Bochs/bochs/cpu/string.cc
2018-02-16 07:57:32 +00:00

2194 lines
46 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2018 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
//
// Repeat Speedups methods
//
#if BX_SUPPORT_REPEAT_SPEEDUPS
Bit32u BX_CPU_C::FastRepMOVSB(bxInstruction_c *i, unsigned srcSeg, Bit32u srcOff, unsigned dstSeg, Bit32u dstOff, Bit32u count)
{
Bit32u bytesFitSrc, bytesFitDst;
signed int pointerDelta;
bx_address laddrDst, laddrSrc;
Bit8u *hostAddrSrc, *hostAddrDst;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
bx_segment_reg_t *srcSegPtr = &BX_CPU_THIS_PTR sregs[srcSeg];
if (srcSegPtr->cache.valid & SegAccessROK4G) {
laddrSrc = srcOff;
}
else {
if (!(srcSegPtr->cache.valid & SegAccessROK))
return 0;
if ((srcOff | 0xfff) > srcSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrSrc = get_laddr32(srcSeg, srcOff);
}
hostAddrSrc = v2h_read_byte(laddrSrc, USER_PL);
// Check that native host access was not vetoed for that page
if (! hostAddrSrc) return 0;
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
if (dstSegPtr->cache.valid & SegAccessWOK4G) {
laddrDst = dstOff;
}
else {
if (!(dstSegPtr->cache.valid & SegAccessWOK))
return 0;
if ((dstOff | 0xfff) > dstSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrDst = get_laddr32(dstSeg, dstOff);
}
hostAddrDst = v2h_write_byte(laddrDst, USER_PL);
// Check that native host access was not vetoed for that page
if (!hostAddrDst) return 0;
// See how many bytes can fit in the rest of this page.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward.
bytesFitSrc = 1 + PAGE_OFFSET(laddrSrc);
bytesFitDst = 1 + PAGE_OFFSET(laddrDst);
pointerDelta = (signed int) -1;
}
else {
// Counting upward.
bytesFitSrc = 0x1000 - PAGE_OFFSET(laddrSrc);
bytesFitDst = 0x1000 - PAGE_OFFSET(laddrDst);
pointerDelta = (signed int) 1;
}
// Restrict word count to the number that will fit in either
// source or dest pages.
if (count > bytesFitSrc)
count = bytesFitSrc;
if (count > bytesFitDst)
count = bytesFitDst;
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
// If after all the restrictions, there is anything left to do...
if (count) {
// Transfer data directly using host addresses
for (unsigned j=0; j<count; j++) {
* (Bit8u *) hostAddrDst = * (Bit8u *) hostAddrSrc;
hostAddrDst += pointerDelta;
hostAddrSrc += pointerDelta;
}
return count;
}
return 0;
}
Bit32u BX_CPU_C::FastRepMOVSW(bxInstruction_c *i, unsigned srcSeg, Bit32u srcOff, unsigned dstSeg, Bit32u dstOff, Bit32u count)
{
Bit32u wordsFitSrc, wordsFitDst;
signed int pointerDelta;
bx_address laddrDst, laddrSrc;
Bit8u *hostAddrSrc, *hostAddrDst;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
bx_segment_reg_t *srcSegPtr = &BX_CPU_THIS_PTR sregs[srcSeg];
if (srcSegPtr->cache.valid & SegAccessROK4G) {
laddrSrc = srcOff;
}
else {
if (!(srcSegPtr->cache.valid & SegAccessROK))
return 0;
if ((srcOff | 0xfff) > srcSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrSrc = get_laddr32(srcSeg, srcOff);
}
hostAddrSrc = v2h_read_byte(laddrSrc, USER_PL);
// Check that native host access was not vetoed for that page
if (! hostAddrSrc) return 0;
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
if (dstSegPtr->cache.valid & SegAccessWOK4G) {
laddrDst = dstOff;
}
else {
if (!(dstSegPtr->cache.valid & SegAccessWOK))
return 0;
if ((dstOff | 0xfff) > dstSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrDst = get_laddr32(dstSeg, dstOff);
}
hostAddrDst = v2h_write_byte(laddrDst, USER_PL);
// Check that native host access was not vetoed for that page
if (!hostAddrDst) return 0;
// See how many words can fit in the rest of this page.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward.
// Note: 1st word must not cross page boundary.
if (((laddrSrc & 0xfff) > 0xffe) || ((laddrDst & 0xfff) > 0xffe))
return 0;
wordsFitSrc = (2 + PAGE_OFFSET(laddrSrc)) >> 1;
wordsFitDst = (2 + PAGE_OFFSET(laddrDst)) >> 1;
pointerDelta = (signed int) -2;
}
else {
// Counting upward.
wordsFitSrc = (0x1000 - PAGE_OFFSET(laddrSrc)) >> 1;
wordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 1;
pointerDelta = (signed int) 2;
}
// Restrict word count to the number that will fit in either
// source or dest pages.
if (count > wordsFitSrc)
count = wordsFitSrc;
if (count > wordsFitDst)
count = wordsFitDst;
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
// If after all the restrictions, there is anything left to do...
if (count) {
// Transfer data directly using host addresses
for (unsigned j=0; j<count; j++) {
CopyHostWordLittleEndian(hostAddrDst, hostAddrSrc);
hostAddrDst += pointerDelta;
hostAddrSrc += pointerDelta;
}
return count;
}
return 0;
}
Bit32u BX_CPU_C::FastRepMOVSD(bxInstruction_c *i, unsigned srcSeg, Bit32u srcOff, unsigned dstSeg, Bit32u dstOff, Bit32u count)
{
Bit32u dwordsFitSrc, dwordsFitDst;
signed int pointerDelta;
bx_address laddrDst, laddrSrc;
Bit8u *hostAddrSrc, *hostAddrDst;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
bx_segment_reg_t *srcSegPtr = &BX_CPU_THIS_PTR sregs[srcSeg];
if (srcSegPtr->cache.valid & SegAccessROK4G) {
laddrSrc = srcOff;
}
else {
if (!(srcSegPtr->cache.valid & SegAccessROK))
return 0;
if ((srcOff | 0xfff) > srcSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrSrc = get_laddr32(srcSeg, srcOff);
}
hostAddrSrc = v2h_read_byte(laddrSrc, USER_PL);
// Check that native host access was not vetoed for that page
if (! hostAddrSrc) return 0;
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
if (dstSegPtr->cache.valid & SegAccessWOK4G) {
laddrDst = dstOff;
}
else {
if (!(dstSegPtr->cache.valid & SegAccessWOK))
return 0;
if ((dstOff | 0xfff) > dstSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrDst = get_laddr32(dstSeg, dstOff);
}
hostAddrDst = v2h_write_byte(laddrDst, USER_PL);
// Check that native host access was not vetoed for that page
if (!hostAddrDst) return 0;
// See how many dwords can fit in the rest of this page.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward.
// Note: 1st dword must not cross page boundary.
if (((laddrSrc & 0xfff) > 0xffc) || ((laddrDst & 0xfff) > 0xffc))
return 0;
dwordsFitSrc = (4 + PAGE_OFFSET(laddrSrc)) >> 2;
dwordsFitDst = (4 + PAGE_OFFSET(laddrDst)) >> 2;
pointerDelta = (signed int) -4;
}
else {
// Counting upward.
dwordsFitSrc = (0x1000 - PAGE_OFFSET(laddrSrc)) >> 2;
dwordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 2;
pointerDelta = (signed int) 4;
}
// Restrict dword count to the number that will fit in either
// source or dest pages.
if (count > dwordsFitSrc)
count = dwordsFitSrc;
if (count > dwordsFitDst)
count = dwordsFitDst;
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
// If after all the restrictions, there is anything left to do...
if (count) {
// Transfer data directly using host addresses
for (unsigned j=0; j<count; j++) {
CopyHostDWordLittleEndian(hostAddrDst, hostAddrSrc);
hostAddrDst += pointerDelta;
hostAddrSrc += pointerDelta;
}
return count;
}
return 0;
}
Bit32u BX_CPU_C::FastRepSTOSB(bxInstruction_c *i, unsigned dstSeg, Bit32u dstOff, Bit8u val, Bit32u count)
{
Bit32u bytesFitDst;
signed int pointerDelta;
bx_address laddrDst;
Bit8u *hostAddrDst;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
if (dstSegPtr->cache.valid & SegAccessWOK4G) {
laddrDst = dstOff;
}
else {
if (!(dstSegPtr->cache.valid & SegAccessWOK))
return 0;
if ((dstOff | 0xfff) > dstSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrDst = get_laddr32(dstSeg, dstOff);
}
hostAddrDst = v2h_write_byte(laddrDst, USER_PL);
// Check that native host access was not vetoed for that page
if (!hostAddrDst) return 0;
// See how many bytes can fit in the rest of this page.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward.
bytesFitDst = 1 + PAGE_OFFSET(laddrDst);
pointerDelta = (signed int) -1;
}
else {
// Counting upward.
bytesFitDst = 0x1000 - PAGE_OFFSET(laddrDst);
pointerDelta = (signed int) 1;
}
// Restrict word count to the number that will fit in either
// source or dest pages.
if (count > bytesFitDst)
count = bytesFitDst;
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
// If after all the restrictions, there is anything left to do...
if (count) {
// Transfer data directly using host addresses
for (unsigned j=0; j<count; j++) {
* (Bit8u *) hostAddrDst = val;
hostAddrDst += pointerDelta;
}
return count;
}
return 0;
}
Bit32u BX_CPU_C::FastRepSTOSW(bxInstruction_c *i, unsigned dstSeg, Bit32u dstOff, Bit16u val, Bit32u count)
{
Bit32u wordsFitDst;
signed int pointerDelta;
bx_address laddrDst;
Bit8u *hostAddrDst;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
if (dstSegPtr->cache.valid & SegAccessWOK4G) {
laddrDst = dstOff;
}
else {
if (!(dstSegPtr->cache.valid & SegAccessWOK))
return 0;
if ((dstOff | 0xfff) > dstSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrDst = get_laddr32(dstSeg, dstOff);
}
hostAddrDst = v2h_write_byte(laddrDst, USER_PL);
// Check that native host access was not vetoed for that page
if (!hostAddrDst) return 0;
// See how many words can fit in the rest of this page.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward.
// Note: 1st word must not cross page boundary.
if ((laddrDst & 0xfff) > 0xffe) return 0;
wordsFitDst = (2 + PAGE_OFFSET(laddrDst)) >> 1;
pointerDelta = (signed int) -2;
}
else {
// Counting upward.
wordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 1;
pointerDelta = (signed int) 2;
}
// Restrict word count to the number that will fit in either
// source or dest pages.
if (count > wordsFitDst)
count = wordsFitDst;
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
// If after all the restrictions, there is anything left to do...
if (count) {
// Transfer data directly using host addresses
for (unsigned j=0; j<count; j++) {
WriteHostWordToLittleEndian(hostAddrDst, val);
hostAddrDst += pointerDelta;
}
return count;
}
return 0;
}
Bit32u BX_CPU_C::FastRepSTOSD(bxInstruction_c *i, unsigned dstSeg, Bit32u dstOff, Bit32u val, Bit32u count)
{
Bit32u dwordsFitDst;
signed int pointerDelta;
bx_address laddrDst;
Bit8u *hostAddrDst;
BX_ASSERT(BX_CPU_THIS_PTR cpu_mode != BX_MODE_LONG_64);
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[dstSeg];
if (dstSegPtr->cache.valid & SegAccessWOK4G) {
laddrDst = dstOff;
}
else {
if (!(dstSegPtr->cache.valid & SegAccessWOK))
return 0;
if ((dstOff | 0xfff) > dstSegPtr->cache.u.segment.limit_scaled)
return 0;
laddrDst = get_laddr32(dstSeg, dstOff);
}
hostAddrDst = v2h_write_byte(laddrDst, USER_PL);
// Check that native host access was not vetoed for that page
if (!hostAddrDst) return 0;
// See how many dwords can fit in the rest of this page.
if (BX_CPU_THIS_PTR get_DF()) {
// Counting downward.
// Note: 1st dword must not cross page boundary.
if ((laddrDst & 0xfff) > 0xffc) return 0;
dwordsFitDst = (4 + PAGE_OFFSET(laddrDst)) >> 2;
pointerDelta = (signed int) -4;
}
else {
// Counting upward.
dwordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 2;
pointerDelta = (signed int) 4;
}
// Restrict dword count to the number that will fit in either
// source or dest pages.
if (count > dwordsFitDst)
count = dwordsFitDst;
if (count > bx_pc_system.getNumCpuTicksLeftNextEvent())
count = bx_pc_system.getNumCpuTicksLeftNextEvent();
// If after all the restrictions, there is anything left to do...
if (count) {
// Transfer data directly using host addresses
for (unsigned j=0; j<count; j++) {
WriteHostDWordToLittleEndian(hostAddrDst, val);
hostAddrDst += pointerDelta;
}
return count;
}
return 0;
}
#endif
//
// REP MOVS methods
//
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_MOVSB_YbXb(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L())
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSB64_YbXb);
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSB32_YbXb);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSB16_YbXb);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_MOVSW_YwXw(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L())
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSW64_YwXw);
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSW32_YwXw);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSW16_YwXw);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_MOVSD_YdXd(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L())
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSD64_YdXd);
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSD32_YdXd);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSD16_YdXd);
}
BX_NEXT_INSTR(i);
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_MOVSQ_YqXq(bxInstruction_c *i)
{
if (i->as64L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSQ64_YqXq);
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::MOVSQ32_YqXq);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
}
BX_NEXT_INSTR(i);
}
#endif
//
// MOVSB/MOVSW/MOVSD/MOVSQ methods
//
// 16 bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSB16_YbXb(bxInstruction_c *i)
{
Bit8u temp8 = read_virtual_byte_32(i->seg(), SI);
write_virtual_byte_32(BX_SEG_REG_ES, DI, temp8);
if (BX_CPU_THIS_PTR get_DF()) {
/* decrement SI, DI */
SI--;
DI--;
}
else {
/* increment SI, DI */
SI++;
DI++;
}
}
// 32 bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSB32_YbXb(bxInstruction_c *i)
{
Bit8u temp8;
Bit32u incr = 1;
#if (BX_SUPPORT_REPEAT_SPEEDUPS) && (BX_DEBUGGER == 0)
/* If conditions are right, we can transfer IO to physical memory
* in a batch, rather than one instruction at a time */
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event)
{
Bit32u byteCount = FastRepMOVSB(i, i->seg(), ESI, BX_SEG_REG_ES, EDI, ECX);
if (byteCount) {
// Decrement the ticks count by the number of iterations, minus
// one, since the main cpu loop will decrement one. Also,
// the count is predecremented before examined, so defintely
// don't roll it under zero.
BX_TICKN(byteCount-1);
// Decrement eCX. Note, the main loop will decrement 1 also, so
// decrement by one less than expected, like the case above.
RCX = ECX - (byteCount-1);
incr = byteCount;
}
else {
temp8 = read_virtual_byte(i->seg(), ESI);
write_virtual_byte(BX_SEG_REG_ES, EDI, temp8);
}
}
else
#endif
{
temp8 = read_virtual_byte(i->seg(), ESI);
write_virtual_byte(BX_SEG_REG_ES, EDI, temp8);
}
if (BX_CPU_THIS_PTR get_DF()) {
RSI = ESI - incr;
RDI = EDI - incr;
}
else {
RSI = ESI + incr;
RDI = EDI + incr;
}
}
#if BX_SUPPORT_X86_64
// 64 bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSB64_YbXb(bxInstruction_c *i)
{
Bit8u temp8;
Bit64u rsi = RSI;
Bit64u rdi = RDI;
temp8 = read_linear_byte(i->seg(), get_laddr64(i->seg(), rsi));
write_linear_byte(BX_SEG_REG_ES, rdi, temp8);
if (BX_CPU_THIS_PTR get_DF()) {
/* decrement RSI, RDI */
rsi--;
rdi--;
}
else {
/* increment RSI, RDI */
rsi++;
rdi++;
}
RSI = rsi;
RDI = rdi;
}
#endif
/* 16 bit opsize mode, 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSW16_YwXw(bxInstruction_c *i)
{
Bit16u si = SI;
Bit16u di = DI;
Bit16u temp16 = read_virtual_word_32(i->seg(), si);
write_virtual_word_32(BX_SEG_REG_ES, di, temp16);
if (BX_CPU_THIS_PTR get_DF()) {
/* decrement SI, DI */
si -= 2;
di -= 2;
}
else {
/* increment SI, DI */
si += 2;
di += 2;
}
SI = si;
DI = di;
}
/* 16 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSW32_YwXw(bxInstruction_c *i)
{
Bit16u temp16;
Bit32u esi = ESI;
Bit32u edi = EDI;
temp16 = read_virtual_word(i->seg(), esi);
write_virtual_word(BX_SEG_REG_ES, edi, temp16);
if (BX_CPU_THIS_PTR get_DF()) {
esi -= 2;
edi -= 2;
}
else {
esi += 2;
edi += 2;
}
// zero extension of RSI/RDI
RSI = esi;
RDI = edi;
}
#if BX_SUPPORT_X86_64
/* 16 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSW64_YwXw(bxInstruction_c *i)
{
Bit16u temp16;
Bit64u rsi = RSI;
Bit64u rdi = RDI;
temp16 = read_linear_word(i->seg(), get_laddr64(i->seg(), rsi));
write_linear_word(BX_SEG_REG_ES, rdi, temp16);
if (BX_CPU_THIS_PTR get_DF()) {
rsi -= 2;
rdi -= 2;
}
else {
rsi += 2;
rdi += 2;
}
RSI = rsi;
RDI = rdi;
}
#endif
/* 32 bit opsize mode, 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSD16_YdXd(bxInstruction_c *i)
{
Bit32u temp32;
Bit16u si = SI;
Bit16u di = DI;
temp32 = read_virtual_dword_32(i->seg(), si);
write_virtual_dword_32(BX_SEG_REG_ES, di, temp32);
if (BX_CPU_THIS_PTR get_DF()) {
si -= 4;
di -= 4;
}
else {
si += 4;
di += 4;
}
SI = si;
DI = di;
}
/* 32 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSD32_YdXd(bxInstruction_c *i)
{
Bit32u temp32;
Bit32u incr = 4;
Bit32u esi = ESI;
Bit32u edi = EDI;
#if (BX_SUPPORT_REPEAT_SPEEDUPS) && (BX_DEBUGGER == 0)
/* If conditions are right, we can transfer IO to physical memory
* in a batch, rather than one instruction at a time.
*/
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event)
{
Bit32u dwordCount = FastRepMOVSD(i, i->seg(), esi, BX_SEG_REG_ES, edi, ECX);
if (dwordCount) {
// Decrement the ticks count by the number of iterations, minus
// one, since the main cpu loop will decrement one. Also,
// the count is predecremented before examined, so defintely
// don't roll it under zero.
BX_TICKN(dwordCount-1);
// Decrement eCX. Note, the main loop will decrement 1 also, so
// decrement by one less than expected, like the case above.
RCX = ECX - (dwordCount-1);
incr = dwordCount << 2; // count * 4
}
else {
temp32 = read_virtual_dword(i->seg(), esi);
write_virtual_dword(BX_SEG_REG_ES, edi, temp32);
}
}
else
#endif
{
temp32 = read_virtual_dword(i->seg(), esi);
write_virtual_dword(BX_SEG_REG_ES, edi, temp32);
}
if (BX_CPU_THIS_PTR get_DF()) {
esi -= incr;
edi -= incr;
}
else {
esi += incr;
edi += incr;
}
// zero extension of RSI/RDI
RSI = esi;
RDI = edi;
}
#if BX_SUPPORT_X86_64
/* 32 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSD64_YdXd(bxInstruction_c *i)
{
Bit32u temp32;
Bit64u rsi = RSI;
Bit64u rdi = RDI;
temp32 = read_linear_dword(i->seg(), get_laddr64(i->seg(), rsi));
write_linear_dword(BX_SEG_REG_ES, rdi, temp32);
if (BX_CPU_THIS_PTR get_DF()) {
rsi -= 4;
rdi -= 4;
}
else {
rsi += 4;
rdi += 4;
}
RSI = rsi;
RDI = rdi;
}
/* 64 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSQ32_YqXq(bxInstruction_c *i)
{
Bit64u temp64;
Bit32u esi = ESI;
Bit32u edi = EDI;
temp64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), esi));
write_linear_qword(BX_SEG_REG_ES, edi, temp64);
if (BX_CPU_THIS_PTR get_DF()) {
esi -= 8;
edi -= 8;
}
else {
esi += 8;
edi += 8;
}
// zero extension of RSI/RDI
RSI = esi;
RDI = edi;
}
/* 64 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::MOVSQ64_YqXq(bxInstruction_c *i)
{
Bit64u temp64;
Bit64u rsi = RSI;
Bit64u rdi = RDI;
temp64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), rsi));
write_linear_qword(BX_SEG_REG_ES, rdi, temp64);
if (BX_CPU_THIS_PTR get_DF()) {
rsi -= 8;
rdi -= 8;
}
else {
rsi += 8;
rdi += 8;
}
RSI = rsi;
RDI = rdi;
}
#endif
//
// REP CMPS methods
//
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_CMPSB_XbYb(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSB64_XbYb);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSB32_XbYb);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
}
else {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSB16_XbYb);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_CMPSW_XwYw(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSW64_XwYw);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSW32_XwYw);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
}
else {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSW16_XwYw);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_CMPSD_XdYd(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSD64_XdYd);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSD32_XdYd);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
}
else {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSD16_XdYd);
}
BX_NEXT_INSTR(i);
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_CMPSQ_XqYq(bxInstruction_c *i)
{
if (i->as64L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSQ64_XqYq);
}
else {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::CMPSQ32_XqYq);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI/RDI
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI);
}
BX_NEXT_INSTR(i);
}
#endif
//
// CMPSB/CMPSW/CMPSD/CMPSQ methods
//
/* 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSB16_XbYb(bxInstruction_c *i)
{
Bit8u op1_8, op2_8, diff_8;
Bit16u si = SI;
Bit16u di = DI;
op1_8 = read_virtual_byte_32(i->seg(), si);
op2_8 = read_virtual_byte_32(BX_SEG_REG_ES, di);
diff_8 = op1_8 - op2_8;
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
if (BX_CPU_THIS_PTR get_DF()) {
si--;
di--;
}
else {
si++;
di++;
}
DI = di;
SI = si;
}
/* 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSB32_XbYb(bxInstruction_c *i)
{
Bit8u op1_8, op2_8, diff_8;
Bit32u esi = ESI;
Bit32u edi = EDI;
op1_8 = read_virtual_byte(i->seg(), esi);
op2_8 = read_virtual_byte(BX_SEG_REG_ES, edi);
diff_8 = op1_8 - op2_8;
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
if (BX_CPU_THIS_PTR get_DF()) {
esi--;
edi--;
}
else {
esi++;
edi++;
}
// zero extension of RSI/RDI
RDI = edi;
RSI = esi;
}
#if BX_SUPPORT_X86_64
/* 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSB64_XbYb(bxInstruction_c *i)
{
Bit8u op1_8, op2_8, diff_8;
Bit64u rsi = RSI;
Bit64u rdi = RDI;
op1_8 = read_linear_byte(i->seg(), get_laddr64(i->seg(), rsi));
op2_8 = read_linear_byte(BX_SEG_REG_ES, rdi);
diff_8 = op1_8 - op2_8;
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
if (BX_CPU_THIS_PTR get_DF()) {
rsi--;
rdi--;
}
else {
rsi++;
rdi++;
}
RDI = rdi;
RSI = rsi;
}
#endif
/* 16 bit opsize mode, 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSW16_XwYw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, diff_16;
Bit16u si = SI;
Bit16u di = DI;
op1_16 = read_virtual_word_32(i->seg(), si);
op2_16 = read_virtual_word_32(BX_SEG_REG_ES, di);
diff_16 = op1_16 - op2_16;
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
if (BX_CPU_THIS_PTR get_DF()) {
si -= 2;
di -= 2;
}
else {
si += 2;
di += 2;
}
DI = di;
SI = si;
}
/* 16 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSW32_XwYw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, diff_16;
Bit32u esi = ESI;
Bit32u edi = EDI;
op1_16 = read_virtual_word(i->seg(), esi);
op2_16 = read_virtual_word(BX_SEG_REG_ES, edi);
diff_16 = op1_16 - op2_16;
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
if (BX_CPU_THIS_PTR get_DF()) {
esi -= 2;
edi -= 2;
}
else {
esi += 2;
edi += 2;
}
// zero extension of RSI/RDI
RDI = edi;
RSI = esi;
}
#if BX_SUPPORT_X86_64
/* 16 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSW64_XwYw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, diff_16;
Bit64u rsi = RSI;
Bit64u rdi = RDI;
op1_16 = read_linear_word(i->seg(), get_laddr64(i->seg(), rsi));
op2_16 = read_linear_word(BX_SEG_REG_ES, rdi);
diff_16 = op1_16 - op2_16;
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
if (BX_CPU_THIS_PTR get_DF()) {
rsi -= 2;
rdi -= 2;
}
else {
rsi += 2;
rdi += 2;
}
RDI = rdi;
RSI = rsi;
}
#endif
/* 32 bit opsize mode, 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSD16_XdYd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
Bit16u si = SI;
Bit16u di = DI;
op1_32 = read_virtual_dword_32(i->seg(), si);
op2_32 = read_virtual_dword_32(BX_SEG_REG_ES, di);
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
if (BX_CPU_THIS_PTR get_DF()) {
si -= 4;
di -= 4;
}
else {
si += 4;
di += 4;
}
DI = di;
SI = si;
}
/* 32 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSD32_XdYd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
Bit32u esi = ESI;
Bit32u edi = EDI;
op1_32 = read_virtual_dword(i->seg(), esi);
op2_32 = read_virtual_dword(BX_SEG_REG_ES, edi);
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
if (BX_CPU_THIS_PTR get_DF()) {
esi -= 4;
edi -= 4;
}
else {
esi += 4;
edi += 4;
}
// zero extension of RSI/RDI
RDI = edi;
RSI = esi;
}
#if BX_SUPPORT_X86_64
/* 32 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSD64_XdYd(bxInstruction_c *i)
{
Bit32u op1_32, op2_32, diff_32;
Bit64u rsi = RSI;
Bit64u rdi = RDI;
op1_32 = read_linear_dword(i->seg(), get_laddr64(i->seg(), rsi));
op2_32 = read_linear_dword(BX_SEG_REG_ES, rdi);
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
if (BX_CPU_THIS_PTR get_DF()) {
rsi -= 4;
rdi -= 4;
}
else {
rsi += 4;
rdi += 4;
}
RDI = rdi;
RSI = rsi;
}
/* 64 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSQ32_XqYq(bxInstruction_c *i)
{
Bit64u op1_64, op2_64, diff_64;
Bit32u esi = ESI;
Bit32u edi = EDI;
op1_64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), esi));
op2_64 = read_linear_qword(BX_SEG_REG_ES, edi);
diff_64 = op1_64 - op2_64;
SET_FLAGS_OSZAPC_SUB_64(op1_64, op2_64, diff_64);
if (BX_CPU_THIS_PTR get_DF()) {
esi -= 8;
edi -= 8;
}
else {
esi += 8;
edi += 8;
}
// zero extension of RSI/RDI
RDI = edi;
RSI = esi;
}
/* 64 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CMPSQ64_XqYq(bxInstruction_c *i)
{
Bit64u op1_64, op2_64, diff_64;
Bit64u rsi = RSI;
Bit64u rdi = RDI;
op1_64 = read_linear_qword(i->seg(), get_laddr64(i->seg(), rsi));
op2_64 = read_linear_qword(BX_SEG_REG_ES, rdi);
diff_64 = op1_64 - op2_64;
SET_FLAGS_OSZAPC_SUB_64(op1_64, op2_64, diff_64);
if (BX_CPU_THIS_PTR get_DF()) {
rsi -= 8;
rdi -= 8;
}
else {
rsi += 8;
rdi += 8;
}
RDI = rdi;
RSI = rsi;
}
#endif
//
// REP SCAS methods
//
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_SCASB_ALYb(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASB64_ALYb);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASB32_ALYb);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
else {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASB16_ALYb);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_SCASW_AXYw(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASW64_AXYw);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASW32_AXYw);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
else {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASW16_AXYw);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_SCASD_EAXYd(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASD64_EAXYd);
}
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASD32_EAXYd);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
else {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASD16_EAXYd);
}
BX_NEXT_INSTR(i);
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_SCASQ_RAXYq(bxInstruction_c *i)
{
if (i->as64L()) {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASQ64_RAXYq);
}
else {
BX_CPU_THIS_PTR repeat_ZF(i, &BX_CPU_C::SCASQ32_RAXYq);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
BX_NEXT_INSTR(i);
}
#endif
//
// SCASB/SCASW/SCASD/SCASQ methods
//
/* 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASB16_ALYb(bxInstruction_c *i)
{
Bit8u op1_8 = AL, op2_8, diff_8;
Bit16u di = DI;
op2_8 = read_virtual_byte_32(BX_SEG_REG_ES, di);
diff_8 = op1_8 - op2_8;
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
if (BX_CPU_THIS_PTR get_DF()) {
di--;
}
else {
di++;
}
DI = di;
}
/* 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASB32_ALYb(bxInstruction_c *i)
{
Bit8u op1_8 = AL, op2_8, diff_8;
Bit32u edi = EDI;
op2_8 = read_virtual_byte(BX_SEG_REG_ES, edi);
diff_8 = op1_8 - op2_8;
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
if (BX_CPU_THIS_PTR get_DF()) {
edi--;
}
else {
edi++;
}
// zero extension of RDI
RDI = edi;
}
#if BX_SUPPORT_X86_64
/* 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASB64_ALYb(bxInstruction_c *i)
{
Bit8u op1_8 = AL, op2_8, diff_8;
Bit64u rdi = RDI;
op2_8 = read_virtual_byte(BX_SEG_REG_ES, rdi);
diff_8 = op1_8 - op2_8;
SET_FLAGS_OSZAPC_SUB_8(op1_8, op2_8, diff_8);
if (BX_CPU_THIS_PTR get_DF()) {
rdi--;
}
else {
rdi++;
}
RDI = rdi;
}
#endif
/* 16 bit opsize mode, 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASW16_AXYw(bxInstruction_c *i)
{
Bit16u op1_16 = AX, op2_16, diff_16;
Bit16u di = DI;
op2_16 = read_virtual_word_32(BX_SEG_REG_ES, di);
diff_16 = op1_16 - op2_16;
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
if (BX_CPU_THIS_PTR get_DF()) {
di -= 2;
}
else {
di += 2;
}
DI = di;
}
/* 16 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASW32_AXYw(bxInstruction_c *i)
{
Bit16u op1_16 = AX, op2_16, diff_16;
Bit32u edi = EDI;
op2_16 = read_virtual_word(BX_SEG_REG_ES, edi);
diff_16 = op1_16 - op2_16;
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
if (BX_CPU_THIS_PTR get_DF()) {
edi -= 2;
}
else {
edi += 2;
}
// zero extension of RDI
RDI = edi;
}
#if BX_SUPPORT_X86_64
/* 16 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASW64_AXYw(bxInstruction_c *i)
{
Bit16u op1_16 = AX, op2_16, diff_16;
Bit64u rdi = RDI;
op2_16 = read_virtual_word(BX_SEG_REG_ES, rdi);
diff_16 = op1_16 - op2_16;
SET_FLAGS_OSZAPC_SUB_16(op1_16, op2_16, diff_16);
if (BX_CPU_THIS_PTR get_DF()) {
rdi -= 2;
}
else {
rdi += 2;
}
RDI = rdi;
}
#endif
/* 32 bit opsize mode, 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASD16_EAXYd(bxInstruction_c *i)
{
Bit32u op1_32 = EAX, op2_32, diff_32;
Bit16u di = DI;
op2_32 = read_virtual_dword_32(BX_SEG_REG_ES, di);
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
if (BX_CPU_THIS_PTR get_DF()) {
di -= 4;
}
else {
di += 4;
}
DI = di;
}
/* 32 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASD32_EAXYd(bxInstruction_c *i)
{
Bit32u op1_32 = EAX, op2_32, diff_32;
Bit32u edi = EDI;
op2_32 = read_virtual_dword(BX_SEG_REG_ES, edi);
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
if (BX_CPU_THIS_PTR get_DF()) {
edi -= 4;
}
else {
edi += 4;
}
// zero extension of RDI
RDI = edi;
}
#if BX_SUPPORT_X86_64
/* 32 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASD64_EAXYd(bxInstruction_c *i)
{
Bit32u op1_32 = EAX, op2_32, diff_32;
Bit64u rdi = RDI;
op2_32 = read_virtual_dword(BX_SEG_REG_ES, rdi);
diff_32 = op1_32 - op2_32;
SET_FLAGS_OSZAPC_SUB_32(op1_32, op2_32, diff_32);
if (BX_CPU_THIS_PTR get_DF()) {
rdi -= 4;
}
else {
rdi += 4;
}
RDI = rdi;
}
/* 64 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASQ32_RAXYq(bxInstruction_c *i)
{
Bit64u op1_64 = RAX, op2_64, diff_64;
Bit32u edi = EDI;
op2_64 = read_virtual_qword(BX_SEG_REG_ES, edi);
diff_64 = op1_64 - op2_64;
SET_FLAGS_OSZAPC_SUB_64(op1_64, op2_64, diff_64);
if (BX_CPU_THIS_PTR get_DF()) {
edi -= 8;
}
else {
edi += 8;
}
// zero extension of RDI
RDI = edi;
}
/* 64 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::SCASQ64_RAXYq(bxInstruction_c *i)
{
Bit64u op1_64 = RAX, op2_64, diff_64;
Bit64u rdi = RDI;
op2_64 = read_virtual_qword(BX_SEG_REG_ES, rdi);
diff_64 = op1_64 - op2_64;
SET_FLAGS_OSZAPC_SUB_64(op1_64, op2_64, diff_64);
if (BX_CPU_THIS_PTR get_DF()) {
rdi -= 8;
}
else {
rdi += 8;
}
RDI = rdi;
}
#endif
//
// REP STOS methods
//
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_STOSB_YbAL(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L())
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSB64_YbAL);
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSB32_YbAL);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSB16_YbAL);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_STOSW_YwAX(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L())
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSW64_YwAX);
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSW32_YwAX);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSW16_YwAX);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_STOSD_YdEAX(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L())
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSD64_YdEAX);
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSD32_YdEAX);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSD16_YdEAX);
}
BX_NEXT_INSTR(i);
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_STOSQ_YqRAX(bxInstruction_c *i)
{
if (i->as64L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSQ64_YqRAX);
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::STOSQ32_YqRAX);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
}
BX_NEXT_INSTR(i);
}
#endif
//
// STOSB/STOSW/STOSD/STOSQ methods
//
// 16 bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSB16_YbAL(bxInstruction_c *i)
{
Bit16u di = DI;
write_virtual_byte_32(BX_SEG_REG_ES, di, AL);
if (BX_CPU_THIS_PTR get_DF()) {
di--;
}
else {
di++;
}
DI = di;
}
// 32 bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSB32_YbAL(bxInstruction_c *i)
{
Bit32u incr = 1;
Bit32u edi = EDI;
#if (BX_SUPPORT_REPEAT_SPEEDUPS) && (BX_DEBUGGER == 0)
/* If conditions are right, we can transfer IO to physical memory
* in a batch, rather than one instruction at a time.
*/
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event)
{
Bit32u byteCount = FastRepSTOSB(i, BX_SEG_REG_ES, edi, AL, ECX);
if (byteCount) {
// Decrement the ticks count by the number of iterations, minus
// one, since the main cpu loop will decrement one. Also,
// the count is predecremented before examined, so defintely
// don't roll it under zero.
BX_TICKN(byteCount-1);
// Decrement eCX. Note, the main loop will decrement 1 also, so
// decrement by one less than expected, like the case above.
RCX = ECX - (byteCount-1);
incr = byteCount;
}
else {
write_virtual_byte(BX_SEG_REG_ES, edi, AL);
}
}
else
#endif
{
write_virtual_byte(BX_SEG_REG_ES, edi, AL);
}
if (BX_CPU_THIS_PTR get_DF()) {
edi -= incr;
}
else {
edi += incr;
}
// zero extension of RDI
RDI = edi;
}
#if BX_SUPPORT_X86_64
// 64 bit address size
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSB64_YbAL(bxInstruction_c *i)
{
Bit64u rdi = RDI;
write_linear_byte(BX_SEG_REG_ES, rdi, AL);
if (BX_CPU_THIS_PTR get_DF()) {
rdi--;
}
else {
rdi++;
}
RDI = rdi;
}
#endif
/* 16 bit opsize mode, 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSW16_YwAX(bxInstruction_c *i)
{
Bit16u di = DI;
write_virtual_word_32(BX_SEG_REG_ES, di, AX);
if (BX_CPU_THIS_PTR get_DF()) {
di -= 2;
}
else {
di += 2;
}
DI = di;
}
/* 16 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSW32_YwAX(bxInstruction_c *i)
{
Bit32u edi = EDI;
write_virtual_word(BX_SEG_REG_ES, edi, AX);
if (BX_CPU_THIS_PTR get_DF()) {
edi -= 2;
}
else {
edi += 2;
}
// zero extension of RDI
RDI = edi;
}
#if BX_SUPPORT_X86_64
/* 16 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSW64_YwAX(bxInstruction_c *i)
{
Bit64u rdi = RDI;
write_linear_word(BX_SEG_REG_ES, rdi, AX);
if (BX_CPU_THIS_PTR get_DF()) {
rdi -= 2;
}
else {
rdi += 2;
}
RDI = rdi;
}
#endif
/* 32 bit opsize mode, 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSD16_YdEAX(bxInstruction_c *i)
{
Bit16u di = DI;
write_virtual_dword_32(BX_SEG_REG_ES, di, EAX);
if (BX_CPU_THIS_PTR get_DF()) {
di -= 4;
}
else {
di += 4;
}
DI = di;
}
/* 32 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSD32_YdEAX(bxInstruction_c *i)
{
Bit32u edi = EDI;
write_virtual_dword(BX_SEG_REG_ES, edi, EAX);
if (BX_CPU_THIS_PTR get_DF()) {
edi -= 4;
}
else {
edi += 4;
}
// zero extension of RDI
RDI = edi;
}
#if BX_SUPPORT_X86_64
/* 32 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSD64_YdEAX(bxInstruction_c *i)
{
Bit64u rdi = RDI;
write_linear_dword(BX_SEG_REG_ES, rdi, EAX);
if (BX_CPU_THIS_PTR get_DF()) {
rdi -= 4;
}
else {
rdi += 4;
}
RDI = rdi;
}
/* 64 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSQ32_YqRAX(bxInstruction_c *i)
{
Bit32u edi = EDI;
write_linear_qword(BX_SEG_REG_ES, edi, RAX);
if (BX_CPU_THIS_PTR get_DF()) {
edi -= 8;
}
else {
edi += 8;
}
// zero extension of RDI
RDI = edi;
}
/* 64 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::STOSQ64_YqRAX(bxInstruction_c *i)
{
Bit64u rdi = RDI;
write_linear_qword(BX_SEG_REG_ES, rdi, RAX);
if (BX_CPU_THIS_PTR get_DF()) {
rdi -= 8;
}
else {
rdi += 8;
}
RDI = rdi;
}
#endif
//
// REP LODS methods
//
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_LODSB_ALXb(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L())
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSB64_ALXb);
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSB32_ALXb);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSB16_ALXb);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_LODSW_AXXw(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L())
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSW64_AXXw);
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSW32_AXXw);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSW16_AXXw);
}
BX_NEXT_INSTR(i);
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_LODSD_EAXXd(bxInstruction_c *i)
{
#if BX_SUPPORT_X86_64
if (i->as64L())
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSD64_EAXXd);
else
#endif
if (i->as32L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSD32_EAXXd);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSD16_EAXXd);
}
BX_NEXT_INSTR(i);
}
#if BX_SUPPORT_X86_64
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_LODSQ_RAXXq(bxInstruction_c *i)
{
if (i->as64L()) {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSQ64_RAXXq);
}
else {
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::LODSQ32_RAXXq);
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
}
BX_NEXT_INSTR(i);
}
#endif
//
// LODSB/LODSW/LODSD/LODSQ methods
//
/* 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSB16_ALXb(bxInstruction_c *i)
{
Bit16u si = SI;
AL = read_virtual_byte_32(i->seg(), si);
if (BX_CPU_THIS_PTR get_DF()) {
si--;
}
else {
si++;
}
SI = si;
}
/* 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSB32_ALXb(bxInstruction_c *i)
{
Bit32u esi = ESI;
AL = read_virtual_byte(i->seg(), esi);
if (BX_CPU_THIS_PTR get_DF()) {
esi--;
}
else {
esi++;
}
// zero extension of RSI
RSI = esi;
}
#if BX_SUPPORT_X86_64
/* 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSB64_ALXb(bxInstruction_c *i)
{
Bit64u rsi = RSI;
AL = read_linear_byte(i->seg(), get_laddr64(i->seg(), rsi));
if (BX_CPU_THIS_PTR get_DF()) {
rsi--;
}
else {
rsi++;
}
RSI = rsi;
}
#endif
/* 16 bit opsize mode, 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSW16_AXXw(bxInstruction_c *i)
{
Bit16u si = SI;
AX = read_virtual_word_32(i->seg(), si);
if (BX_CPU_THIS_PTR get_DF()) {
si -= 2;
}
else {
si += 2;
}
SI = si;
}
/* 16 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSW32_AXXw(bxInstruction_c *i)
{
Bit32u esi = ESI;
AX = read_virtual_word(i->seg(), esi);
if (BX_CPU_THIS_PTR get_DF()) {
esi -= 2;
}
else {
esi += 2;
}
// zero extension of RSI
RSI = esi;
}
#if BX_SUPPORT_X86_64
/* 16 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSW64_AXXw(bxInstruction_c *i)
{
Bit64u rsi = RSI;
AX = read_linear_word(i->seg(), get_laddr64(i->seg(), rsi));
if (BX_CPU_THIS_PTR get_DF()) {
rsi -= 2;
}
else {
rsi += 2;
}
RSI = rsi;
}
#endif
/* 32 bit opsize mode, 16 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSD16_EAXXd(bxInstruction_c *i)
{
Bit16u si = SI;
RAX = read_virtual_dword_32(i->seg(), si);
if (BX_CPU_THIS_PTR get_DF()) {
si -= 4;
}
else {
si += 4;
}
SI = si;
}
/* 32 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSD32_EAXXd(bxInstruction_c *i)
{
Bit32u esi = ESI;
RAX = read_virtual_dword(i->seg(), esi);
if (BX_CPU_THIS_PTR get_DF()) {
esi -= 4;
}
else {
esi += 4;
}
// zero extension of RSI
RSI = esi;
}
#if BX_SUPPORT_X86_64
/* 32 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSD64_EAXXd(bxInstruction_c *i)
{
Bit64u rsi = RSI;
RAX = read_linear_dword(i->seg(), get_laddr64(i->seg(), rsi));
if (BX_CPU_THIS_PTR get_DF()) {
rsi -= 4;
}
else {
rsi += 4;
}
RSI = rsi;
}
/* 64 bit opsize mode, 32 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSQ32_RAXXq(bxInstruction_c *i)
{
Bit32u esi = ESI;
RAX = read_linear_qword(i->seg(), get_laddr64(i->seg(), esi));
if (BX_CPU_THIS_PTR get_DF()) {
esi -= 8;
}
else {
esi += 8;
}
// zero extension of RSI
RSI = esi;
}
/* 64 bit opsize mode, 64 bit address size */
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LODSQ64_RAXXq(bxInstruction_c *i)
{
Bit64u rsi = RSI;
RAX = read_linear_qword(i->seg(), get_laddr64(i->seg(), rsi));
if (BX_CPU_THIS_PTR get_DF()) {
rsi -= 8;
}
else {
rsi += 8;
}
RSI = rsi;
}
#endif