, fstart, cur, next, size, rsvd_clusters;
Bit64u offset;
Bit8u *buffer, *ptr;
direntry_t *entry, *newentry;
char filename[BX_PATHNAME_LEN];
char full_path[BX_PATHNAME_LEN];
char attr_txt[4];
mapping_t *mapping;
csize = sectors_per_cluster * 0x200;
rsvd_clusters = max_fat_value - 15;
if (start_cluster == 0) {
size = root_entries * 32;
offset = offset_to_root_dir;
buffer = (Bit8u*)malloc(size);
lseek(offset * 0x200, SEEK_SET);
read(buffer, size);
} else {
size = csize;
buffer = (Bit8u*)malloc(size);
next = start_cluster;
do {
cur = next;
offset = cluster2sector(cur);
lseek(offset * 0x200, SEEK_SET);
read(buffer+(size-csize), csize);
next = fat_get_next(cur);
if (next < rsvd_clusters) {
size += csize;
buffer = (Bit8u*)realloc(buffer, size);
}
} while (next < rsvd_clusters);
}
ptr = buffer;
do {
newentry = read_direntry(ptr, filename);
if (newentry != NULL) {
sprintf(full_path, "%s/%s", path, filename);
if ((newentry->attributes != 0x10) && (newentry->attributes != 0x20)) {
if (vvfat_attr_fd != NULL) {
attr_txt[0] = 0;
if ((newentry->attributes & 0x30) == 0) strcpy(attr_txt, "a");
if (newentry->attributes & 0x04) strcpy(attr_txt, "S");
if (newentry->attributes & 0x02) strcat(attr_txt, "H");
if (newentry->attributes & 0x01) strcat(attr_txt, "R");
fprintf(vvfat_attr_fd, "\"%s\":%s\n", full_path, attr_txt);
}
}
fstart = dtoh16(newentry->begin) | (dtoh16(newentry->begin_hi) << 16);
mapping = find_mapping_for_cluster(fstart);
if (mapping == NULL) {
if ((newentry->attributes & 0x10) > 0) {
bx_mkdir(full_path);
parse_directory(full_path, fstart);
} else {
if (access(full_path, F_OK) == 0) {
mapping = find_mapping_for_path(full_path);
if (mapping != NULL) {
mapping->mode &= ~MODE_DELETED;
}
write_file(full_path, newentry, 0);
} else {
write_file(full_path, newentry, 1);
}
}
} else {
entry = (direntry_t*)array_get(&directory, mapping->dir_index);
if (!strcmp(full_path, mapping->path)) {
if ((newentry->attributes & 0x10) > 0) {
parse_directory(full_path, fstart);
mapping->mode &= ~MODE_DELETED;
} else {
if ((newentry->mdate != entry->mdate) || (newentry->mtime != entry->mtime) ||
(newentry->size != entry->size)) {
write_file(full_path, newentry, 0);
}
mapping->mode &= ~MODE_DELETED;
}
} else {
if ((newentry->cdate == entry->cdate) && (newentry->ctime == entry->ctime)) {
rename(mapping->path, full_path);
if (newentry->attributes == 0x10) {
parse_directory(full_path, fstart);
mapping->mode &= ~MODE_DELETED;
} else {
if ((newentry->mdate != entry->mdate) || (newentry->mtime != entry->mtime) ||
(newentry->size != entry->size)) {
write_file(full_path, newentry, 0);
}
mapping->mode &= ~MODE_DELETED;
}
} else {
if ((newentry->attributes & 0x10) > 0) {
bx_mkdir(full_path);
parse_directory(full_path, fstart);
} else {
if (access(full_path, F_OK) == 0) {
mapping = find_mapping_for_path(full_path);
if (mapping != NULL) {
mapping->mode &= ~MODE_DELETED;
}
write_file(full_path, newentry, 0);
} else {
write_file(full_path, newentry, 1);
}
}
}
}
}
ptr = (Bit8u*)newentry+32;
}
} while ((newentry != NULL) && ((Bit32u)(ptr - buffer) < size));
free(buffer);
}
void vvfat_image_t::commit_changes(void)
{
char path[BX_PATHNAME_LEN];
mapping_t *mapping;
int i;
// read modified FAT
fat2 = malloc(sectors_per_fat * 0x200);
lseek(offset_to_fat * 0x200, SEEK_SET);
read(fat2, sectors_per_fat * 0x200);
// mark all mapped directories / files for delete
for (i = 1; i < (int)this->mapping.next; i++) {
mapping = (mapping_t*)array_get(&this->mapping, i);
if (mapping->first_mapping_index < 0) {
mapping->mode |= MODE_DELETED;
}
}
sprintf(path, "%s/%s", vvfat_path, VVFAT_ATTR);
vvfat_attr_fd = fopen(path, "w");
// parse new directory tree and create / modify directories and files
parse_directory(vvfat_path, (fat_type == 32) ? first_cluster_of_root_dir : 0);
if (vvfat_attr_fd != NULL)
fclose(vvfat_attr_fd);
// remove all directories and files still marked for delete
for (i = this->mapping.next - 1; i > 0; i--) {
mapping = (mapping_t*)array_get(&this->mapping, i);
if (mapping->mode & MODE_DELETED) {
direntry_t* entry = (direntry_t*)array_get(&directory, mapping->dir_index);
if (entry->attributes == 0x10) {
bx_rmdir(mapping->path);
} else {
unlink(mapping->path);
}
}
}
free(fat2);
}
void vvfat_image_t::close(void)
{
char msg[BX_PATHNAME_LEN + 80];
if (vvfat_modified) {
sprintf(msg, "Write back changes to directory '%s'?\n\nWARNING: This feature is still experimental!", vvfat_path);
if (SIM->ask_yes_no("Bochs VVFAT modified", msg, 0)) {
commit_changes();
}
}
array_free(&fat);
array_free(&directory);
array_free(&mapping);
if (cluster_buffer != NULL)
delete [] cluster_buffer;
redolog->close();
#if defined(WIN32) || BX_WITH_MACOS
// on non-unix we have to wait till the file is closed to delete it
unlink(redolog_temp);
#endif
if (redolog_temp!=NULL)
free(redolog_temp);
if (redolog_name!=NULL)
free(redolog_name);
}
Bit64s vvfat_image_t::lseek(Bit64s offset, int whence)
{
redolog->lseek(offset, whence);
if (whence == SEEK_SET) {
sector_num = (Bit32u)(offset / 512);
} else if (whence == SEEK_CUR) {
sector_num += (Bit32u)(offset / 512);
} else {
BX_ERROR(("lseek: mode not supported yet"));
return -1;
}
if (sector_num >= sector_count)
return -1;
return 0;
}
void vvfat_image_t::close_current_file(void)
{
if(current_mapping) {
current_mapping = NULL;
if (current_fd) {
::close(current_fd);
current_fd = 0;
}
}
current_cluster = 0xffff;
}
// mappings between index1 and index2-1 are supposed to be ordered
// return value is the index of the last mapping for which end>cluster_num
int vvfat_image_t::find_mapping_for_cluster_aux(int cluster_num, int index1, int index2)
{
while(1) {
int index3;
mapping_t* mapping;
index3 = (index1+index2) / 2;
mapping = (mapping_t*)array_get(&this->mapping, index3);
assert(mapping->begin < mapping->end);
if (mapping->begin >= (unsigned int)cluster_num) {
assert(index2 != index3 || index2 == 0);
if (index2 == index3)
return index1;
index2 = index3;
} else {
if (index1 == index3)
return (mapping->end <= (unsigned int)cluster_num) ? index2 : index1;
index1 = index3;
}
assert(index1 <= index2);
}
}
mapping_t* vvfat_image_t::find_mapping_for_cluster(int cluster_num)
{
int index = find_mapping_for_cluster_aux(cluster_num, 0, mapping.next);
mapping_t* mapping;
if (index >= (int)this->mapping.next)
return NULL;
mapping = (mapping_t*)array_get(&this->mapping, index);
if ((int)mapping->begin > cluster_num)
return NULL;
assert(((int)mapping->begin <= cluster_num) && ((int)mapping->end > cluster_num));
return mapping;
}
// This function simply compares path == mapping->path. Since the mappings
// are sorted by cluster, this is expensive: O(n).
mapping_t* vvfat_image_t::find_mapping_for_path(const char* path)
{
int i;
for (i = 0; i < (int)this->mapping.next; i++) {
mapping_t* mapping = (mapping_t*)array_get(&this->mapping, i);
if ((mapping->first_mapping_index < 0) && !strcmp(path, mapping->path))
return mapping;
}
return NULL;
}
int vvfat_image_t::open_file(mapping_t* mapping)
{
if (!mapping)
return -1;
if (!current_mapping ||
strcmp(current_mapping->path, mapping->path)) {
/* open file */
int fd = ::open(mapping->path, O_RDONLY
#ifdef O_BINARY
| O_BINARY
#endif
#ifdef O_LARGEFILE
| O_LARGEFILE
#endif
);
if (fd < 0)
return -1;
close_current_file();
current_fd = fd;
current_mapping = mapping;
}
return 0;
}
int vvfat_image_t::read_cluster(int cluster_num)
{
mapping_t* mapping;
if (current_cluster != cluster_num) {
int result=0;
off_t offset;
assert(!current_mapping || current_fd || (current_mapping->mode & MODE_DIRECTORY));
if (!current_mapping
|| ((int)current_mapping->begin > cluster_num)
|| ((int)current_mapping->end <= cluster_num)) {
// binary search of mappings for file
mapping = find_mapping_for_cluster(cluster_num);
assert(!mapping || ((cluster_num >= (int)mapping->begin) && (cluster_num < (int)mapping->end)));
if (mapping && mapping->mode & MODE_DIRECTORY) {
close_current_file();
current_mapping = mapping;
read_cluster_directory:
offset = cluster_size * (cluster_num - current_mapping->begin);
cluster = (unsigned char*)directory.pointer+offset
+ 0x20 * current_mapping->info.dir.first_dir_index;
assert(((cluster -(unsigned char*)directory.pointer) % cluster_size) == 0);
assert((char*)cluster + cluster_size <= directory.pointer + directory.next * directory.item_size);
current_cluster = cluster_num;
return 0;
}
if (open_file(mapping))
return -2;
} else if (current_mapping->mode & MODE_DIRECTORY)
goto read_cluster_directory;
assert(current_fd);
offset = cluster_size * (cluster_num - current_mapping->begin) + current_mapping->info.file.offset;
if (::lseek(current_fd, offset, SEEK_SET) != offset)
return -3;
cluster = cluster_buffer;
result = ::read(current_fd, cluster, cluster_size);
if (result < 0) {
current_cluster = 0xffff;
return -1;
}
current_cluster = cluster_num;
}
return 0;
}
ssize_t vvfat_image_t::read(void* buf, size_t count)
{
char *cbuf = (char*)buf;
Bit32u scount = (Bit32u)(count / 0x200);
while (scount-- > 0) {
if ((ssize_t)redolog->read(cbuf, 0x200) != 0x200) {
if (sector_num < offset_to_data) {
if (sector_num < (offset_to_bootsector + reserved_sectors))
memcpy(cbuf, &first_sectors[sector_num * 0x200], 0x200);
else if ((sector_num - offset_to_fat) < sectors_per_fat)
memcpy(cbuf, &fat.pointer[(sector_num - offset_to_fat) * 0x200], 0x200);
else if ((sector_num - offset_to_fat - sectors_per_fat) < sectors_per_fat)
memcpy(cbuf, &fat.pointer[(sector_num - offset_to_fat - sectors_per_fat) * 0x200], 0x200);
else
memcpy(cbuf, &directory.pointer[(sector_num - offset_to_root_dir) * 0x200], 0x200);
} else {
Bit32u sector = sector_num - offset_to_data,
sector_offset_in_cluster = (sector % sectors_per_cluster),
cluster_num = sector / sectors_per_cluster + 2;
if (read_cluster(cluster_num) != 0) {
memset(cbuf, 0, 0x200);
} else {
memcpy(cbuf, cluster + sector_offset_in_cluster * 0x200, 0x200);
}
}
redolog->lseek((sector_num + 1) * 0x200, SEEK_SET);
}
sector_num++;
cbuf += 0x200;
}
return count;
}
ssize_t vvfat_image_t::write(const void* buf, size_t count)
{
ssize_t ret = 0;
char *cbuf = (char*)buf;
Bit32u scount = (Bit32u)(count / 512);
bx_bool update_imagepos;
while (scount-- > 0) {
update_imagepos = 1;
if (sector_num == 0) {
// allow writing to MBR (except partition table)
memcpy(&first_sectors[0], cbuf, 0x1b8);
} else if (sector_num == offset_to_bootsector) {
// allow writing to boot sector
memcpy(&first_sectors[sector_num * 0x200], cbuf, 0x200);
} else if ((fat_type == 32) && (sector_num == (offset_to_bootsector + 1))) {
// allow writing to FS info sector
memcpy(&first_sectors[sector_num * 0x200], cbuf, 0x200);
} else if (sector_num < (offset_to_bootsector + reserved_sectors)) {
BX_ERROR(("VVFAT write ignored: sector=%d, count=%d", sector_num, scount));
ret = -1;
} else {
vvfat_modified = 1;
update_imagepos = 0;
ret = redolog->write(cbuf, 0x200);
}
if (ret < 0) break;
sector_num++;
cbuf += 0x200;
if (update_imagepos) {
redolog->lseek(sector_num * 0x200, SEEK_SET);
}
}
return (ret < 0) ? ret : count;
}
Bit32u vvfat_image_t::get_capabilities(void)
{
return HDIMAGE_HAS_GEOMETRY;
}