Bochs/bochs/cpu/data_xfer32.cc
Kevin Lawton e2e219eda0 Modified the way that the register field (low 3 bits of a few opcodes
also extended by the REX.B field on Hammer) is passed to instructions.
I rearranged the bxInstruction_c to free up a field to be used
to pass this info when mod-rm bytes are not used.  This got rid
of the ugly ((i->b1 & 7) + i->rex_b) code.

Probably shaved just a very little run time off Hammer emulation,
and even less on x86-32.  The resultant is a little cleaner anyways.
2002-09-20 23:17:51 +00:00

337 lines
7.7 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: data_xfer32.cc,v 1.15 2002-09-20 23:17:50 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::XCHG_ERXEAX(bxInstruction_c *i)
{
Bit32u temp32;
temp32 = EAX;
#if BX_SUPPORT_X86_64
RAX = BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx;
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx = temp32;
#else
EAX = BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx;
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx = temp32;
#endif
}
void
BX_CPU_C::MOV_ERXId(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].rrx = i->Id();
#else
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx = i->Id();
#endif
}
void
BX_CPU_C::MOV_EdGd(bxInstruction_c *i)
{
Bit32u op2_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn());
/* op1_32 is a register or memory reference */
/* now write op2 to op1 */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), op2_32);
}
else {
write_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
}
void
BX_CPU_C::MOV_GdEd(bxInstruction_c *i)
{
Bit32u op2_32;
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
BX_WRITE_32BIT_REGZ(i->nnn(), op2_32);
}
void
BX_CPU_C::LEA_GdM(bxInstruction_c *i)
{
if (i->modC0()) {
BX_PANIC(("LEA_GvM: op2 is a register"));
UndefinedOpcode(i);
return;
}
/* write effective address of op2 in op1 */
BX_WRITE_32BIT_REGZ(i->nnn(), RMAddr(i));
}
void
BX_CPU_C::MOV_EAXOd(bxInstruction_c *i)
{
Bit32u temp_32;
bx_address addr;
addr = i->Id();
/* read from memory address */
if (!BX_NULL_SEG_REG(i->seg())) {
read_virtual_dword(i->seg(), addr, &temp_32);
}
else {
read_virtual_dword(BX_SEG_REG_DS, addr, &temp_32);
}
/* write to register */
#if BX_SUPPORT_X86_64
RAX = temp_32;
#else
EAX = temp_32;
#endif
}
void
BX_CPU_C::MOV_OdEAX(bxInstruction_c *i)
{
Bit32u temp_32;
bx_address addr;
addr = i->Id();
/* read from register */
temp_32 = EAX;
/* write to memory address */
if (!BX_NULL_SEG_REG(i->seg())) {
write_virtual_dword(i->seg(), addr, &temp_32);
}
else {
write_virtual_dword(BX_SEG_REG_DS, addr, &temp_32);
}
}
void
BX_CPU_C::MOV_EdId(bxInstruction_c *i)
{
Bit32u op2_32;
op2_32 = i->Id();
/* now write sum back to destination */
if (i->modC0()) {
BX_WRITE_32BIT_REGZ(i->rm(), op2_32);
}
else {
write_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
}
void
BX_CPU_C::MOVZX_GdEb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVZX_GvEb: not supported on < 386"));
#else
Bit8u op2_8;
if (i->modC0()) {
op2_8 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_virtual_byte(i->seg(), RMAddr(i), &op2_8);
}
/* zero extend byte op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->nnn(), (Bit32u) op2_8);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::MOVZX_GdEw(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVZX_GvEw: not supported on < 386"));
#else
Bit16u op2_16;
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
/* zero extend word op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->nnn(), (Bit32u) op2_16);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::MOVSX_GdEb(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVSX_GvEb: not supported on < 386"));
#else
Bit8u op2_8;
if (i->modC0()) {
op2_8 = BX_READ_8BIT_REGx(i->rm(),i->extend8bitL());
}
else {
/* pointer, segment address pair */
read_virtual_byte(i->seg(), RMAddr(i), &op2_8);
}
/* sign extend byte op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->nnn(), (Bit8s) op2_8);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::MOVSX_GdEw(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("MOVSX_GvEw: not supported on < 386"));
#else
Bit16u op2_16;
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
/* sign extend word op2 into dword op1 */
BX_WRITE_32BIT_REGZ(i->nnn(), (Bit16s) op2_16);
#endif /* BX_CPU_LEVEL < 3 */
}
void
BX_CPU_C::XCHG_EdGd(bxInstruction_c *i)
{
Bit32u op2_32, op1_32;
/* op2_32 is a register, op2_addr is an index of a register */
op2_32 = BX_READ_32BIT_REG(i->nnn());
/* op1_32 is a register or memory reference */
if (i->modC0()) {
op1_32 = BX_READ_32BIT_REG(i->rm());
BX_WRITE_32BIT_REGZ(i->rm(), op2_32);
}
else {
/* pointer, segment address pair */
read_RMW_virtual_dword(i->seg(), RMAddr(i), &op1_32);
Write_RMW_virtual_dword(op2_32);
}
BX_WRITE_32BIT_REGZ(i->nnn(), op1_32);
}
void
BX_CPU_C::CMOV_GdEd(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 6) || (BX_CPU_LEVEL_HACKED >= 6)
// Note: CMOV accesses a memory source operand (read), regardless
// of whether condition is true or not. Thus, exceptions may
// occur even if the MOV does not take place.
Boolean condition;
Bit32u op2_32;
switch (i->b1()) {
// CMOV opcodes:
case 0x140: condition = get_OF(); break;
case 0x141: condition = !get_OF(); break;
case 0x142: condition = get_CF(); break;
case 0x143: condition = !get_CF(); break;
case 0x144: condition = get_ZF(); break;
case 0x145: condition = !get_ZF(); break;
case 0x146: condition = get_CF() || get_ZF(); break;
case 0x147: condition = !get_CF() && !get_ZF(); break;
case 0x148: condition = get_SF(); break;
case 0x149: condition = !get_SF(); break;
case 0x14A: condition = get_PF(); break;
case 0x14B: condition = !get_PF(); break;
case 0x14C: condition = get_SF() != get_OF(); break;
case 0x14D: condition = get_SF() == get_OF(); break;
case 0x14E: condition = get_ZF() || (get_SF() != get_OF()); break;
case 0x14F: condition = !get_ZF() && (get_SF() == get_OF()); break;
default:
condition = 0;
BX_PANIC(("CMOV_GdEd: default case"));
}
if (i->modC0()) {
op2_32 = BX_READ_32BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_virtual_dword(i->seg(), RMAddr(i), &op2_32);
}
if (condition) {
BX_WRITE_32BIT_REGZ(i->nnn(), op2_32);
}
#else
BX_INFO(("cmov_gded called"));
UndefinedOpcode(i);
#endif
}