3775 lines
135 KiB
C++
Executable File
3775 lines
135 KiB
C++
Executable File
/*============================================================================
|
|
This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
|
|
Package, Release 2b.
|
|
|
|
Written by John R. Hauser. This work was made possible in part by the
|
|
International Computer Science Institute, located at Suite 600, 1947 Center
|
|
Street, Berkeley, California 94704. Funding was partially provided by the
|
|
National Science Foundation under grant MIP-9311980. The original version
|
|
of this code was written as part of a project to build a fixed-point vector
|
|
processor in collaboration with the University of California at Berkeley,
|
|
overseen by Profs. Nelson Morgan and John Wawrzynek. More information
|
|
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
|
|
arithmetic/SoftFloat.html'.
|
|
|
|
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
|
|
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
|
|
RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
|
|
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
|
|
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
|
|
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
|
|
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
|
|
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
|
|
|
|
Derivative works are acceptable, even for commercial purposes, so long as
|
|
(1) the source code for the derivative work includes prominent notice that
|
|
the work is derivative, and (2) the source code includes prominent notice with
|
|
these four paragraphs for those parts of this code that are retained.
|
|
=============================================================================*/
|
|
|
|
/*============================================================================
|
|
* Adapted for Bochs (x86 achitecture simulator) by
|
|
* Stanislav Shwartsman (gate@fidonet.org.il)
|
|
* ==========================================================================*/
|
|
|
|
#include "softfloat.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Primitive arithmetic functions, including multi-word arithmetic, and
|
|
| division and square root approximations. (Can be specialized to target if
|
|
| desired.)
|
|
*----------------------------------------------------------------------------*/
|
|
#include "softfloat-macros.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Functions and definitions to determine: (1) whether tininess for underflow
|
|
| is detected before or after rounding by default, (2) what (if anything)
|
|
| happens when exceptions are raised, (3) how signaling NaNs are distinguished
|
|
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
|
|
| are propagated from function inputs to output. These details are target-
|
|
| specific.
|
|
*----------------------------------------------------------------------------*/
|
|
#include "softfloat-specialize.h"
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
|
| and 7, and returns the properly rounded 32-bit integer corresponding to the
|
|
| input. If `zSign' is 1, the input is negated before being converted to an
|
|
| integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point input
|
|
| is simply rounded to an integer, with the inexact exception raised if the
|
|
| input cannot be represented exactly as an integer. However, if the fixed-
|
|
| point input is too large, the invalid exception is raised and the largest
|
|
| positive or negative integer is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static Bit32s roundAndPackInt32(flag zSign, Bit64u absZ, float_status_t &status)
|
|
{
|
|
int roundingMode;
|
|
Bit8s roundIncrement, roundBits;
|
|
Bit32s z;
|
|
|
|
roundingMode = get_float_rounding_mode(status);
|
|
int roundNearestEven = (roundingMode == float_round_nearest_even);
|
|
roundIncrement = 0x40;
|
|
if (! roundNearestEven) {
|
|
if (roundingMode == float_round_to_zero) {
|
|
roundIncrement = 0;
|
|
}
|
|
else {
|
|
roundIncrement = 0x7F;
|
|
if (zSign) {
|
|
if (roundingMode == float_round_up) roundIncrement = 0;
|
|
}
|
|
else {
|
|
if (roundingMode == float_round_down) roundIncrement = 0;
|
|
}
|
|
}
|
|
}
|
|
roundBits = absZ & 0x7F;
|
|
absZ = (absZ + roundIncrement)>>7;
|
|
absZ &= ~(((roundBits ^ 0x40) == 0) & roundNearestEven);
|
|
z = absZ;
|
|
if (zSign) z = -z;
|
|
if ((absZ>>32) || (z && ((z < 0) ^ zSign))) {
|
|
float_raise(status, float_flag_invalid);
|
|
return zSign ? (Bit32s) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if (roundBits) float_raise(status, float_flag_inexact);
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes the 128-bit fixed-point value formed by concatenating `absZ0' and
|
|
| `absZ1', with binary point between bits 63 and 64 (between the input words),
|
|
| and returns the properly rounded 64-bit integer corresponding to the input.
|
|
| If `zSign' is 1, the input is negated before being converted to an integer.
|
|
| Ordinarily, the fixed-point input is simply rounded to an integer, with
|
|
| the inexact exception raised if the input cannot be represented exactly as
|
|
| an integer. However, if the fixed-point input is too large, the invalid
|
|
| exception is raised and the largest positive or negative integer is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static Bit64s roundAndPackInt64(flag zSign, Bit64u absZ0, Bit64u absZ1, float_status_t &status)
|
|
{
|
|
int roundingMode;
|
|
flag roundNearestEven, increment;
|
|
Bit64s z;
|
|
|
|
roundingMode = get_float_rounding_mode(status);
|
|
roundNearestEven = (roundingMode == float_round_nearest_even);
|
|
increment = ((Bit64s) absZ1 < 0);
|
|
if (! roundNearestEven) {
|
|
if (roundingMode == float_round_to_zero) increment = 0;
|
|
else {
|
|
if (zSign) {
|
|
increment = (roundingMode == float_round_down) && absZ1;
|
|
}
|
|
else {
|
|
increment = (roundingMode == float_round_up) && absZ1;
|
|
}
|
|
}
|
|
}
|
|
if (increment) {
|
|
++absZ0;
|
|
if (absZ0 == 0) goto overflow;
|
|
absZ0 &= ~(((Bit64u) (absZ1<<1) == 0) & roundNearestEven);
|
|
}
|
|
z = absZ0;
|
|
if (zSign) z = -z;
|
|
if (z && ((z < 0) ^ zSign)) {
|
|
overflow:
|
|
float_raise(status, float_flag_invalid);
|
|
return
|
|
zSign ? (Bit64s) BX_CONST64(0x8000000000000000) :
|
|
BX_CONST64(0x7FFFFFFFFFFFFFFF);
|
|
}
|
|
if (absZ1) float_raise(status, float_flag_inexact);
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Determine single-precision floating-point number class
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float_class_t float32_class(float32 a)
|
|
{
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
flag aSign = extractFloat32Sign(a);
|
|
|
|
if(aExp == 0xFF) {
|
|
if (aSig == 0)
|
|
return (aSign) ? float_negative_inf : float_positive_inf;
|
|
|
|
return float_NaN;
|
|
}
|
|
|
|
if(aExp == 0) {
|
|
if (aSig == 0)
|
|
return (aSign) ? float_negative_zero : float_positive_zero;
|
|
|
|
return float_denormal;
|
|
}
|
|
|
|
return float_normalized;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal single-precision floating-point value represented
|
|
| by the denormalized significand `aSig'. The normalized exponent and
|
|
| significand are stored at the locations pointed to by `zExpPtr' and
|
|
| `zSigPtr', respectively.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
normalizeFloat32Subnormal(Bit32u aSig, Bit16s *zExpPtr, Bit32u *zSigPtr)
|
|
{
|
|
int shiftCount = countLeadingZeros32(aSig) - 8;
|
|
*zSigPtr = aSig<<shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper single-precision floating-
|
|
| point value corresponding to the abstract input. Ordinarily, the abstract
|
|
| value is simply rounded and packed into the single-precision format, with
|
|
| the inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded to
|
|
| a subnormal number, and the underflow and inexact exceptions are raised if
|
|
| the abstract input cannot be represented exactly as a subnormal single-
|
|
| precision floating-point number.
|
|
| The input significand `zSig' has its binary point between bits 30
|
|
| and 29, which is 7 bits to the left of the usual location. This shifted
|
|
| significand must be normalized or smaller. If `zSig' is not normalized,
|
|
| `zExp' must be 0; in that case, the result returned is a subnormal number,
|
|
| and it must not require rounding. In the usual case that `zSig' is
|
|
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
|
| The handling of underflow and overflow follows the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 roundAndPackFloat32(flag zSign, Bit16s zExp, Bit32u zSig, float_status_t &status)
|
|
{
|
|
int roundingMode;
|
|
Bit32s roundIncrement, roundBits, roundMask;
|
|
|
|
roundingMode = get_float_rounding_mode(status);
|
|
int roundNearestEven = (roundingMode == float_round_nearest_even);
|
|
roundIncrement = 0x40;
|
|
roundMask = 0x7F;
|
|
|
|
if (! roundNearestEven) {
|
|
if (roundingMode == float_round_to_zero) {
|
|
roundIncrement = 0;
|
|
}
|
|
else {
|
|
roundIncrement = roundMask;
|
|
if (zSign) {
|
|
if (roundingMode == float_round_up) roundIncrement = 0;
|
|
}
|
|
else {
|
|
if (roundingMode == float_round_down) roundIncrement = 0;
|
|
}
|
|
}
|
|
}
|
|
roundBits = zSig & roundMask;
|
|
if (0xFD <= (Bit16u) zExp) {
|
|
if ((0xFD < zExp)
|
|
|| ((zExp == 0xFD)
|
|
&& ((Bit32s) (zSig + roundIncrement) < 0)))
|
|
{
|
|
float_raise(status, float_flag_overflow | float_flag_inexact);
|
|
return packFloat32(zSign, 0xFF, 0) - (roundIncrement == 0);
|
|
}
|
|
if (zExp < 0) {
|
|
int isTiny =
|
|
(status.float_detect_tininess == float_tininess_before_rounding)
|
|
|| (zExp < -1)
|
|
|| (zSig + roundIncrement < 0x80000000);
|
|
shift32RightJamming(zSig, -zExp, &zSig);
|
|
zExp = 0;
|
|
roundBits = zSig & roundMask;
|
|
if (isTiny && roundBits) {
|
|
float_raise(status, float_flag_underflow);
|
|
if(get_flush_underflow_to_zero(status)) {
|
|
float_raise(status, float_flag_inexact);
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (roundBits) float_raise(status, float_flag_inexact);
|
|
zSig = ((zSig + roundIncrement) & ~roundMask) >> 7;
|
|
zSig &= ~(((roundBits ^ 0x40) == 0) & roundNearestEven);
|
|
if (zSig == 0) zExp = 0;
|
|
return packFloat32(zSign, zExp, zSig);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper single-precision floating-
|
|
| point value corresponding to the abstract input. This routine is just like
|
|
| `roundAndPackFloat32' except that `zSig' does not have to be normalized.
|
|
| Bit 31 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
|
| floating-point exponent.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32
|
|
normalizeRoundAndPackFloat32(flag zSign, Bit16s zExp, Bit32u zSig, float_status_t &status)
|
|
{
|
|
int shiftCount = countLeadingZeros32(zSig) - 1;
|
|
return roundAndPackFloat32(zSign, zExp - shiftCount, zSig<<shiftCount, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Determine double-precision floating-point number class
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float_class_t float64_class(float64 a)
|
|
{
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
Bit64u aSig = extractFloat64Frac(a);
|
|
flag aSign = extractFloat64Sign(a);
|
|
|
|
if(aExp == 0x7FF) {
|
|
if (aSig == 0)
|
|
return (aSign) ? float_negative_inf : float_positive_inf;
|
|
|
|
return float_NaN;
|
|
}
|
|
|
|
if(aExp == 0) {
|
|
if (aSig == 0)
|
|
return (aSign) ? float_negative_zero : float_positive_zero;
|
|
|
|
return float_denormal;
|
|
}
|
|
|
|
return float_normalized;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal double-precision floating-point value represented
|
|
| by the denormalized significand `aSig'. The normalized exponent and
|
|
| significand are stored at the locations pointed to by `zExpPtr' and
|
|
| `zSigPtr', respectively.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
normalizeFloat64Subnormal(Bit64u aSig, Bit16s *zExpPtr, Bit64u *zSigPtr)
|
|
{
|
|
int shiftCount = countLeadingZeros64(aSig) - 11;
|
|
*zSigPtr = aSig<<shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper double-precision floating-
|
|
| point value corresponding to the abstract input. Ordinarily, the abstract
|
|
| value is simply rounded and packed into the double-precision format, with
|
|
| the inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded
|
|
| to a subnormal number, and the underflow and inexact exceptions are raised
|
|
| if the abstract input cannot be represented exactly as a subnormal double-
|
|
| precision floating-point number.
|
|
| The input significand `zSig' has its binary point between bits 62
|
|
| and 61, which is 10 bits to the left of the usual location. This shifted
|
|
| significand must be normalized or smaller. If `zSig' is not normalized,
|
|
| `zExp' must be 0; in that case, the result returned is a subnormal number,
|
|
| and it must not require rounding. In the usual case that `zSig' is
|
|
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent.
|
|
| The handling of underflow and overflow follows the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 roundAndPackFloat64(flag zSign, Bit16s zExp, Bit64u zSig, float_status_t &status)
|
|
{
|
|
int roundingMode;
|
|
Bit16s roundIncrement, roundBits;
|
|
|
|
roundingMode = get_float_rounding_mode(status);
|
|
int roundNearestEven = (roundingMode == float_round_nearest_even);
|
|
roundIncrement = 0x200;
|
|
if (! roundNearestEven) {
|
|
if (roundingMode == float_round_to_zero) roundIncrement = 0;
|
|
else {
|
|
roundIncrement = 0x3FF;
|
|
if (zSign) {
|
|
if (roundingMode == float_round_up) roundIncrement = 0;
|
|
}
|
|
else {
|
|
if (roundingMode == float_round_down) roundIncrement = 0;
|
|
}
|
|
}
|
|
}
|
|
roundBits = zSig & 0x3FF;
|
|
if (0x7FD <= (Bit16u) zExp) {
|
|
if ((0x7FD < zExp)
|
|
|| ((zExp == 0x7FD)
|
|
&& ((Bit64s) (zSig + roundIncrement) < 0)))
|
|
{
|
|
float_raise(status, float_flag_overflow | float_flag_inexact);
|
|
return packFloat64(zSign, 0x7FF, 0) - (roundIncrement == 0);
|
|
}
|
|
if (zExp < 0) {
|
|
int isTiny =
|
|
(status.float_detect_tininess == float_tininess_before_rounding)
|
|
|| (zExp < -1)
|
|
|| (zSig + roundIncrement < BX_CONST64(0x8000000000000000));
|
|
shift64RightJamming(zSig, -zExp, &zSig);
|
|
zExp = 0;
|
|
roundBits = zSig & 0x3FF;
|
|
if (isTiny && roundBits) {
|
|
float_raise(status, float_flag_underflow);
|
|
if(get_flush_underflow_to_zero(status)) {
|
|
float_raise(status, float_flag_inexact);
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (roundBits) float_raise(status, float_flag_inexact);
|
|
zSig = (zSig + roundIncrement)>>10;
|
|
zSig &= ~(((roundBits ^ 0x200) == 0) & roundNearestEven);
|
|
if (zSig == 0) zExp = 0;
|
|
return packFloat64(zSign, zExp, zSig);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and significand `zSig', and returns the proper double-precision floating-
|
|
| point value corresponding to the abstract input. This routine is just like
|
|
| `roundAndPackFloat64' except that `zSig' does not have to be normalized.
|
|
| Bit 63 of `zSig' must be zero, and `zExp' must be 1 less than the ``true''
|
|
| floating-point exponent.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64
|
|
normalizeRoundAndPackFloat64(flag zSign, Bit16s zExp, Bit64u zSig, float_status_t &status)
|
|
{
|
|
int shiftCount = countLeadingZeros64(zSig) - 1;
|
|
return roundAndPackFloat64(zSign, zExp - shiftCount, zSig<<shiftCount, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a'
|
|
| to the single-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 int32_to_float32(Bit32s a, float_status_t &status)
|
|
{
|
|
if (a == 0) return 0;
|
|
if (a == (Bit32s) 0x80000000) return packFloat32(1, 0x9E, 0);
|
|
flag zSign = (a < 0);
|
|
return normalizeRoundAndPackFloat32(zSign, 0x9C, zSign ? -a : a, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a'
|
|
| to the double-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 int32_to_float64(Bit32s a)
|
|
{
|
|
if (a == 0) return 0;
|
|
flag zSign = (a < 0);
|
|
Bit32u absA = zSign ? -a : a;
|
|
int shiftCount = countLeadingZeros32(absA) + 21;
|
|
Bit64u zSig = absA;
|
|
return packFloat64(zSign, 0x432 - shiftCount, zSig<<shiftCount);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a'
|
|
| to the single-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 int64_to_float32(Bit64s a, float_status_t &status)
|
|
{
|
|
Bit64u absA;
|
|
int shiftCount;
|
|
Bit32u zSig;
|
|
|
|
if (a == 0) return 0;
|
|
flag zSign = (a < 0);
|
|
absA = zSign ? -a : a;
|
|
shiftCount = countLeadingZeros64(absA) - 40;
|
|
if (0 <= shiftCount) {
|
|
return packFloat32(zSign, 0x95 - shiftCount, absA<<shiftCount);
|
|
}
|
|
else {
|
|
shiftCount += 7;
|
|
if (shiftCount < 0) {
|
|
shift64RightJamming(absA, -shiftCount, &absA);
|
|
}
|
|
else {
|
|
absA <<= shiftCount;
|
|
}
|
|
return roundAndPackFloat32(zSign, 0x9C - shiftCount, absA, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a'
|
|
| to the double-precision floating-point format. The conversion is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 int64_to_float64(Bit64s a, float_status_t &status)
|
|
{
|
|
if (a == 0) return 0;
|
|
if (a == (Bit64s) BX_CONST64(0x8000000000000000)) {
|
|
return packFloat64(1, 0x43E, 0);
|
|
}
|
|
flag zSign = (a < 0);
|
|
return normalizeRoundAndPackFloat64(zSign, 0x43C, zSign ? -a : a, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s float32_to_int32(float32 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit32u aSig;
|
|
Bit64u aSig64;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
if ((aExp == 0xFF) && aSig) aSign = 0;
|
|
if (aExp) aSig |= 0x00800000;
|
|
int shiftCount = 0xAF - aExp;
|
|
aSig64 = aSig;
|
|
aSig64 <<= 32;
|
|
if (0 < shiftCount) shift64RightJamming(aSig64, shiftCount, &aSig64);
|
|
return roundAndPackInt32(aSign, aSig64, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
| the conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s float32_to_int32_round_to_zero(float32 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit32u aSig;
|
|
Bit32s z;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
int shiftCount = aExp - 0x9E;
|
|
if (0 <= shiftCount) {
|
|
if (a != 0xCF000000) {
|
|
float_raise(status, float_flag_invalid);
|
|
if (! aSign || ((aExp == 0xFF) && aSig)) return 0x7FFFFFFF;
|
|
}
|
|
return (Bit32s) 0x80000000;
|
|
}
|
|
else if (aExp <= 0x7E) {
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
aSig = (aSig | 0x00800000)<<8;
|
|
z = aSig>>(-shiftCount);
|
|
if ((Bit32u) (aSig<<(shiftCount & 31))) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
if (aSign) z = -z;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s float32_to_int64(float32 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit32u aSig;
|
|
Bit64u aSig64, aSigExtra;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
int shiftCount = 0xBE - aExp;
|
|
if (shiftCount < 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
if (! aSign || ((aExp == 0xFF) && aSig)) {
|
|
return BX_CONST64(0x7FFFFFFFFFFFFFFF);
|
|
}
|
|
return (Bit64s) BX_CONST64(0x8000000000000000);
|
|
}
|
|
if (aExp) aSig |= 0x00800000;
|
|
aSig64 = aSig;
|
|
aSig64 <<= 40;
|
|
shift64ExtraRightJamming(aSig64, 0, shiftCount, &aSig64, &aSigExtra);
|
|
return roundAndPackInt64(aSign, aSig64, aSigExtra, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero. If
|
|
| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
|
|
| conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s float32_to_int64_round_to_zero(float32 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit32u aSig;
|
|
Bit64u aSig64;
|
|
Bit64s z;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
int shiftCount = aExp - 0xBE;
|
|
if (0 <= shiftCount) {
|
|
if (a != 0xDF000000) {
|
|
float_raise(status, float_flag_invalid);
|
|
if (! aSign || ((aExp == 0xFF) && aSig)) {
|
|
return BX_CONST64(0x7FFFFFFFFFFFFFFF);
|
|
}
|
|
}
|
|
return (Bit64s) BX_CONST64(0x8000000000000000);
|
|
}
|
|
else if (aExp <= 0x7E) {
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
aSig64 = aSig | 0x00800000;
|
|
aSig64 <<= 40;
|
|
z = aSig64>>(-shiftCount);
|
|
if ((Bit64u) (aSig64<<(shiftCount & 63))) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
if (aSign) z = -z;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the double-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float32_to_float64(float32 a, float_status_t &status)
|
|
{
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
flag aSign = extractFloat32Sign(a);
|
|
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return commonNaNToFloat64(float32ToCommonNaN(a, status));
|
|
return packFloat64(aSign, 0x7FF, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloat64(aSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
--aExp;
|
|
}
|
|
return packFloat64(aSign, aExp + 0x380, ((Bit64u) aSig)<<29);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the single-precision floating-point value `a' to an integer, and
|
|
| returns the result as a single-precision floating-point value. The
|
|
| operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_round_to_int(float32 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit32u lastBitMask, roundBitsMask;
|
|
int roundingMode;
|
|
float32 z;
|
|
|
|
aExp = extractFloat32Exp(a);
|
|
if (0x96 <= aExp) {
|
|
if ((aExp == 0xFF) && extractFloat32Frac(a)) {
|
|
return propagateFloat32NaN(a, a, status);
|
|
}
|
|
return a;
|
|
}
|
|
if (aExp <= 0x7E) {
|
|
if ((Bit32u) (a<<1) == 0) return a;
|
|
float_raise(status, float_flag_inexact);
|
|
aSign = extractFloat32Sign(a);
|
|
switch (get_float_rounding_mode(status)) {
|
|
case float_round_nearest_even:
|
|
if ((aExp == 0x7E) && extractFloat32Frac(a)) {
|
|
return packFloat32(aSign, 0x7F, 0);
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return aSign ? 0xBF800000 : 0;
|
|
case float_round_up:
|
|
return aSign ? 0x80000000 : 0x3F800000;
|
|
}
|
|
return packFloat32(aSign, 0, 0);
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x96 - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = a;
|
|
roundingMode = get_float_rounding_mode(status);
|
|
if (roundingMode == float_round_nearest_even) {
|
|
z += lastBitMask>>1;
|
|
if ((z & roundBitsMask) == 0) z &= ~lastBitMask;
|
|
}
|
|
else if (roundingMode != float_round_to_zero) {
|
|
if (extractFloat32Sign(z) ^ (roundingMode == float_round_up)) {
|
|
z += roundBitsMask;
|
|
}
|
|
}
|
|
z &= ~roundBitsMask;
|
|
if (z != a) float_raise(status, float_flag_inexact);
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the single-precision
|
|
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
| before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 addFloat32Sigs(float32 a, float32 b, flag zSign, float_status_t &status)
|
|
{
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit32u aSig, bSig, zSig;
|
|
Bit16s expDiff;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 6;
|
|
bSig <<= 6;
|
|
|
|
if (0 < expDiff) {
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, b, status);
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if ((aExp == 0) && aSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig) float_raise(status, float_flag_denormal);
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig |= 0x20000000;
|
|
}
|
|
shift32RightJamming(bSig, expDiff, &bSig);
|
|
zExp = aExp;
|
|
}
|
|
else if (expDiff < 0) {
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0xFF, 0);
|
|
}
|
|
if ((bExp == 0) && bSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig) float_raise(status, float_flag_denormal);
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig |= 0x20000000;
|
|
}
|
|
shift32RightJamming(aSig, -expDiff, &aSig);
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if (aExp == 0xFF) {
|
|
if (aSig | bSig) return propagateFloat32NaN(a, b, status);
|
|
return a;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig | bSig) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0, (aSig + bSig)>>6);
|
|
}
|
|
zSig = 0x40000000 + aSig + bSig;
|
|
zExp = aExp;
|
|
goto roundAndPack;
|
|
}
|
|
aSig |= 0x20000000;
|
|
zSig = (aSig + bSig)<<1;
|
|
--zExp;
|
|
if ((Bit32s) zSig < 0) {
|
|
zSig = aSig + bSig;
|
|
++zExp;
|
|
}
|
|
roundAndPack:
|
|
return roundAndPackFloat32(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the single-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float32 subFloat32Sigs(float32 a, float32 b, flag zSign, float_status_t &status)
|
|
{
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit32u aSig, bSig, zSig;
|
|
Bit16s expDiff;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 7;
|
|
bSig <<= 7;
|
|
if (0 < expDiff) goto aExpBigger;
|
|
if (expDiff < 0) goto bExpBigger;
|
|
if (aExp == 0xFF) {
|
|
if (aSig | bSig) return propagateFloat32NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig | bSig) float_raise(status, float_flag_denormal);
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if (bSig < aSig) goto aBigger;
|
|
if (aSig < bSig) goto bBigger;
|
|
return packFloat32(get_float_rounding_mode(status) == float_round_down, 0, 0);
|
|
bExpBigger:
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign ^ 1, 0xFF, 0);
|
|
}
|
|
if ((bExp == 0) && bSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig) float_raise(status, float_flag_denormal);
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig |= 0x40000000;
|
|
}
|
|
shift32RightJamming(aSig, -expDiff, &aSig);
|
|
bSig |= 0x40000000;
|
|
bBigger:
|
|
zSig = bSig - aSig;
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, b, status);
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if ((aExp == 0) && aSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig) float_raise(status, float_flag_denormal);
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig |= 0x40000000;
|
|
}
|
|
shift32RightJamming(bSig, expDiff, &bSig);
|
|
aSig |= 0x40000000;
|
|
aBigger:
|
|
zSig = aSig - bSig;
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the single-precision floating-point values `a'
|
|
| and `b'. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_add(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
flag aSign = extractFloat32Sign(a);
|
|
flag bSign = extractFloat32Sign(b);
|
|
|
|
if (aSign == bSign) {
|
|
return addFloat32Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return subFloat32Sigs(a, b, aSign, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the single-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_sub(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
flag aSign = extractFloat32Sign(a);
|
|
flag bSign = extractFloat32Sign(b);
|
|
|
|
if (aSign == bSign) {
|
|
return subFloat32Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return addFloat32Sigs(a, b, aSign, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the single-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_mul(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit32u aSig, bSig;
|
|
Bit64u zSig64;
|
|
Bit32u zSig;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
bSign = extractFloat32Sign(b);
|
|
zSign = aSign ^ bSign;
|
|
if (aExp == 0xFF) {
|
|
if (aSig || ((bExp == 0xFF) && bSig)) {
|
|
return propagateFloat32NaN(a, b, status);
|
|
}
|
|
if ((bExp | bSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0xFF, 0);
|
|
}
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
if ((aExp | aSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0xFF, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) return packFloat32(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
zExp = aExp + bExp - 0x7F;
|
|
aSig = (aSig | 0x00800000)<<7;
|
|
bSig = (bSig | 0x00800000)<<8;
|
|
shift64RightJamming(((Bit64u) aSig) * bSig, 32, &zSig64);
|
|
zSig = zSig64;
|
|
if (0 <= (Bit32s) (zSig<<1)) {
|
|
zSig <<= 1;
|
|
--zExp;
|
|
}
|
|
return roundAndPackFloat32(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the single-precision floating-point value `a'
|
|
| by the corresponding value `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_div(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit32u aSig, bSig, zSig;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
bSign = extractFloat32Sign(b);
|
|
zSign = aSign ^ bSign;
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, b, status);
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0xFF, 0);
|
|
}
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat32(zSign, 0, 0);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) {
|
|
if ((aExp | aSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
float_raise(status, float_flag_divbyzero);
|
|
return packFloat32(zSign, 0xFF, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloat32(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
zExp = aExp - bExp + 0x7D;
|
|
aSig = (aSig | 0x00800000)<<7;
|
|
bSig = (bSig | 0x00800000)<<8;
|
|
if (bSig <= (aSig + aSig)) {
|
|
aSig >>= 1;
|
|
++zExp;
|
|
}
|
|
zSig = (((Bit64u) aSig)<<32) / bSig;
|
|
if ((zSig & 0x3F) == 0) {
|
|
zSig |= ((Bit64u) bSig * zSig != ((Bit64u) aSig)<<32);
|
|
}
|
|
return roundAndPackFloat32(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the single-precision floating-point value `a'
|
|
| with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_rem(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
Bit16s aExp, bExp, expDiff;
|
|
Bit32u aSig, bSig;
|
|
Bit32u q;
|
|
Bit64u aSig64, bSig64, q64;
|
|
Bit32u alternateASig;
|
|
Bit32s sigMean;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
bSig = extractFloat32Frac(b);
|
|
bExp = extractFloat32Exp(b);
|
|
bSign = extractFloat32Sign(b);
|
|
if (aExp == 0xFF) {
|
|
if (aSig || ((bExp == 0xFF) && bSig)) {
|
|
return propagateFloat32NaN(a, b, status);
|
|
}
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (bExp == 0xFF) {
|
|
if (bSig) return propagateFloat32NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloat32(aSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
expDiff = aExp - bExp;
|
|
aSig |= 0x00800000;
|
|
bSig |= 0x00800000;
|
|
if (expDiff < 32) {
|
|
aSig <<= 8;
|
|
bSig <<= 8;
|
|
if (expDiff < 0) {
|
|
if (expDiff < -1) return a;
|
|
aSig >>= 1;
|
|
}
|
|
q = (bSig <= aSig);
|
|
if (q) aSig -= bSig;
|
|
if (0 < expDiff) {
|
|
q = (((Bit64u) aSig)<<32) / bSig;
|
|
q >>= 32 - expDiff;
|
|
bSig >>= 2;
|
|
aSig = ((aSig>>1)<<(expDiff - 1)) - bSig * q;
|
|
}
|
|
else {
|
|
aSig >>= 2;
|
|
bSig >>= 2;
|
|
}
|
|
}
|
|
else {
|
|
if (bSig <= aSig) aSig -= bSig;
|
|
aSig64 = ((Bit64u) aSig)<<40;
|
|
bSig64 = ((Bit64u) bSig)<<40;
|
|
expDiff -= 64;
|
|
while (0 < expDiff) {
|
|
q64 = estimateDiv128To64(aSig64, 0, bSig64);
|
|
q64 = (2 < q64) ? q64 - 2 : 0;
|
|
aSig64 = -((bSig * q64)<<38);
|
|
expDiff -= 62;
|
|
}
|
|
expDiff += 64;
|
|
q64 = estimateDiv128To64(aSig64, 0, bSig64);
|
|
q64 = (2 < q64) ? q64 - 2 : 0;
|
|
q = q64>>(64 - expDiff);
|
|
bSig <<= 6;
|
|
aSig = ((aSig64>>33)<<(expDiff - 1)) - bSig * q;
|
|
}
|
|
do {
|
|
alternateASig = aSig;
|
|
++q;
|
|
aSig -= bSig;
|
|
} while (0 <= (Bit32s) aSig);
|
|
sigMean = aSig + alternateASig;
|
|
if ((sigMean < 0) || ((sigMean == 0) && (q & 1))) {
|
|
aSig = alternateASig;
|
|
}
|
|
zSign = ((Bit32s) aSig < 0);
|
|
if (zSign) aSig = -aSig;
|
|
return normalizeRoundAndPackFloat32(aSign ^ zSign, bExp, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the single-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float32_sqrt(float32 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp, zExp;
|
|
Bit32u aSig, zSig;
|
|
Bit64u rem, term;
|
|
|
|
aSig = extractFloat32Frac(a);
|
|
aExp = extractFloat32Exp(a);
|
|
aSign = extractFloat32Sign(a);
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return propagateFloat32NaN(a, 0, status);
|
|
if (! aSign) return a;
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (aSign) {
|
|
if ((aExp | aSig) == 0) return a;
|
|
float_raise(status, float_flag_invalid);
|
|
return float32_default_nan;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return 0;
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
zExp = ((aExp - 0x7F)>>1) + 0x7E;
|
|
aSig = (aSig | 0x00800000)<<8;
|
|
zSig = estimateSqrt32(aExp, aSig) + 2;
|
|
if ((zSig & 0x7F) <= 5) {
|
|
if (zSig < 2) {
|
|
zSig = 0x7FFFFFFF;
|
|
goto roundAndPack;
|
|
}
|
|
aSig >>= aExp & 1;
|
|
term = ((Bit64u) zSig) * zSig;
|
|
rem = (((Bit64u) aSig)<<32) - term;
|
|
while ((Bit64s) rem < 0) {
|
|
--zSig;
|
|
rem += (((Bit64u) zSig)<<1) | 1;
|
|
}
|
|
zSig |= (rem != 0);
|
|
}
|
|
shift32RightJamming(zSig, 1, &zSig);
|
|
roundAndPack:
|
|
return roundAndPackFloat32(0, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is equal to
|
|
| the corresponding value `b', and 0 otherwise. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_eq(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float32_class(a);
|
|
float_class_t bClass = float32_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
{
|
|
if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
return (a == b) || ((Bit32u) ((a | b)<<1) == 0);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
| or equal to the corresponding value `b', and 0 otherwise. The comparison
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_le(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float32_class(a);
|
|
float_class_t bClass = float32_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN) {
|
|
float_raise(status, float_flag_invalid);
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
flag aSign = extractFloat32Sign(a);
|
|
flag bSign = extractFloat32Sign(b);
|
|
if (aSign != bSign) return aSign || ((Bit32u) ((a | b)<<1) == 0);
|
|
return (a == b) || (aSign ^ (a < b));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_lt(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float32_class(a);
|
|
float_class_t bClass = float32_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN) {
|
|
float_raise(status, float_flag_invalid);
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
flag aSign = extractFloat32Sign(a);
|
|
flag bSign = extractFloat32Sign(b);
|
|
if (aSign != bSign) return aSign && ((Bit32u) ((a | b)<<1) != 0);
|
|
return (a != b) && (aSign ^ (a < b));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is equal to
|
|
| the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_eq_signaling(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float32_class(a);
|
|
float_class_t bClass = float32_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN) {
|
|
float_raise(status, float_flag_invalid);
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
return (a == b) || ((Bit32u) ((a | b)<<1) == 0);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than or
|
|
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
| cause an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_le_quiet(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float32_class(a);
|
|
float_class_t bClass = float32_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
{
|
|
if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
flag aSign = extractFloat32Sign(a);
|
|
flag bSign = extractFloat32Sign(b);
|
|
if (aSign != bSign) return aSign || ((Bit32u) ((a | b)<<1) == 0);
|
|
return (a == b) || (aSign ^ (a < b));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the single-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_lt_quiet(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float32_class(a);
|
|
float_class_t bClass = float32_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
{
|
|
if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
flag aSign = extractFloat32Sign(a);
|
|
flag bSign = extractFloat32Sign(b);
|
|
if (aSign != bSign) return aSign && ((Bit32u) ((a | b)<<1) != 0);
|
|
return (a != b) && (aSign ^ (a < b));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The unordered relationship is true when at least one of two source operands
|
|
| being compared is a NaN. Quiet NaNs do not cause an exception.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_unordered(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float32_class(a);
|
|
float_class_t bClass = float32_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
{
|
|
if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two single precision floating point numbers. Returns
|
|
| 'float_relation_equal' if the operands are equal, 'float_relation_less' if
|
|
| the value 'a' is less than the corresponding value `b',
|
|
| 'float_relation_greater' if the value 'a' is greater than the corresponding
|
|
| value `b', or 'float_relation_unordered' otherwise.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_compare(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float32_class(a);
|
|
float_class_t bClass = float32_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float_relation_unordered;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
if ((a == b) || ((Bit32u) ((a | b)<<1) == 0)) return float_relation_equal;
|
|
|
|
flag aSign = extractFloat32Sign(a);
|
|
flag bSign = extractFloat32Sign(b);
|
|
if (aSign != bSign) {
|
|
return (aSign) ? float_relation_less : float_relation_greater;
|
|
}
|
|
if (aSign ^ (a < b)) return float_relation_less;
|
|
return float_relation_greater;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two double precision floating point numbers. Returns
|
|
| 'float_relation_equal' if the operands are equal, 'float_relation_less' if
|
|
| the value 'a' is less than the corresponding value `b',
|
|
| 'float_relation_greater' if the value 'a' is greater than the corresponding
|
|
| value `b', or 'float_relation_unordered' otherwise. Quiet NaNs do not cause
|
|
| an exception.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float32_compare_quiet(float32 a, float32 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float32_class(a);
|
|
float_class_t bClass = float32_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
{
|
|
if (float32_is_signaling_nan(a) || float32_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return float_relation_unordered;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
if ((a == b) || ((Bit32u) ((a | b)<<1) == 0)) return float_relation_equal;
|
|
|
|
flag aSign = extractFloat32Sign(a);
|
|
flag bSign = extractFloat32Sign(b);
|
|
if (aSign != bSign) {
|
|
return (aSign) ? float_relation_less : float_relation_greater;
|
|
}
|
|
if (aSign ^ (a < b)) return float_relation_less;
|
|
return float_relation_greater;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s float64_to_int32(float64 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit64u aSig;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if ((aExp == 0x7FF) && aSig) aSign = 0;
|
|
if (aExp) aSig |= BX_CONST64(0x0010000000000000);
|
|
int shiftCount = 0x42C - aExp;
|
|
if (0 < shiftCount) shift64RightJamming(aSig, shiftCount, &aSig);
|
|
return roundAndPackInt32(aSign, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 32-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
| the conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s float64_to_int32_round_to_zero(float64 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit64u aSig, savedASig;
|
|
Bit32s z;
|
|
int shiftCount;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if (0x41E < aExp) {
|
|
if ((aExp == 0x7FF) && aSig) aSign = 0;
|
|
goto invalid;
|
|
}
|
|
else if (aExp < 0x3FF) {
|
|
if (aExp || aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
aSig |= BX_CONST64(0x0010000000000000);
|
|
shiftCount = 0x433 - aExp;
|
|
savedASig = aSig;
|
|
aSig >>= shiftCount;
|
|
z = aSig;
|
|
if (aSign) z = -z;
|
|
if ((z < 0) ^ aSign) {
|
|
invalid:
|
|
float_raise(status, float_flag_invalid);
|
|
return aSign ? (Bit32s) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if ((aSig<<shiftCount) != savedASig) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic---which means in particular that the conversion is rounded
|
|
| according to the current rounding mode. If `a' is a NaN, the largest
|
|
| positive integer is returned. Otherwise, if the conversion overflows, the
|
|
| largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s float64_to_int64(float64 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit64u aSig, aSigExtra;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if (aExp) aSig |= BX_CONST64(0x0010000000000000);
|
|
int shiftCount = 0x433 - aExp;
|
|
if (shiftCount <= 0) {
|
|
if (0x43E < aExp) {
|
|
float_raise(status, float_flag_invalid);
|
|
if (! aSign || ((aExp == 0x7FF)
|
|
&& (aSig != BX_CONST64(0x0010000000000000))))
|
|
{
|
|
return BX_CONST64(0x7FFFFFFFFFFFFFFF);
|
|
}
|
|
return (Bit64s) BX_CONST64(0x8000000000000000);
|
|
}
|
|
aSigExtra = 0;
|
|
aSig <<= -shiftCount;
|
|
}
|
|
else {
|
|
shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
|
|
}
|
|
return roundAndPackInt64(aSign, aSig, aSigExtra, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the 64-bit two's complement integer format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic, except that the conversion is always rounded toward zero.
|
|
| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
|
|
| the conversion overflows, the largest integer with the same sign as `a' is
|
|
| returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s float64_to_int64_round_to_zero(float64 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit64u aSig;
|
|
Bit64s z;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if (aExp) aSig |= BX_CONST64(0x0010000000000000);
|
|
int shiftCount = aExp - 0x433;
|
|
if (0 <= shiftCount) {
|
|
if (0x43E <= aExp) {
|
|
if (a != BX_CONST64(0xC3E0000000000000)) {
|
|
float_raise(status, float_flag_invalid);
|
|
if (! aSign || ((aExp == 0x7FF)
|
|
&& (aSig != BX_CONST64(0x0010000000000000))))
|
|
{
|
|
return BX_CONST64(0x7FFFFFFFFFFFFFFF);
|
|
}
|
|
}
|
|
return (Bit64s) BX_CONST64(0x8000000000000000);
|
|
}
|
|
z = aSig<<shiftCount;
|
|
}
|
|
else {
|
|
if (aExp < 0x3FE) {
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
z = aSig>>(-shiftCount);
|
|
if ((Bit64u) (aSig<<(shiftCount & 63))) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
}
|
|
if (aSign) z = -z;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the single-precision floating-point format. The conversion is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 float64_to_float32(float64 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit64u aSig;
|
|
Bit32u zSig;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return commonNaNToFloat32(float64ToCommonNaN(a, status));
|
|
return packFloat32(aSign, 0xFF, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloat32(aSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
shift64RightJamming(aSig, 22, &aSig);
|
|
zSig = aSig;
|
|
if (aExp || zSig) {
|
|
zSig |= 0x40000000;
|
|
aExp -= 0x381;
|
|
}
|
|
return roundAndPackFloat32(aSign, aExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the double-precision floating-point value `a' to an integer, and
|
|
| returns the result as a double-precision floating-point value. The
|
|
| operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_round_to_int(float64 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp;
|
|
Bit64u lastBitMask, roundBitsMask;
|
|
int roundingMode;
|
|
float64 z;
|
|
|
|
aExp = extractFloat64Exp(a);
|
|
if (0x433 <= aExp) {
|
|
if ((aExp == 0x7FF) && extractFloat64Frac(a)) {
|
|
return propagateFloat64NaN(a, a, status);
|
|
}
|
|
return a;
|
|
}
|
|
if (aExp < 0x3FF) {
|
|
if ((Bit64u) (a<<1) == 0) return a;
|
|
float_raise(status, float_flag_inexact);
|
|
aSign = extractFloat64Sign(a);
|
|
switch (get_float_rounding_mode(status)) {
|
|
case float_round_nearest_even:
|
|
if ((aExp == 0x3FE) && extractFloat64Frac(a)) {
|
|
return packFloat64(aSign, 0x3FF, 0);
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return aSign ? BX_CONST64(0xBFF0000000000000) : 0;
|
|
case float_round_up:
|
|
return
|
|
aSign ? BX_CONST64(0x8000000000000000) : BX_CONST64(0x3FF0000000000000);
|
|
}
|
|
return packFloat64(aSign, 0, 0);
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x433 - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = a;
|
|
roundingMode = get_float_rounding_mode(status);
|
|
if (roundingMode == float_round_nearest_even) {
|
|
z += lastBitMask>>1;
|
|
if ((z & roundBitsMask) == 0) z &= ~lastBitMask;
|
|
}
|
|
else if (roundingMode != float_round_to_zero) {
|
|
if (extractFloat64Sign(z) ^ (roundingMode == float_round_up)) {
|
|
z += roundBitsMask;
|
|
}
|
|
}
|
|
z &= ~roundBitsMask;
|
|
if (z != a) float_raise(status, float_flag_inexact);
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the double-precision
|
|
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
|
| before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 addFloat64Sigs(float64 a, float64 b, flag zSign, float_status_t &status)
|
|
{
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig;
|
|
Bit16s expDiff;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 9;
|
|
bSig <<= 9;
|
|
if (0 < expDiff) {
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, b, status);
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if ((aExp == 0) && aSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig) float_raise(status, float_flag_denormal);
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig |= BX_CONST64(0x2000000000000000);
|
|
}
|
|
shift64RightJamming(bSig, expDiff, &bSig);
|
|
zExp = aExp;
|
|
}
|
|
else if (expDiff < 0) {
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0x7FF, 0);
|
|
}
|
|
if ((bExp == 0) && bSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig) float_raise(status, float_flag_denormal);
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig |= BX_CONST64(0x2000000000000000);
|
|
}
|
|
shift64RightJamming(aSig, -expDiff, &aSig);
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if (aExp == 0x7FF) {
|
|
if (aSig | bSig) return propagateFloat64NaN(a, b, status);
|
|
return a;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig | bSig) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0, (aSig + bSig)>>9);
|
|
}
|
|
zSig = BX_CONST64(0x4000000000000000) + aSig + bSig;
|
|
zExp = aExp;
|
|
goto roundAndPack;
|
|
}
|
|
aSig |= BX_CONST64(0x2000000000000000);
|
|
zSig = (aSig + bSig)<<1;
|
|
--zExp;
|
|
if ((Bit64s) zSig < 0) {
|
|
zSig = aSig + bSig;
|
|
++zExp;
|
|
}
|
|
roundAndPack:
|
|
return roundAndPackFloat64(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the double-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static float64 subFloat64Sigs(float64 a, float64 b, flag zSign, float_status_t &status)
|
|
{
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig;
|
|
Bit16s expDiff;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
|
|
expDiff = aExp - bExp;
|
|
aSig <<= 10;
|
|
bSig <<= 10;
|
|
if (0 < expDiff) goto aExpBigger;
|
|
if (expDiff < 0) goto bExpBigger;
|
|
if (aExp == 0x7FF) {
|
|
if (aSig | bSig) return propagateFloat64NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig | bSig) float_raise(status, float_flag_denormal);
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
if (bSig < aSig) goto aBigger;
|
|
if (aSig < bSig) goto bBigger;
|
|
return packFloat64(get_float_rounding_mode(status) == float_round_down, 0, 0);
|
|
bExpBigger:
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign ^ 1, 0x7FF, 0);
|
|
}
|
|
if ((bExp == 0) && bSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig) float_raise(status, float_flag_denormal);
|
|
++expDiff;
|
|
}
|
|
else {
|
|
aSig |= BX_CONST64(0x4000000000000000);
|
|
}
|
|
shift64RightJamming(aSig, -expDiff, &aSig);
|
|
bSig |= BX_CONST64(0x4000000000000000);
|
|
bBigger:
|
|
zSig = bSig - aSig;
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, b, status);
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if ((aExp == 0) && aSig) {
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig) float_raise(status, float_flag_denormal);
|
|
--expDiff;
|
|
}
|
|
else {
|
|
bSig |= BX_CONST64(0x4000000000000000);
|
|
}
|
|
shift64RightJamming(bSig, expDiff, &bSig);
|
|
aSig |= BX_CONST64(0x4000000000000000);
|
|
aBigger:
|
|
zSig = aSig - bSig;
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
--zExp;
|
|
return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the double-precision floating-point values `a'
|
|
| and `b'. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_add(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
flag aSign = extractFloat64Sign(a);
|
|
flag bSign = extractFloat64Sign(b);
|
|
|
|
if (aSign == bSign) {
|
|
return addFloat64Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return subFloat64Sigs(a, b, aSign, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the double-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_sub(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
flag aSign = extractFloat64Sign(a);
|
|
flag bSign = extractFloat64Sign(b);
|
|
|
|
if (aSign == bSign) {
|
|
return subFloat64Sigs(a, b, aSign, status);
|
|
}
|
|
else {
|
|
return addFloat64Sigs(a, b, aSign, status);
|
|
}
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the double-precision floating-point values
|
|
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_mul(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig0, zSig1;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
bSign = extractFloat64Sign(b);
|
|
zSign = aSign ^ bSign;
|
|
if (aExp == 0x7FF) {
|
|
if (aSig || ((bExp == 0x7FF) && bSig)) {
|
|
return propagateFloat64NaN(a, b, status);
|
|
}
|
|
if ((bExp | bSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0x7FF, 0);
|
|
}
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
if ((aExp | aSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0x7FF, 0);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) {
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) return packFloat64(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
zExp = aExp + bExp - 0x3FF;
|
|
aSig = (aSig | BX_CONST64(0x0010000000000000))<<10;
|
|
bSig = (bSig | BX_CONST64(0x0010000000000000))<<11;
|
|
mul64To128(aSig, bSig, &zSig0, &zSig1);
|
|
zSig0 |= (zSig1 != 0);
|
|
if (0 <= (Bit64s) (zSig0<<1)) {
|
|
zSig0 <<= 1;
|
|
--zExp;
|
|
}
|
|
return roundAndPackFloat64(zSign, zExp, zSig0, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the double-precision floating-point value `a'
|
|
| by the corresponding value `b'. The operation is performed according to
|
|
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_div(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
Bit16s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig;
|
|
Bit64u rem0, rem1;
|
|
Bit64u term0, term1;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
bSign = extractFloat64Sign(b);
|
|
zSign = aSign ^ bSign;
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, b, status);
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (bSig && (bExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0x7FF, 0);
|
|
}
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return packFloat64(zSign, 0, 0);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) {
|
|
if ((aExp | aSig) == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
float_raise(status, float_flag_divbyzero);
|
|
return packFloat64(zSign, 0x7FF, 0);
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloat64(zSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
zExp = aExp - bExp + 0x3FD;
|
|
aSig = (aSig | BX_CONST64(0x0010000000000000))<<10;
|
|
bSig = (bSig | BX_CONST64(0x0010000000000000))<<11;
|
|
if (bSig <= (aSig + aSig)) {
|
|
aSig >>= 1;
|
|
++zExp;
|
|
}
|
|
zSig = estimateDiv128To64(aSig, 0, bSig);
|
|
if ((zSig & 0x1FF) <= 2) {
|
|
mul64To128(bSig, zSig, &term0, &term1);
|
|
sub128(aSig, 0, term0, term1, &rem0, &rem1);
|
|
while ((Bit64s) rem0 < 0) {
|
|
--zSig;
|
|
add128(rem0, rem1, 0, bSig, &rem0, &rem1);
|
|
}
|
|
zSig |= (rem1 != 0);
|
|
}
|
|
return roundAndPackFloat64(zSign, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the double-precision floating-point value `a'
|
|
| with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_rem(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
Bit16s aExp, bExp, expDiff;
|
|
Bit64u aSig, bSig;
|
|
Bit64u q, alternateASig;
|
|
Bit64s sigMean;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
bSig = extractFloat64Frac(b);
|
|
bExp = extractFloat64Exp(b);
|
|
bSign = extractFloat64Sign(b);
|
|
if (aExp == 0x7FF) {
|
|
if (aSig || ((bExp == 0x7FF) && bSig)) {
|
|
return propagateFloat64NaN(a, b, status);
|
|
}
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (bExp == 0x7FF) {
|
|
if (bSig) return propagateFloat64NaN(a, b, status);
|
|
if (aSig && (aExp == 0)) float_raise(status, float_flag_denormal);
|
|
return a;
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloat64(aSign, 0, 0);
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
expDiff = aExp - bExp;
|
|
aSig = (aSig | BX_CONST64(0x0010000000000000))<<11;
|
|
bSig = (bSig | BX_CONST64(0x0010000000000000))<<11;
|
|
if (expDiff < 0) {
|
|
if (expDiff < -1) return a;
|
|
aSig >>= 1;
|
|
}
|
|
q = (bSig <= aSig);
|
|
if (q) aSig -= bSig;
|
|
expDiff -= 64;
|
|
while (0 < expDiff) {
|
|
q = estimateDiv128To64(aSig, 0, bSig);
|
|
q = (2 < q) ? q - 2 : 0;
|
|
aSig = -((bSig>>2) * q);
|
|
expDiff -= 62;
|
|
}
|
|
expDiff += 64;
|
|
if (0 < expDiff) {
|
|
q = estimateDiv128To64(aSig, 0, bSig);
|
|
q = (2 < q) ? q - 2 : 0;
|
|
q >>= 64 - expDiff;
|
|
bSig >>= 2;
|
|
aSig = ((aSig>>1)<<(expDiff - 1)) - bSig * q;
|
|
}
|
|
else {
|
|
aSig >>= 2;
|
|
bSig >>= 2;
|
|
}
|
|
do {
|
|
alternateASig = aSig;
|
|
++q;
|
|
aSig -= bSig;
|
|
} while (0 <= (Bit64s) aSig);
|
|
sigMean = aSig + alternateASig;
|
|
if ((sigMean < 0) || ((sigMean == 0) && (q & 1))) {
|
|
aSig = alternateASig;
|
|
}
|
|
zSign = ((Bit64s) aSig < 0);
|
|
if (zSign) aSig = -aSig;
|
|
return normalizeRoundAndPackFloat64(aSign ^ zSign, bExp, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the double-precision floating-point value `a'.
|
|
| The operation is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 float64_sqrt(float64 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit16s aExp, zExp;
|
|
Bit64u aSig, zSig, doubleZSig;
|
|
Bit64u rem0, rem1, term0, term1;
|
|
float64 z;
|
|
|
|
aSig = extractFloat64Frac(a);
|
|
aExp = extractFloat64Exp(a);
|
|
aSign = extractFloat64Sign(a);
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return propagateFloat64NaN(a, a, status);
|
|
if (! aSign) return a;
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (aSign) {
|
|
if ((aExp | aSig) == 0) return a;
|
|
float_raise(status, float_flag_invalid);
|
|
return float64_default_nan;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return 0;
|
|
float_raise(status, float_flag_denormal);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
zExp = ((aExp - 0x3FF)>>1) + 0x3FE;
|
|
aSig |= BX_CONST64(0x0010000000000000);
|
|
zSig = estimateSqrt32(aExp, aSig>>21);
|
|
aSig <<= 9 - (aExp & 1);
|
|
zSig = estimateDiv128To64(aSig, 0, zSig<<32) + (zSig<<30);
|
|
if ((zSig & 0x1FF) <= 5) {
|
|
doubleZSig = zSig<<1;
|
|
mul64To128(zSig, zSig, &term0, &term1);
|
|
sub128(aSig, 0, term0, term1, &rem0, &rem1);
|
|
while ((Bit64s) rem0 < 0) {
|
|
--zSig;
|
|
doubleZSig -= 2;
|
|
add128(rem0, rem1, zSig>>63, doubleZSig | 1, &rem0, &rem1);
|
|
}
|
|
zSig |= ((rem0 | rem1) != 0);
|
|
}
|
|
return roundAndPackFloat64(0, zExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is equal to the
|
|
| corresponding value `b', and 0 otherwise. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_eq(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float64_class(a);
|
|
float_class_t bClass = float64_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
{
|
|
if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
return (a == b) || ((Bit64u) ((a | b)<<1) == 0);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than or
|
|
| equal to the corresponding value `b', and 0 otherwise. The comparison is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_le(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float64_class(a);
|
|
float_class_t bClass = float64_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN) {
|
|
float_raise(status, float_flag_invalid);
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
flag aSign = extractFloat64Sign(a);
|
|
flag bSign = extractFloat64Sign(b);
|
|
if (aSign != bSign) return aSign || ((Bit64u) ((a | b)<<1) == 0);
|
|
return (a == b) || (aSign ^ (a < b));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. The comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_lt(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float64_class(a);
|
|
float_class_t bClass = float64_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN) {
|
|
float_raise(status, float_flag_invalid);
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
flag aSign = extractFloat64Sign(a);
|
|
flag bSign = extractFloat64Sign(b);
|
|
if (aSign != bSign) return aSign && ((Bit64u) ((a | b)<<1) != 0);
|
|
return (a != b) && (aSign ^ (a < b));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is equal to the
|
|
| corresponding value `b', and 0 otherwise. The invalid exception is raised
|
|
| if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_eq_signaling(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float64_class(a);
|
|
float_class_t bClass = float64_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN) {
|
|
float_raise(status, float_flag_invalid);
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
return (a == b) || ((Bit64u) ((a | b)<<1) == 0);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than or
|
|
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
|
|
| cause an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_le_quiet(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float64_class(a);
|
|
float_class_t bClass = float64_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
{
|
|
if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
flag aSign = extractFloat64Sign(a);
|
|
flag bSign = extractFloat64Sign(b);
|
|
if (aSign != bSign) return aSign || ((Bit64u) ((a | b)<<1) == 0);
|
|
return (a == b) || (aSign ^ (a < b));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the double-precision floating-point value `a' is less than
|
|
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
|
|
| exception. Otherwise, the comparison is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_lt_quiet(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float64_class(a);
|
|
float_class_t bClass = float64_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
{
|
|
if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
flag aSign = extractFloat64Sign(a);
|
|
flag bSign = extractFloat64Sign(b);
|
|
if (aSign != bSign) return aSign && ((Bit64u) ((a | b)<<1) != 0);
|
|
return (a != b) && (aSign ^ (a < b));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| The unordered relationship is true when at least one of two source operands
|
|
| being compared is a NaN. Quiet NaNs do not cause an exception.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_unordered(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float64_class(a);
|
|
float_class_t bClass = float64_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
{
|
|
if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two double precision floating point numbers. Returns
|
|
| 'float_relation_equal' if the operands are equal, 'float_relation_less' if
|
|
| the value 'a' is less than the corresponding value `b',
|
|
| 'float_relation_greater' if the value 'a' is greater than the corresponding
|
|
| value `b', or 'float_relation_unordered' otherwise.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_compare(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float64_class(a);
|
|
float_class_t bClass = float64_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN) {
|
|
float_raise(status, float_flag_invalid);
|
|
return float_relation_unordered;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
if ((a == b) || ((Bit64u) ((a | b)<<1) == 0)) return float_relation_equal;
|
|
|
|
flag aSign = extractFloat64Sign(a);
|
|
flag bSign = extractFloat64Sign(b);
|
|
if (aSign != bSign) {
|
|
return (aSign) ? float_relation_less : float_relation_greater;
|
|
}
|
|
if (aSign ^ (a < b)) return float_relation_less;
|
|
return float_relation_greater;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Compare between two double precision floating point numbers. Returns
|
|
| 'float_relation_equal' if the operands are equal, 'float_relation_less' if
|
|
| the value 'a' is less than the corresponding value `b',
|
|
| 'float_relation_greater' if the value 'a' is greater than the corresponding
|
|
| value `b', or 'float_relation_unordered' otherwise. Quiet NaNs do not cause
|
|
| an exception.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int float64_compare_quiet(float64 a, float64 b, float_status_t &status)
|
|
{
|
|
float_class_t aClass = float64_class(a);
|
|
float_class_t bClass = float64_class(b);
|
|
|
|
if (aClass == float_NaN || bClass == float_NaN)
|
|
{
|
|
if (float64_is_signaling_nan(a) || float64_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return float_relation_unordered;
|
|
}
|
|
|
|
if (aClass == float_denormal || bClass == float_denormal)
|
|
{
|
|
float_raise(status, float_flag_denormal);
|
|
}
|
|
|
|
if ((a == b) || ((Bit64u) ((a | b)<<1) == 0)) return float_relation_equal;
|
|
|
|
flag aSign = extractFloat64Sign(a);
|
|
flag bSign = extractFloat64Sign(b);
|
|
if (aSign != bSign) {
|
|
return (aSign) ? float_relation_less : float_relation_greater;
|
|
}
|
|
if (aSign ^ (a < b)) return float_relation_less;
|
|
return float_relation_greater;
|
|
}
|
|
|
|
#ifdef FLOATX80
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Normalizes the subnormal extended double-precision floating-point value
|
|
| represented by the denormalized significand `aSig'. The normalized exponent
|
|
| and significand are stored at the locations pointed to by `zExpPtr' and
|
|
| `zSigPtr', respectively.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static void
|
|
normalizeFloatx80Subnormal(Bit64u aSig, Bit32s *zExpPtr, Bit64u *zSigPtr)
|
|
{
|
|
int shiftCount = countLeadingZeros64(aSig);
|
|
*zSigPtr = aSig<<shiftCount;
|
|
*zExpPtr = 1 - shiftCount;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Determine extended-precision floating-point number class
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float_class_t floatx80_class(floatx80 a)
|
|
{
|
|
Bit32s aExp = extractFloatx80Exp(a);
|
|
Bit64u aSig = extractFloatx80Frac(a);
|
|
flag aSign = extractFloatx80Sign(a);
|
|
|
|
if(aExp == 0x7fff) {
|
|
if (aSig == 0)
|
|
return (aSign) ? float_negative_inf : float_positive_inf;
|
|
|
|
return float_NaN;
|
|
}
|
|
|
|
if(aExp == 0) {
|
|
if (aSig == 0)
|
|
return (aSign) ? float_negative_zero : float_positive_zero;
|
|
|
|
return float_denormal;
|
|
}
|
|
|
|
return float_normalized;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
|
|
| extended double-precision floating-point value, returning the result.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
BX_CPP_INLINE floatx80 packFloatx80(flag zSign, Bit32s zExp, Bit64u zSig)
|
|
{
|
|
floatx80 z;
|
|
z.fraction = zSig;
|
|
z.exp = (((Bit16u) zSign)<<15) + zExp;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
|
|
| and extended significand formed by the concatenation of `zSig0' and `zSig1',
|
|
| and returns the proper extended double-precision floating-point value
|
|
| corresponding to the abstract input. Ordinarily, the abstract value is
|
|
| rounded and packed into the extended double-precision format, with the
|
|
| inexact exception raised if the abstract input cannot be represented
|
|
| exactly. However, if the abstract value is too large, the overflow and
|
|
| inexact exceptions are raised and an infinity or maximal finite value is
|
|
| returned. If the abstract value is too small, the input value is rounded to
|
|
| a subnormal number, and the underflow and inexact exceptions are raised if
|
|
| the abstract input cannot be represented exactly as a subnormal extended
|
|
| double-precision floating-point number.
|
|
| If `roundingPrecision' is 32 or 64, the result is rounded to the same
|
|
| number of bits as single or double precision, respectively. Otherwise, the
|
|
| result is rounded to the full precision of the extended double-precision
|
|
| format.
|
|
| The input significand must be normalized or smaller. If the input
|
|
| significand is not normalized, `zExp' must be 0; in that case, the result
|
|
| returned is a subnormal number, and it must not require rounding. The
|
|
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80 roundAndPackFloatx80(int roundingPrecision,
|
|
flag zSign, Bit32s zExp, Bit64u zSig0, Bit64u zSig1, float_status_t &status)
|
|
{
|
|
Bit8u roundingMode;
|
|
int roundNearestEven, increment, isTiny;
|
|
Bit64s roundIncrement, roundMask, roundBits;
|
|
|
|
roundingMode = get_float_rounding_mode(status);
|
|
roundNearestEven = (roundingMode == float_round_nearest_even);
|
|
if (roundingPrecision == 64) {
|
|
roundIncrement = BX_CONST64(0x0000000000000400);
|
|
roundMask = BX_CONST64(0x00000000000007FF);
|
|
}
|
|
else if (roundingPrecision == 32) {
|
|
roundIncrement = BX_CONST64(0x0000008000000000);
|
|
roundMask = BX_CONST64(0x000000FFFFFFFFFF);
|
|
}
|
|
else goto precision80;
|
|
|
|
zSig0 |= (zSig1 != 0);
|
|
if (! roundNearestEven) {
|
|
if (roundingMode == float_round_to_zero) {
|
|
roundIncrement = 0;
|
|
}
|
|
else {
|
|
roundIncrement = roundMask;
|
|
if (zSign) {
|
|
if (roundingMode == float_round_up) roundIncrement = 0;
|
|
}
|
|
else {
|
|
if (roundingMode == float_round_down) roundIncrement = 0;
|
|
}
|
|
}
|
|
}
|
|
roundBits = zSig0 & roundMask;
|
|
if (0x7FFD <= (Bit32u) (zExp - 1)) {
|
|
if ((0x7FFE < zExp)
|
|
|| ((zExp == 0x7FFE) && (zSig0 + roundIncrement < zSig0)))
|
|
{
|
|
goto overflow;
|
|
}
|
|
if (zExp <= 0) {
|
|
isTiny =
|
|
(status.float_detect_tininess == float_tininess_before_rounding)
|
|
|| (zExp < 0)
|
|
|| (zSig0 <= zSig0 + roundIncrement);
|
|
shift64RightJamming(zSig0, 1 - zExp, &zSig0);
|
|
zExp = 0;
|
|
roundBits = zSig0 & roundMask;
|
|
if (isTiny && roundBits) float_raise(status, float_flag_underflow);
|
|
if (roundBits) float_raise(status, float_flag_inexact);
|
|
zSig0 += roundIncrement;
|
|
if ((Bit64s) zSig0 < 0) zExp = 1;
|
|
roundIncrement = roundMask + 1;
|
|
if (roundNearestEven && (roundBits<<1 == roundIncrement))
|
|
roundMask |= roundIncrement;
|
|
zSig0 &= ~roundMask;
|
|
return packFloatx80(zSign, zExp, zSig0);
|
|
}
|
|
}
|
|
if (roundBits) float_raise(status, float_flag_inexact);
|
|
zSig0 += roundIncrement;
|
|
if (zSig0 < roundIncrement) {
|
|
++zExp;
|
|
zSig0 = BX_CONST64(0x8000000000000000);
|
|
}
|
|
roundIncrement = roundMask + 1;
|
|
if (roundNearestEven && (roundBits<<1 == roundIncrement))
|
|
roundMask |= roundIncrement;
|
|
zSig0 &= ~roundMask;
|
|
if (zSig0 == 0) zExp = 0;
|
|
return packFloatx80(zSign, zExp, zSig0);
|
|
precision80:
|
|
increment = ((Bit64s) zSig1 < 0);
|
|
if (! roundNearestEven) {
|
|
if (roundingMode == float_round_to_zero) {
|
|
increment = 0;
|
|
}
|
|
else {
|
|
if (zSign) {
|
|
increment = (roundingMode == float_round_down) && zSig1;
|
|
}
|
|
else {
|
|
increment = (roundingMode == float_round_up) && zSig1;
|
|
}
|
|
}
|
|
}
|
|
if (0x7FFD <= (Bit32u) (zExp - 1)) {
|
|
if ((0x7FFE < zExp)
|
|
|| ((zExp == 0x7FFE)
|
|
&& (zSig0 == BX_CONST64(0xFFFFFFFFFFFFFFFF))
|
|
&& increment))
|
|
{
|
|
roundMask = 0;
|
|
overflow:
|
|
float_raise(status, float_flag_overflow | float_flag_inexact);
|
|
if ((roundingMode == float_round_to_zero)
|
|
|| (zSign && (roundingMode == float_round_up))
|
|
|| (! zSign && (roundingMode == float_round_down)))
|
|
{
|
|
return packFloatx80(zSign, 0x7FFE, ~roundMask);
|
|
}
|
|
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (zExp <= 0) {
|
|
isTiny =
|
|
(status.float_detect_tininess == float_tininess_before_rounding)
|
|
|| (zExp < 0)
|
|
|| ! increment
|
|
|| (zSig0 < BX_CONST64(0xFFFFFFFFFFFFFFFF));
|
|
shift64ExtraRightJamming(zSig0, zSig1, 1 - zExp, &zSig0, &zSig1);
|
|
zExp = 0;
|
|
if (isTiny && zSig1) float_raise(status, float_flag_underflow);
|
|
if (zSig1) float_raise(status, float_flag_inexact);
|
|
if (roundNearestEven)
|
|
{
|
|
increment = ((Bit64s) zSig1 < 0);
|
|
}
|
|
else {
|
|
if (zSign) {
|
|
increment = (roundingMode == float_round_down) && zSig1;
|
|
}
|
|
else {
|
|
increment = (roundingMode == float_round_up) && zSig1;
|
|
}
|
|
}
|
|
if (increment) {
|
|
++zSig0;
|
|
zSig0 &=
|
|
~(((Bit64u) (zSig1<<1) == 0) & roundNearestEven);
|
|
if ((Bit64s) zSig0 < 0) zExp = 1;
|
|
}
|
|
return packFloatx80(zSign, zExp, zSig0);
|
|
}
|
|
}
|
|
if (zSig1) float_raise(status, float_flag_inexact);
|
|
if (increment) {
|
|
++zSig0;
|
|
if (zSig0 == 0) {
|
|
++zExp;
|
|
zSig0 = BX_CONST64(0x8000000000000000);
|
|
}
|
|
else {
|
|
zSig0 &= ~(((Bit64u) (zSig1<<1) == 0) & roundNearestEven);
|
|
}
|
|
}
|
|
else {
|
|
if (zSig0 == 0) zExp = 0;
|
|
}
|
|
return packFloatx80(zSign, zExp, zSig0);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Takes an abstract floating-point value having sign `zSign', exponent
|
|
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
|
|
| and returns the proper extended double-precision floating-point value
|
|
| corresponding to the abstract input. This routine is just like
|
|
| `roundAndPackFloatx80' except that the input significand does not have to be
|
|
| normalized.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80 normalizeRoundAndPackFloatx80(int roundingPrecision,
|
|
flag zSign, Bit32s zExp, Bit64u zSig0, Bit64u zSig1, float_status_t &status)
|
|
{
|
|
if (zSig0 == 0) {
|
|
zSig0 = zSig1;
|
|
zSig1 = 0;
|
|
zExp -= 64;
|
|
}
|
|
int shiftCount = countLeadingZeros64(zSig0);
|
|
shortShift128Left(zSig0, zSig1, shiftCount, &zSig0, &zSig1);
|
|
zExp -= shiftCount;
|
|
return
|
|
roundAndPackFloatx80(roundingPrecision, zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 32-bit two's complement integer `a'
|
|
| to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 int32_to_floatx80(Bit32s a)
|
|
{
|
|
if (a == 0) return packFloatx80(0, 0, 0);
|
|
flag zSign = (a < 0);
|
|
Bit32u absA = zSign ? -a : a;
|
|
int shiftCount = countLeadingZeros32(absA) + 32;
|
|
Bit64u zSig = absA;
|
|
return packFloatx80(zSign, 0x403E - shiftCount, zSig<<shiftCount);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the 64-bit two's complement integer `a'
|
|
| to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 int64_to_floatx80(Bit64s a)
|
|
{
|
|
if (a == 0) return packFloatx80(0, 0, 0);
|
|
flag zSign = (a < 0);
|
|
Bit64u absA = zSign ? -a : a;
|
|
int shiftCount = countLeadingZeros64(absA);
|
|
return packFloatx80(zSign, 0x403E - shiftCount, absA<<shiftCount);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the single-precision floating-point value
|
|
| `a' to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float32_to_floatx80(float32 a, float_status_t &status)
|
|
{
|
|
Bit32u aSig = extractFloat32Frac(a);
|
|
Bit16s aExp = extractFloat32Exp(a);
|
|
flag aSign = extractFloat32Sign(a);
|
|
if (aExp == 0xFF) {
|
|
if (aSig) return commonNaNToFloatx80(float32ToCommonNaN(a, status));
|
|
return packFloatx80(aSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloatx80(aSign, 0, 0);
|
|
normalizeFloat32Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
aSig |= 0x00800000;
|
|
return packFloatx80(aSign, aExp + 0x3F80, ((Bit64u) aSig)<<40);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the double-precision floating-point value
|
|
| `a' to the extended double-precision floating-point format. The conversion
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 float64_to_floatx80(float64 a, float_status_t &status)
|
|
{
|
|
Bit64u aSig = extractFloat64Frac(a);
|
|
Bit16s aExp = extractFloat64Exp(a);
|
|
flag aSign = extractFloat64Sign(a);
|
|
|
|
if (aExp == 0x7FF) {
|
|
if (aSig) return commonNaNToFloatx80(float64ToCommonNaN(a, status));
|
|
return packFloatx80(aSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloatx80(aSign, 0, 0);
|
|
normalizeFloat64Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
return
|
|
packFloatx80(
|
|
aSign, aExp + 0x3C00, (aSig | BX_CONST64(0x0010000000000000))<<11);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 32-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic---which means in particular that the conversion
|
|
| is rounded according to the current rounding mode. If `a' is a NaN, the
|
|
| largest positive integer is returned. Otherwise, if the conversion
|
|
| overflows, the largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s floatx80_to_int32(floatx80 a, float_status_t &status)
|
|
{
|
|
Bit64u aSig = extractFloatx80Frac(a);
|
|
Bit32s aExp = extractFloatx80Exp(a);
|
|
flag aSign = extractFloatx80Sign(a);
|
|
|
|
if ((aExp == 0x7FFF) && (Bit64u) (aSig<<1)) aSign = 0;
|
|
int shiftCount = 0x4037 - aExp;
|
|
if (shiftCount <= 0) shiftCount = 1;
|
|
shift64RightJamming(aSig, shiftCount, &aSig);
|
|
return roundAndPackInt32(aSign, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 32-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic, except that the conversion is always rounded
|
|
| toward zero. If `a' is a NaN, the largest positive integer is returned.
|
|
| Otherwise, if the conversion overflows, the largest integer with the same
|
|
| sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit32s floatx80_to_int32_round_to_zero(floatx80 a, float_status_t &status)
|
|
{
|
|
Bit32s aExp;
|
|
Bit64u aSig, savedASig;
|
|
Bit32s z;
|
|
int shiftCount;
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
flag aSign = extractFloatx80Sign(a);
|
|
|
|
if (0x401E < aExp) {
|
|
if ((aExp == 0x7FFF) && (Bit64u) (aSig<<1)) aSign = 0;
|
|
goto invalid;
|
|
}
|
|
else if (aExp < 0x3FFF) {
|
|
if (aExp || aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
shiftCount = 0x403E - aExp;
|
|
savedASig = aSig;
|
|
aSig >>= shiftCount;
|
|
z = aSig;
|
|
if (aSign) z = -z;
|
|
if ((z < 0) ^ aSign) {
|
|
invalid:
|
|
float_raise(status, float_flag_invalid);
|
|
return aSign ? (Bit32s) 0x80000000 : 0x7FFFFFFF;
|
|
}
|
|
if ((aSig<<shiftCount) != savedASig)
|
|
{
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 64-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic---which means in particular that the conversion
|
|
| is rounded according to the current rounding mode. If `a' is a NaN,
|
|
| the largest positive integer is returned. Otherwise, if the conversion
|
|
| overflows, the largest integer with the same sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s floatx80_to_int64(floatx80 a, float_status_t &status)
|
|
{
|
|
Bit32s aExp;
|
|
Bit64u aSig, aSigExtra;
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
flag aSign = extractFloatx80Sign(a);
|
|
|
|
int shiftCount = 0x403E - aExp;
|
|
if (shiftCount <= 0)
|
|
{
|
|
if (shiftCount)
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
if (! aSign || ((aExp == 0x7FFF)
|
|
&& (aSig != BX_CONST64(0x8000000000000000))))
|
|
{
|
|
return BX_CONST64(0x7FFFFFFFFFFFFFFF);
|
|
}
|
|
return (Bit64s) BX_CONST64(0x8000000000000000);
|
|
}
|
|
aSigExtra = 0;
|
|
}
|
|
else {
|
|
shift64ExtraRightJamming(aSig, 0, shiftCount, &aSig, &aSigExtra);
|
|
}
|
|
|
|
return roundAndPackInt64(aSign, aSig, aSigExtra, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the 64-bit two's complement integer format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic, except that the conversion is always rounded
|
|
| toward zero. If `a' is a NaN, the largest positive integer is returned.
|
|
| Otherwise, if the conversion overflows, the largest integer with the same
|
|
| sign as `a' is returned.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
Bit64s floatx80_to_int64_round_to_zero(floatx80 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit32s aExp;
|
|
Bit64u aSig;
|
|
Bit64s z;
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
int shiftCount = aExp - 0x403E;
|
|
if (0 <= shiftCount) {
|
|
aSig &= BX_CONST64(0x7FFFFFFFFFFFFFFF);
|
|
if ((a.exp != 0xC03E) || aSig) {
|
|
float_raise(status, float_flag_invalid);
|
|
if (! aSign || ((aExp == 0x7FFF) && aSig)) {
|
|
return BX_CONST64(0x7FFFFFFFFFFFFFFF);
|
|
}
|
|
}
|
|
return (Bit64s) BX_CONST64(0x8000000000000000);
|
|
}
|
|
else if (aExp < 0x3FFF) {
|
|
if (aExp | aSig) float_raise(status, float_flag_inexact);
|
|
return 0;
|
|
}
|
|
z = aSig>>(-shiftCount);
|
|
if ((Bit64u) (aSig<<(shiftCount & 63))) {
|
|
float_raise(status, float_flag_inexact);
|
|
}
|
|
if (aSign) z = -z;
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the single-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float32 floatx80_to_float32(floatx80 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit32s aExp;
|
|
Bit64u aSig;
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1)) {
|
|
return commonNaNToFloat32(floatx80ToCommonNaN(a, status));
|
|
}
|
|
return packFloat32(aSign, 0xFF, 0);
|
|
}
|
|
shift64RightJamming(aSig, 33, &aSig);
|
|
if (aExp || aSig) aExp -= 0x3F81;
|
|
return roundAndPackFloat32(aSign, aExp, aSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of converting the extended double-precision floating-
|
|
| point value `a' to the double-precision floating-point format. The
|
|
| conversion is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
float64 floatx80_to_float64(floatx80 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit32s aExp;
|
|
Bit64u aSig, zSig;
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1)) {
|
|
return commonNaNToFloat64(floatx80ToCommonNaN(a, status));
|
|
}
|
|
return packFloat64(aSign, 0x7FF, 0);
|
|
}
|
|
shift64RightJamming(aSig, 1, &zSig);
|
|
if (aExp || aSig) aExp -= 0x3C01;
|
|
return roundAndPackFloat64(aSign, aExp, zSig, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Rounds the extended double-precision floating-point value `a' to an integer,
|
|
| and returns the result as an extended quadruple-precision floating-point
|
|
| value. The operation is performed according to the IEC/IEEE Standard for
|
|
| Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_round_to_int(floatx80 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit32s aExp;
|
|
Bit64u lastBitMask, roundBitsMask;
|
|
Bit8u roundingMode;
|
|
floatx80 z;
|
|
|
|
aExp = extractFloatx80Exp(a);
|
|
if (0x403E <= aExp) {
|
|
if ((aExp == 0x7FFF) && (Bit64u) (extractFloatx80Frac(a)<<1)) {
|
|
return propagateFloatx80NaN(a, a, status);
|
|
}
|
|
return a;
|
|
}
|
|
if (aExp < 0x3FFF) {
|
|
if ((aExp == 0)
|
|
&& ((Bit64u) (extractFloatx80Frac(a)<<1) == 0))
|
|
{
|
|
return a;
|
|
}
|
|
float_raise(status, float_flag_inexact);
|
|
aSign = extractFloatx80Sign(a);
|
|
switch (get_float_rounding_mode(status)) {
|
|
case float_round_nearest_even:
|
|
if ((aExp == 0x3FFE) && (Bit64u) (extractFloatx80Frac(a)<<1))
|
|
{
|
|
return packFloatx80(aSign, 0x3FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
break;
|
|
case float_round_down:
|
|
return aSign ?
|
|
packFloatx80(1, 0x3FFF, BX_CONST64(0x8000000000000000))
|
|
: packFloatx80(0, 0, 0);
|
|
case float_round_up:
|
|
return aSign ?
|
|
packFloatx80(1, 0, 0)
|
|
: packFloatx80(0, 0x3FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
return packFloatx80(aSign, 0, 0);
|
|
}
|
|
lastBitMask = 1;
|
|
lastBitMask <<= 0x403E - aExp;
|
|
roundBitsMask = lastBitMask - 1;
|
|
z = a;
|
|
roundingMode = get_float_rounding_mode(status);
|
|
if (roundingMode == float_round_nearest_even) {
|
|
z.fraction += lastBitMask>>1;
|
|
if ((z.fraction & roundBitsMask) == 0) z.fraction &= ~lastBitMask;
|
|
}
|
|
else if (roundingMode != float_round_to_zero) {
|
|
if (extractFloatx80Sign(z) ^ (roundingMode == float_round_up)) {
|
|
z.fraction += roundBitsMask;
|
|
}
|
|
}
|
|
z.fraction &= ~roundBitsMask;
|
|
if (z.fraction == 0) {
|
|
z.exp++;
|
|
z.fraction = BX_CONST64(0x8000000000000000);
|
|
}
|
|
if (z.fraction != a.fraction) float_raise(status, float_flag_inexact);
|
|
return z;
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the absolute values of the extended double-
|
|
| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
|
|
| negated before being returned. `zSign' is ignored if the result is a NaN.
|
|
| The addition is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80 addFloatx80Sigs(floatx80 a, floatx80 b, int zSign, float_status_t &status)
|
|
{
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig0, zSig1;
|
|
Bit32s expDiff;
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
bSig = extractFloatx80Frac(b);
|
|
bExp = extractFloatx80Exp(b);
|
|
|
|
expDiff = aExp - bExp;
|
|
if (0 < expDiff) {
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
return a;
|
|
}
|
|
if (bExp == 0) --expDiff;
|
|
shift64ExtraRightJamming(bSig, 0, expDiff, &bSig, &zSig1);
|
|
zExp = aExp;
|
|
}
|
|
else if (expDiff < 0) {
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) ++expDiff;
|
|
shift64ExtraRightJamming(aSig, 0, - expDiff, &aSig, &zSig1);
|
|
zExp = bExp;
|
|
}
|
|
else {
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) ((aSig | bSig)<<1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
return a;
|
|
}
|
|
zSig1 = 0;
|
|
zSig0 = aSig + bSig;
|
|
if (aExp == 0) {
|
|
normalizeFloatx80Subnormal(zSig0, &zExp, &zSig0);
|
|
goto roundAndPack;
|
|
}
|
|
zExp = aExp;
|
|
goto shiftRight1;
|
|
}
|
|
zSig0 = aSig + bSig;
|
|
if ((Bit64s) zSig0 < 0) goto roundAndPack;
|
|
shiftRight1:
|
|
shift64ExtraRightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
|
|
zSig0 |= BX_CONST64(0x8000000000000000);
|
|
++zExp;
|
|
roundAndPack:
|
|
return
|
|
roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the absolute values of the extended
|
|
| double-precision floating-point values `a' and `b'. If `zSign' is 1, the
|
|
| difference is negated before being returned. `zSign' is ignored if the
|
|
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
static floatx80 subFloatx80Sigs(floatx80 a, floatx80 b, int zSign, float_status_t &status)
|
|
{
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig0, zSig1;
|
|
Bit32s expDiff;
|
|
floatx80 z;
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
bSig = extractFloatx80Frac(b);
|
|
bExp = extractFloatx80Exp(b);
|
|
|
|
expDiff = aExp - bExp;
|
|
if (0 < expDiff) goto aExpBigger;
|
|
if (expDiff < 0) goto bExpBigger;
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) ((aSig | bSig)<<1)) {
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
float_raise(status, float_flag_invalid);
|
|
z.fraction = floatx80_default_nan_fraction;
|
|
z.exp = floatx80_default_nan_exp;
|
|
return z;
|
|
}
|
|
if (aExp == 0) {
|
|
aExp = 1;
|
|
bExp = 1;
|
|
}
|
|
zSig1 = 0;
|
|
if (bSig < aSig) goto aBigger;
|
|
if (aSig < bSig) goto bBigger;
|
|
return packFloatx80(get_float_rounding_mode(status) == float_round_down, 0, 0);
|
|
bExpBigger:
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
return packFloatx80(zSign ^ 1, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) ++expDiff;
|
|
shift128RightJamming(aSig, 0, - expDiff, &aSig, &zSig1);
|
|
bBigger:
|
|
sub128(bSig, 0, aSig, zSig1, &zSig0, &zSig1);
|
|
zExp = bExp;
|
|
zSign ^= 1;
|
|
goto normalizeRoundAndPack;
|
|
aExpBigger:
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
return a;
|
|
}
|
|
if (bExp == 0) --expDiff;
|
|
shift128RightJamming(bSig, 0, expDiff, &bSig, &zSig1);
|
|
aBigger:
|
|
sub128(aSig, 0, bSig, zSig1, &zSig0, &zSig1);
|
|
zExp = aExp;
|
|
normalizeRoundAndPack:
|
|
return
|
|
normalizeRoundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of adding the extended double-precision floating-point
|
|
| values `a' and `b'. The operation is performed according to the IEC/IEEE
|
|
| Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_add(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
flag aSign = extractFloatx80Sign(a);
|
|
flag bSign = extractFloatx80Sign(b);
|
|
|
|
if (aSign == bSign)
|
|
return addFloatx80Sigs(a, b, aSign, status);
|
|
else
|
|
return subFloatx80Sigs(a, b, aSign, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of subtracting the extended double-precision floating-
|
|
| point values `a' and `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_sub(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
flag aSign = extractFloatx80Sign(a);
|
|
flag bSign = extractFloatx80Sign(b);
|
|
|
|
if (aSign == bSign)
|
|
return subFloatx80Sigs(a, b, aSign, status);
|
|
else
|
|
return addFloatx80Sigs(a, b, aSign, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of multiplying the extended double-precision floating-
|
|
| point values `a' and `b'. The operation is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_mul(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig0, zSig1;
|
|
floatx80 z;
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
bSig = extractFloatx80Frac(b);
|
|
bExp = extractFloatx80Exp(b);
|
|
bSign = extractFloatx80Sign(b);
|
|
zSign = aSign ^ bSign;
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1)
|
|
|| ((bExp == 0x7FFF) && (Bit64u) (bSig<<1)))
|
|
{
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
if ((bExp | bSig) == 0) goto invalid;
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
if ((aExp | aSig) == 0) {
|
|
invalid:
|
|
float_raise(status, float_flag_invalid);
|
|
z.fraction = floatx80_default_nan_fraction;
|
|
z.exp = floatx80_default_nan_exp;
|
|
return z;
|
|
}
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloatx80(zSign, 0, 0);
|
|
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) return packFloatx80(zSign, 0, 0);
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
zExp = aExp + bExp - 0x3FFE;
|
|
mul64To128(aSig, bSig, &zSig0, &zSig1);
|
|
if (0 < (Bit64s) zSig0) {
|
|
shortShift128Left(zSig0, zSig1, 1, &zSig0, &zSig1);
|
|
--zExp;
|
|
}
|
|
return
|
|
roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the result of dividing the extended double-precision floating-point
|
|
| value `a' by the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_div(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
Bit32s aExp, bExp, zExp;
|
|
Bit64u aSig, bSig, zSig0, zSig1;
|
|
Bit64u rem0, rem1, rem2, term0, term1, term2;
|
|
floatx80 z;
|
|
|
|
aSig = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
bSig = extractFloatx80Frac(b);
|
|
bExp = extractFloatx80Exp(b);
|
|
bSign = extractFloatx80Sign(b);
|
|
|
|
zSign = aSign ^ bSign;
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
goto invalid;
|
|
}
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
return packFloatx80(zSign, 0, 0);
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) {
|
|
if ((aExp | aSig) == 0) {
|
|
invalid:
|
|
float_raise(status, float_flag_invalid);
|
|
z.fraction = floatx80_default_nan_fraction;
|
|
z.exp = floatx80_default_nan_exp;
|
|
return z;
|
|
}
|
|
float_raise(status, float_flag_divbyzero);
|
|
return packFloatx80(zSign, 0x7FFF, BX_CONST64(0x8000000000000000));
|
|
}
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig == 0) return packFloatx80(zSign, 0, 0);
|
|
normalizeFloatx80Subnormal(aSig, &aExp, &aSig);
|
|
}
|
|
zExp = aExp - bExp + 0x3FFE;
|
|
rem1 = 0;
|
|
if (bSig <= aSig) {
|
|
shift128Right(aSig, 0, 1, &aSig, &rem1);
|
|
++zExp;
|
|
}
|
|
zSig0 = estimateDiv128To64(aSig, rem1, bSig);
|
|
mul64To128(bSig, zSig0, &term0, &term1);
|
|
sub128(aSig, rem1, term0, term1, &rem0, &rem1);
|
|
while ((Bit64s) rem0 < 0) {
|
|
--zSig0;
|
|
add128(rem0, rem1, 0, bSig, &rem0, &rem1);
|
|
}
|
|
zSig1 = estimateDiv128To64(rem1, 0, bSig);
|
|
if ((Bit64u) (zSig1<<1) <= 8) {
|
|
mul64To128(bSig, zSig1, &term1, &term2);
|
|
sub128(rem1, 0, term1, term2, &rem1, &rem2);
|
|
while ((Bit64s) rem1 < 0) {
|
|
--zSig1;
|
|
add128(rem1, rem2, 0, bSig, &rem1, &rem2);
|
|
}
|
|
zSig1 |= ((rem1 | rem2) != 0);
|
|
}
|
|
return
|
|
roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
zSign, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the remainder of the extended double-precision floating-point value
|
|
| `a' with respect to the corresponding value `b'. The operation is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_rem(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
flag aSign, bSign, zSign;
|
|
Bit32s aExp, bExp, expDiff;
|
|
Bit64u aSig0, aSig1, bSig;
|
|
Bit64u q, term0, term1, alternateASig0, alternateASig1;
|
|
floatx80 z;
|
|
|
|
aSig0 = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
bSig = extractFloatx80Frac(b);
|
|
bExp = extractFloatx80Exp(b);
|
|
bSign = extractFloatx80Sign(b);
|
|
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig0<<1)
|
|
|| ((bExp == 0x7FFF) && (Bit64u) (bSig<<1)))
|
|
{
|
|
return propagateFloatx80NaN(a, b, status);
|
|
}
|
|
goto invalid;
|
|
}
|
|
if (bExp == 0x7FFF) {
|
|
if ((Bit64u) (bSig<<1)) return propagateFloatx80NaN(a, b, status);
|
|
return a;
|
|
}
|
|
if (bExp == 0) {
|
|
if (bSig == 0) {
|
|
invalid:
|
|
float_raise(status, float_flag_invalid);
|
|
z.fraction = floatx80_default_nan_fraction;
|
|
z.exp = floatx80_default_nan_exp;
|
|
return z;
|
|
}
|
|
normalizeFloatx80Subnormal(bSig, &bExp, &bSig);
|
|
}
|
|
if (aExp == 0) {
|
|
if ((Bit64u) (aSig0<<1) == 0) return a;
|
|
normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
|
|
}
|
|
bSig |= BX_CONST64(0x8000000000000000);
|
|
zSign = aSign;
|
|
expDiff = aExp - bExp;
|
|
aSig1 = 0;
|
|
if (expDiff < 0) {
|
|
if (expDiff < -1) return a;
|
|
shift128Right(aSig0, 0, 1, &aSig0, &aSig1);
|
|
expDiff = 0;
|
|
}
|
|
q = (bSig <= aSig0);
|
|
if (q) aSig0 -= bSig;
|
|
expDiff -= 64;
|
|
while (0 < expDiff) {
|
|
q = estimateDiv128To64(aSig0, aSig1, bSig);
|
|
q = (2 < q) ? q - 2 : 0;
|
|
mul64To128(bSig, q, &term0, &term1);
|
|
sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
|
|
shortShift128Left(aSig0, aSig1, 62, &aSig0, &aSig1);
|
|
expDiff -= 62;
|
|
}
|
|
expDiff += 64;
|
|
if (0 < expDiff) {
|
|
q = estimateDiv128To64(aSig0, aSig1, bSig);
|
|
q = (2 < q) ? q - 2 : 0;
|
|
q >>= 64 - expDiff;
|
|
mul64To128(bSig, q<<(64 - expDiff), &term0, &term1);
|
|
sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
|
|
shortShift128Left(0, bSig, 64 - expDiff, &term0, &term1);
|
|
while (le128(term0, term1, aSig0, aSig1)) {
|
|
++q;
|
|
sub128(aSig0, aSig1, term0, term1, &aSig0, &aSig1);
|
|
}
|
|
}
|
|
else {
|
|
term1 = 0;
|
|
term0 = bSig;
|
|
}
|
|
sub128(term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1);
|
|
if (lt128(alternateASig0, alternateASig1, aSig0, aSig1)
|
|
|| (eq128(alternateASig0, alternateASig1, aSig0, aSig1)
|
|
&& (q & 1)))
|
|
{
|
|
aSig0 = alternateASig0;
|
|
aSig1 = alternateASig1;
|
|
zSign = ! zSign;
|
|
}
|
|
return
|
|
normalizeRoundAndPackFloatx80(80, zSign, bExp + expDiff, aSig0, aSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns the square root of the extended double-precision floating-point
|
|
| value `a'. The operation is performed according to the IEC/IEEE Standard
|
|
| for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
floatx80 floatx80_sqrt(floatx80 a, float_status_t &status)
|
|
{
|
|
flag aSign;
|
|
Bit32s aExp, zExp;
|
|
Bit64u aSig0, aSig1, zSig0, zSig1, doubleZSig0;
|
|
Bit64u rem0, rem1, rem2, rem3, term0, term1, term2, term3;
|
|
floatx80 z;
|
|
|
|
aSig0 = extractFloatx80Frac(a);
|
|
aExp = extractFloatx80Exp(a);
|
|
aSign = extractFloatx80Sign(a);
|
|
if (aExp == 0x7FFF) {
|
|
if ((Bit64u) (aSig0<<1)) return propagateFloatx80NaN(a, a, status);
|
|
if (! aSign) return a;
|
|
goto invalid;
|
|
}
|
|
if (aSign) {
|
|
if ((aExp | aSig0) == 0) return a;
|
|
invalid:
|
|
float_raise(status, float_flag_invalid);
|
|
z.fraction = floatx80_default_nan_fraction;
|
|
z.exp = floatx80_default_nan_exp;
|
|
return z;
|
|
}
|
|
if (aExp == 0) {
|
|
if (aSig0 == 0) return packFloatx80(0, 0, 0);
|
|
normalizeFloatx80Subnormal(aSig0, &aExp, &aSig0);
|
|
}
|
|
zExp = ((aExp - 0x3FFF)>>1) + 0x3FFF;
|
|
zSig0 = estimateSqrt32(aExp, aSig0>>32);
|
|
shift128Right(aSig0, 0, 2 + (aExp & 1), &aSig0, &aSig1);
|
|
zSig0 = estimateDiv128To64(aSig0, aSig1, zSig0<<32) + (zSig0<<30);
|
|
doubleZSig0 = zSig0<<1;
|
|
mul64To128(zSig0, zSig0, &term0, &term1);
|
|
sub128(aSig0, aSig1, term0, term1, &rem0, &rem1);
|
|
while ((Bit64s) rem0 < 0) {
|
|
--zSig0;
|
|
doubleZSig0 -= 2;
|
|
add128(rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1);
|
|
}
|
|
zSig1 = estimateDiv128To64(rem1, 0, doubleZSig0);
|
|
if ((zSig1 & BX_CONST64(0x3FFFFFFFFFFFFFFF)) <= 5) {
|
|
if (zSig1 == 0) zSig1 = 1;
|
|
mul64To128(doubleZSig0, zSig1, &term1, &term2);
|
|
sub128(rem1, 0, term1, term2, &rem1, &rem2);
|
|
mul64To128(zSig1, zSig1, &term2, &term3);
|
|
sub192(rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3);
|
|
while ((Bit64s) rem1 < 0) {
|
|
--zSig1;
|
|
shortShift128Left(0, zSig1, 1, &term2, &term3);
|
|
term3 |= 1;
|
|
term2 |= doubleZSig0;
|
|
add192(rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3);
|
|
}
|
|
zSig1 |= ((rem1 | rem2 | rem3) != 0);
|
|
}
|
|
shortShift128Left(0, zSig1, 1, &zSig0, &zSig1);
|
|
zSig0 |= doubleZSig0;
|
|
return
|
|
roundAndPackFloatx80(get_float_rounding_precision(status),
|
|
0, zExp, zSig0, zSig1, status);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is
|
|
| equal to the corresponding value `b', and 0 otherwise. The comparison is
|
|
| performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_eq(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
if (((extractFloatx80Exp(a) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(a)<<1))
|
|
|| ((extractFloatx80Exp(b) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(b)<<1)))
|
|
{
|
|
if (floatx80_is_signaling_nan(a)
|
|
|| floatx80_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
return (a.fraction == b.fraction) && ((a.exp == b.exp)
|
|
|| ((a.fraction == 0)
|
|
&& ((Bit16u) ((a.exp | b.exp)<<1) == 0)));
|
|
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is
|
|
| less than or equal to the corresponding value `b', and 0 otherwise. The
|
|
| comparison is performed according to the IEC/IEEE Standard for Binary
|
|
| Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_le(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
if (((extractFloatx80Exp(a) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(a)<<1))
|
|
|| ((extractFloatx80Exp(b) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(b)<<1)))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return 0;
|
|
}
|
|
flag aSign = extractFloatx80Sign(a);
|
|
flag bSign = extractFloatx80Sign(b);
|
|
if (aSign != bSign) {
|
|
return aSign
|
|
|| ((((Bit16u) ((a.exp | b.exp)<<1)) | a.fraction | b.fraction) == 0);
|
|
}
|
|
return
|
|
aSign ? le128(b.exp, b.fraction, a.exp, a.fraction)
|
|
: le128(a.exp, a.fraction, b.exp, b.fraction);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is
|
|
| less than the corresponding value `b', and 0 otherwise. The comparison
|
|
| is performed according to the IEC/IEEE Standard for Binary Floating-Point
|
|
| Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_lt(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
if (((extractFloatx80Exp(a) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(a)<<1))
|
|
|| ((extractFloatx80Exp(b) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(b)<<1)))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return 0;
|
|
}
|
|
flag aSign = extractFloatx80Sign(a);
|
|
flag bSign = extractFloatx80Sign(b);
|
|
if (aSign != bSign) {
|
|
return aSign
|
|
&& ((((Bit16u) ((a.exp | b.exp)<<1)) | a.fraction | b.fraction) != 0);
|
|
}
|
|
return
|
|
aSign ? lt128(b.exp, b.fraction, a.exp, a.fraction)
|
|
: lt128(a.exp, a.fraction, b.exp, b.fraction);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is equal
|
|
| to the corresponding value `b', and 0 otherwise. The invalid exception is
|
|
| raised if either operand is a NaN. Otherwise, the comparison is performed
|
|
| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_eq_signaling(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
if (((extractFloatx80Exp(a) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(a)<<1))
|
|
|| ((extractFloatx80Exp(b) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(b)<<1)))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
return 0;
|
|
}
|
|
return (a.fraction == b.fraction) && ((a.exp == b.exp)
|
|
|| ((a.fraction == 0)
|
|
&& ((Bit16u) ((a.exp | b.exp)<<1) == 0)));
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is less
|
|
| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
|
|
| do not cause an exception. Otherwise, the comparison is performed according
|
|
| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_le_quiet(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
if (((extractFloatx80Exp(a) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(a)<<1))
|
|
|| ((extractFloatx80Exp(b) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(b)<<1)))
|
|
{
|
|
if (floatx80_is_signaling_nan(a)
|
|
|| floatx80_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 0;
|
|
}
|
|
flag aSign = extractFloatx80Sign(a);
|
|
flag bSign = extractFloatx80Sign(b);
|
|
if (aSign != bSign) {
|
|
return aSign
|
|
|| ((((Bit16u) ((a.exp | b.exp)<<1)) | a.fraction | b.fraction) == 0);
|
|
}
|
|
return aSign ? le128(b.exp, b.fraction, a.exp, a.fraction)
|
|
: le128(a.exp, a.fraction, b.exp, b.fraction);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Returns 1 if the extended double-precision floating-point value `a' is less
|
|
| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
|
|
| an exception. Otherwise, the comparison is performed according to the
|
|
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
|
*----------------------------------------------------------------------------*/
|
|
|
|
int floatx80_lt_quiet(floatx80 a, floatx80 b, float_status_t &status)
|
|
{
|
|
if (((extractFloatx80Exp(a) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(a)<<1))
|
|
|| ((extractFloatx80Exp(b) == 0x7FFF)
|
|
&& (Bit64u) (extractFloatx80Frac(b)<<1)))
|
|
{
|
|
if (floatx80_is_signaling_nan(a)
|
|
|| floatx80_is_signaling_nan(b))
|
|
{
|
|
float_raise(status, float_flag_invalid);
|
|
}
|
|
return 0;
|
|
}
|
|
flag aSign = extractFloatx80Sign(a);
|
|
flag bSign = extractFloatx80Sign(b);
|
|
if (aSign != bSign) {
|
|
return aSign
|
|
&& ((((Bit16u) ((a.exp | b.exp)<<1)) | a.fraction | b.fraction) != 0);
|
|
}
|
|
return aSign ? lt128(b.exp, b.fraction, a.exp, a.fraction)
|
|
: lt128(a.exp, a.fraction, b.exp, b.fraction);
|
|
}
|
|
|
|
#endif
|