892fa99c6f
- #GP when trying to set reserved bits of CR4_HI in 64-bit mode - #GP when trying to set reserved bits of EFER MSR - clear upper part of RSI/RDI when executing rep instructions with 32-bit asize even if no repeat iterations were executed (because of RCX=0 for example) - write SYSENTER_EIP_MSR and SYSENTER_ESP_MSR as 64-bit when x86_64 supported - set MSR_FMASK reset value - MSR_FMASK should be 32-bit only - check for fetch permissions when doing ITLB lookup - #GP when trying to write non-canonical address to MSR_CSTAR or MSR_LSTAR - correct repeat instructions timing - mark TSS busy in TR after it is loaded
374 lines
10 KiB
C++
374 lines
10 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: stack32.cc,v 1.51 2008-04-16 16:44:06 sshwarts Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
// Make code more tidy with a few macros.
|
|
#if BX_SUPPORT_X86_64==0
|
|
#define RSP ESP
|
|
#endif
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_EdM(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR speculative_rsp = 1;
|
|
BX_CPU_THIS_PTR prev_rsp = RSP;
|
|
|
|
Bit32u val32 = pop_32();
|
|
|
|
// Note: there is one little weirdism here. It is possible to use
|
|
// ESP in the modrm addressing. If used, the value of ESP after the
|
|
// pop is used to calculate the address.
|
|
BX_CPU_CALL_METHODR (i->ResolveModrm, (i));
|
|
|
|
write_virtual_dword(i->seg(), RMAddr(i), val32);
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_ERX(bxInstruction_c *i)
|
|
{
|
|
push_32(BX_READ_32BIT_REG(i->opcodeReg()));
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP_ERX(bxInstruction_c *i)
|
|
{
|
|
BX_WRITE_32BIT_REGZ(i->opcodeReg(), pop_32());
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_CS(bxInstruction_c *i)
|
|
{
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_DS(bxInstruction_c *i)
|
|
{
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_ES(bxInstruction_c *i)
|
|
{
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_FS(bxInstruction_c *i)
|
|
{
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_GS(bxInstruction_c *i)
|
|
{
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH32_SS(bxInstruction_c *i)
|
|
{
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_DS(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR speculative_rsp = 1;
|
|
BX_CPU_THIS_PTR prev_rsp = RSP;
|
|
|
|
Bit32u ds = pop_32();
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], (Bit16u) ds);
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_ES(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR speculative_rsp = 1;
|
|
BX_CPU_THIS_PTR prev_rsp = RSP;
|
|
|
|
Bit32u es = pop_32();
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], (Bit16u) es);
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_FS(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR speculative_rsp = 1;
|
|
BX_CPU_THIS_PTR prev_rsp = RSP;
|
|
|
|
Bit32u fs = pop_32();
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], (Bit16u) fs);
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_GS(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR speculative_rsp = 1;
|
|
BX_CPU_THIS_PTR prev_rsp = RSP;
|
|
|
|
Bit32u gs = pop_32();
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], (Bit16u) gs);
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POP32_SS(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR speculative_rsp = 1;
|
|
BX_CPU_THIS_PTR prev_rsp = RSP;
|
|
|
|
Bit32u ss = pop_32();
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], (Bit16u) ss);
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
|
|
|
// POP SS inhibits interrupts, debug exceptions and single-step
|
|
// trap exceptions until the execution boundary following the
|
|
// next instruction is reached.
|
|
// Same code as MOV_SwEw()
|
|
BX_CPU_THIS_PTR inhibit_mask |=
|
|
BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG;
|
|
BX_CPU_THIS_PTR async_event = 1;
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_Id(bxInstruction_c *i)
|
|
{
|
|
push_32(i->Id());
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSH_EdM(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
|
|
|
|
Bit32u op1_32 = read_virtual_dword(i->seg(), RMAddr(i));
|
|
|
|
push_32(op1_32);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::PUSHAD32(bxInstruction_c *i)
|
|
{
|
|
Bit32u temp_ESP = ESP;
|
|
Bit16u temp_SP = SP;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
{
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 4), EAX);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 8), ECX);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 12), EDX);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 16), EBX);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 20), temp_ESP);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 24), EBP);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 28), ESI);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP - 32), EDI);
|
|
ESP -= 32;
|
|
}
|
|
else
|
|
{
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 4), EAX);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 8), ECX);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 12), EDX);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 16), EBX);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 20), temp_ESP);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 24), EBP);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 28), ESI);
|
|
write_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP - 32), EDI);
|
|
SP -= 32;
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::POPAD32(bxInstruction_c *i)
|
|
{
|
|
Bit32u edi, esi, ebp, ebx, edx, ecx, eax;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
{
|
|
Bit32u temp_ESP = ESP;
|
|
edi = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 0));
|
|
esi = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 4));
|
|
ebp = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 8));
|
|
ebx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 16));
|
|
edx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 20));
|
|
ecx = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 24));
|
|
eax = read_virtual_dword(BX_SEG_REG_SS, (Bit32u) (temp_ESP + 28));
|
|
ESP += 32;
|
|
}
|
|
else
|
|
{
|
|
Bit16u temp_SP = SP;
|
|
edi = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 0));
|
|
esi = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 4));
|
|
ebp = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 8));
|
|
ebx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 16));
|
|
edx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 20));
|
|
ecx = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 24));
|
|
eax = read_virtual_dword(BX_SEG_REG_SS, (Bit16u) (temp_SP + 28));
|
|
SP += 32;
|
|
}
|
|
|
|
EDI = edi;
|
|
ESI = esi;
|
|
EBP = ebp;
|
|
EBX = ebx;
|
|
EDX = edx;
|
|
ECX = ecx;
|
|
EAX = eax;
|
|
}
|
|
|
|
#if BX_CPU_LEVEL >= 2
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER16_IwIb(bxInstruction_c *i)
|
|
{
|
|
unsigned ss32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b;
|
|
|
|
Bit16u imm16 = i->Iw();
|
|
Bit8u level = i->Ib2();
|
|
level &= 0x1F;
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 1;
|
|
BX_CPU_THIS_PTR prev_rsp = RSP;
|
|
|
|
Bit32u ebp; // Use temp copy in case of exception.
|
|
push_16(BP);
|
|
|
|
Bit32u frame_ptr32 = ESP;
|
|
|
|
if (ss32) {
|
|
ebp = EBP;
|
|
}
|
|
else {
|
|
ebp = BP;
|
|
}
|
|
|
|
if (level > 0) {
|
|
/* do level-1 times */
|
|
while (--level) {
|
|
Bit16u temp16;
|
|
|
|
if (ss32) {
|
|
ebp -= 2;
|
|
temp16 = read_virtual_word(BX_SEG_REG_SS, ebp);
|
|
}
|
|
else { /* 16bit stacksize */
|
|
ebp -= 2;
|
|
ebp &= 0xffff;
|
|
temp16 = read_virtual_word(BX_SEG_REG_SS, ebp);
|
|
}
|
|
push_16(temp16);
|
|
}
|
|
|
|
/* push(frame pointer) */
|
|
push_16((Bit16u)frame_ptr32);
|
|
}
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
|
|
|
if (ss32) {
|
|
EBP = frame_ptr32;
|
|
ESP -= imm16;
|
|
}
|
|
else {
|
|
BP = (Bit16u) frame_ptr32;
|
|
SP -= imm16;
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::ENTER32_IwIb(bxInstruction_c *i)
|
|
{
|
|
unsigned ss32 = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b;
|
|
|
|
Bit16u imm16 = i->Iw();
|
|
Bit8u level = i->Ib2();
|
|
level &= 0x1F;
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 1;
|
|
BX_CPU_THIS_PTR prev_rsp = RSP;
|
|
|
|
Bit32u ebp; // Use temp copy in case of exception.
|
|
push_32(EBP);
|
|
|
|
Bit32u frame_ptr32 = ESP;
|
|
|
|
if (ss32) {
|
|
ebp = EBP;
|
|
}
|
|
else {
|
|
ebp = BP;
|
|
}
|
|
|
|
if (level > 0) {
|
|
/* do level-1 times */
|
|
while (--level) {
|
|
Bit32u temp32;
|
|
|
|
if (ss32) {
|
|
ebp -= 4;
|
|
temp32 = read_virtual_dword(BX_SEG_REG_SS, ebp);
|
|
}
|
|
else { /* 16bit stacksize */
|
|
ebp -= 4;
|
|
ebp &= 0xffff;
|
|
temp32 = read_virtual_dword(BX_SEG_REG_SS, ebp);
|
|
}
|
|
push_32(temp32);
|
|
}
|
|
|
|
/* push(frame pointer) */
|
|
push_32(frame_ptr32);
|
|
}
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
|
|
|
if (ss32) {
|
|
EBP = frame_ptr32;
|
|
ESP -= imm16;
|
|
}
|
|
else {
|
|
BP = (Bit16u) frame_ptr32;
|
|
SP -= imm16;
|
|
}
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::LEAVE(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR speculative_rsp = 1;
|
|
BX_CPU_THIS_PTR prev_rsp = RSP;
|
|
|
|
// delete frame
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
ESP = EBP;
|
|
else
|
|
SP = BP;
|
|
|
|
// restore frame pointer
|
|
if (i->os32L())
|
|
EBP = pop_32();
|
|
else
|
|
BP = pop_16();
|
|
|
|
BX_CPU_THIS_PTR speculative_rsp = 0;
|
|
}
|
|
#endif
|